A List of definitions and notations

For the convenience of the reader, we summarize a list of notations blow.

R (1) / (K~ =~ . ~(1) /- ~(K) A

L G(#) =g, (), g (7)) and G(7) =[GV (7)., 5\ (7).

2. For all k € [K], the eigenvalues of ¥(*) are in [Amin, Amax], for some constants 0 < Api, <
Amax < 00.

k
. Omax — SupkE[K],jE[p]JTESp |0']( )(7T)| Note that o-rgnax < Amax~

1-— a§k)(w)2|. Note that cpax < 1 4+ 02 < 1+ Apax.

max

- Cmax 1= SUDy j ~

. p= Supke[K]’je[p] EEI;) Note that 14 < Amax-

AN L B~ W

. s(m) :==|S(m)| where S(m) := UkE[K]supp(é(k)(w)). 80 1= 8(m0). $ 1= SUP¢g, (7).

gt

ij

7. Gmax = SUPres,,(i,5)€S(r)

8. 9min ‘= inf(i,j)eS(m)) ’é&jK) ‘2/\/E
9. RS := {i € [p] : 3k € [K]5.t. G{)) # O}

10. 7rmax := SUp ey |RSj|.
k)N —
1. Diax 1= SUDje(p] S=Rs; ke [K] H(Egs)) IHOC-
k
12. py = SUD ¢ [p],5=RS, ke[K] MAXiese (Egc)sc‘s)
13. Sj(m) :={i:7w(i) < 7w(j)}

14. Uj(r) := Uperjsupp (917 () = {i : 3k € [K] 5.£. G\ (x) # 0}
15. dj :=sup,¢s, |U;j(m)|. d = supjc(, d;.

%

B Details of Theorem 3.1: causal order recovery

In Appendix B.1, we present a general statement of Theorem 3.1 (a) along with its proof. Proof of
part (b) in Theorem 3.1 is given in Appendix B.3.

B.1 Order recovery: proof of Theorem 3.1 (a) (Theorem B.1)

Theorem 3.1 (a) states the order recovery guarantee for a specified parameter A = 4/ plo%. In the

following, we will present a more general statement of Theorem 3.1 (a) that does not specify the
choice of A, after which we will present the proof.

Theorem B.1 (General statement of Theorem 3.1 (a)). For any d1,02,03,04,05 € (0,1), if the
following conditions are satisfied

526262 )2n

64p0 20
n > ((4(1 = 65)65% = 65)) " (log K + (d + 1) log p),
1 1608, 4ol Cmax \ 2logp . 4o gmax A (s(m0) + d28(7)) K
Nw 61(1 — (51) 1— 51 nKk’ (51 p K/Q
8% . [2logp K — K’

51 n K/2 ’
then ™ = my with probability at least

1 —exp (=t*(1 = d4) + (d + 2) log p) — exp (—=d5n) — 2exp (—plogp) ,

53620%n
16p02

max

K <

b

+

where t* .=
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Proof outline. By optimality of the joint estimator, (for simplicity, we write G*) .= G (7))

K
1 ~
Y —[X®EH — xBGE ()3 + MG, 1,

2n
k=1
1
~(k ~ ~
<> 5 (1IX® = XOEP — | X G - XOEW @) )
k=1
()
K
1 ~ ~ ~ ~ (1

+ 3 ~(X® = XOEW (7), X WG = XOED (7)) +MCE 1, 1

k=1

(1)

The proof is based on a bound for the term (I) and a bound for the term (II).

To bound (I), we show that the empirical variances of the error terms are close to their expectations,
which is achieved mainly by a concentration bound on a linear combination of Chi-squared random
variables.

To bound (II), we show the following inequality holds true for all j € [p] and & € S, with high

A{)()

probability (where is the empirical error):

K
1 k) /A 5 k X
sup = > (@9 (7), X0y — =S x W2 — o8V, -, BNy, 1y < 0.
(Berm} N T 2n — J

We highlight two technical aspects in bounding (I):

* For each fixed j and 7, the above inequality is proved by showing the null-consistency of /1 /lo-
penalized group Lasso problem (see Appendix B.2.3). Null-consistency means successfully
recovering the true linear regression model when the true parameters have null support (all parame-
ters are zeros). Technically, the improvement in sample complexity for recovering multiple DAGs
partially comes from the benefit of a larger K for guaranteeing the null-consistency.

* We need to insure the bounds hold uniformly over all permutations © € S, and j € [p]. To
avoid using a naive union bound over p! many permutations, we leverage the sparsity of the graph
structures and prove that the number of elements in the set {G5)(7) : m € S, } can be fewer
than p! (see Appendix E), so that we can take a uniform control over this smaller set instead.

We summarize the bounds for (I) and (II) in Lemma B.1 and Lemma B.2, which can be found in
Appendix B.2.1 and Appendix B.2.2.

Detailed proof of Theorem B.1. Collecting the results in Lemma B.1 and Lemma B.2 and reorga-
nizing the terms in the inequalities, we have the following conclusion.

25242
For any 41, 02,03, 94,05 € (0,1) and t* := 5126%;%5, if the following conditions are satisfied:
K < ﬁt* _ 536262 \%n

=1" T Teapor,
(4(1 — 03)05% — 85) n > log K + (d + 1) log p,
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then with probability at least 1 —exp (—t*(1 — d4) + (d + 2) log p) —exp (—d5n) —2 exp (—plog p),
it holds for all 7 € S, that

XBEW @[5+ MG 1y,

0 RN () (k) 2
~A\2 2
g 2 2 (0 =)
4ot 2pl K — K')2p21
S<1U_mgx +20§m) p ng+20§iax\/( )2p? log p (6)
1 n n

+ 52)\‘@(1:1() _ QLK) (ﬁ)\\ll/lg n )\”éél:K)”ll/lQ
< <40mdx 952 > 2plogp  , \/(K—K’)2p210gp
- n

1 _ 61 de de n

+ EMGEO 1, + MG (#)1y 1 + MG 1, (17)

Suppose 7 # mg. Condition 3.5 implies

01 pK’ 402 2plog p (1:K)
o = (175 208 ) 23R G+ MG @
(K — K")2p%logp
+20§mx\/ - .

Divide both sides by pK’, it implies

K)
01 1 < <40max + 20 12nax) 210gp+ )‘HG ||l1/l2 +6 )‘”G(l K) )||l1/12

40t N 1-6 nK’ pK' 2 K’
9 (K — K')2logp
+ 20'max T
< 40—1%1;1)( + ) 2 logp + A (S(TFO) + 525(7%)) gmax\/f
“\1-46 ™) nK’ pK’
9 (K — K')2logp
20\

The last inequality uses the fact that [|G15) ()| L < 5(m)VK gmax. It contradicts with the
condition

1 ( 1608 40—;4113xcmax> 2logp n 402 gmax A (s(m) + 028(7)) | K

niw (51(1 — (51) 1-— (51 nK’ (51 P ﬁ
+8 oax | 21logp K — K’
51 n K/Q

Therefore, 7 € Ilj.
Theorem 3.1 (a) is straightforward by taking A = /plogp/n.
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B.2 Key lemmas for proving Theorem 3.1 (a)
B.2.1 Lemma B.1: Analysis of (I)

Lemma B.1. Denote omax = SUPje(k jelp),res, |0§k) ()|. With probability at least 1 — 2e~P1°8P,
it holds for any 61 € (0, 1) and any permutations &« € S,, that,

K
1 ~(k
Z—(||X<k>—X<k)Gé>||%—|\X< - XHEO @)7)

2n
k=1
2
(k) A2
<o S o o)
Jj=
4 2pl K — K')2p21
b Tmax g2 pogp+23m\/( )2p* logp.
1-46; n n

We now state the proof of this Lemma. Denote the j-th column of G (1) as g;k) (7), and the noise
as

M) = xM - xWg® () e ™. (18)

k=1
K p 1K)
1 =g (@3 (k) Lytk) oo
=32 | ) = 3 g (@)
2k::1 j=1 O—;k)(ﬂ-)Q = !
K p 112(R) (~y12 K p
1 k k allEs (@3 1 k k), -~
3 (- aie) (B 1) 4 1SS (o - )
k=1 j=1 0; (7) k=1 j=1
K P 1 (k) (a2
1 (k) 2 (k) /A2 EHs] (m)l3
<520 () - o) (2 oh T -
k=1j=1 3
K p
1 ), . 2
Ao > (UJ( (#)° —0; )(770)2)
max p—=1j=1
The last inequality holds because for ¥ = 1,---, K/, 5 1( (k)( 0)? gj(,k)(fr)2) <

2
— 55 2y ( (k)(w)Q - a](-k) (7‘(‘0)2) and that for k > K',>°%_, (O'J(k)(ﬂ'o)z - a§k)(ﬁ)2) <0.

Then we bound the first term using the concentration bound on Chi-squared random variables.

3 118 2y)12
53 ) (R )

k=1 j=1 0 )(
K
d. k k) [ k k) a
:ZZ(JJ( )(W0)20§)(ﬂ)2)( > ZZ( () U; )(W)Q)(?—n),
k=1j=1 ==
where ]2 ~ x*(n) are i.i.d. Chi-squared random variables of degree 7.
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By Lemma H.1, for any fixed 7 € S, and for any ¢ > 0, it holds with probability at least 1 — e~ that

722( (k) (k)( ))(52 )

k=1j=1

KL (a§’“><7ro>2—a§’“)<ﬁ>2)2 )

2
§2 \/£+ Umaxt
n n
K p *) ) k) oro 2 1 n
<5332 (om0 — o)+ (5200 )
k=1j=1

The last inequality holds because 2ab < a? + %bQ for any 9 > 0. Now it remains to take a union
bound over the permutation 7 € S,. There are p! many permutations. Take an uniform control over
all possible 7 € S,,. It implies that with probability at least 1 — (p!)e ™", the above inequality holds
for all # € S,. Equivalently, we can say it holds with probability at least 1 — e~* that it holds for all
7 that

K' p
S (oo — o (392 (& - m)
k=1 j:l
(®) (1 (k) 2%, (1 t+plogp
< 6;; ( — 0} (7r)2) + (5 + 2031“) — =

For the non-identifiable models, we can use Lemma H.1 in a similar way to obtain that with probability
at least 1 — e~ ¢, the following holds for all 7,

1« ¢ (k)
k) /A
DY Z( —aM(@)?) (€ =)
k=K'+ :
k) ya _ (K)(~y2)2
$ K’+1ZJ 1( (7o) 0j (77)) \[+ maxt
n n
K — K')p(t I 202
§20r2nax\/( )pfb +p ng) + O.;Lnax(t‘Fplng).

Putting the above results back into the term (I), taking 6’ = 24, and taking ¢ = plog p, we have with
probability at least 1 — 2e~P1°8P that

!

?i( s

max p—1j=1

2plogp (K — K')2p*logp
5+ 208 ) L 0, )

Finally, take 6; = 1 — o 4’ so that §' = i (1 — 41). Then for any 6; € (0,1), the following

max

inequality holds with probability at least 1 — e P1°8P for all 7 € S),:
K' p

k) /A
oy 2. (037 mo)? = 0} 27?)
X b1 i

o 2plogp (K — K')2p?logp
+ (1 21351 +2 r%mx) n + 2Ur2nax n :

2
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B.2.2 Lemma B.2: Analysis of (II)

k k
Lemma B.2. Denote p := supjc (], e[y Egj) and Omax 1= SUDke|(k] je[p),neS, \UJ(- )(w)|. For any

02,03 € (0, 1), assume \ satisfies t* := 516(;)‘ ™ > K. With probability at least

1exp<t* [12,/55 41— %)

03
the following inequality holds true:

n+log K + (dJrl)logp) ,

+(d+2) logp) — exp <

K
1 ~ . ~
> (X(k) _ X(k)G(k)(ﬁ),X(k)G(k) — x®agk) (7))
k=1
52 o -
< 23T IXWED - XOGO @) + NG - GER (7)), 1,

We now state the proof of this Lemma. To show the inequality in Lemma B.2 holds true, it is sufficient
to show the following inequality holds true for all 5 and 7:

;é@ﬁ‘“(m,x (@@ -3 @))r _%ZHX(“( (®) -3 @) I

NG @) — 3 s (19)

where we denote
Gi(7) =13, (), g (7)) and Gi(7) =[5V (7). .5\ (7).

Now consider a fixed j and a fixed 7. Recall S;(7) which denotes the set of ancestors of the node

Jj specified by the permutation 7, and let m = |S;(#)| € [0, p — 1] be its cardinality. Let X gj) =
X ®)| g (#) denote the submatrix of X *) whose column indices are in S;(#). We define the event

5(5,A;é§’“)<ﬁ>> =

K K
1 . 0
{{ sup *Z@{jk)(ﬂ) ﬁ(k) Z k)ﬁ(k)Hg_(S)‘H[ﬁ(l)’”' aﬂ(K)]Hzl/lQ SO}.

Bk crm} T P 2n

It’s easy to see that with probability at least Pr [8((5, X ég-LK) (fr))} , the inequality in Eq. 19 holds

true. Therefore, we need to derive the probability of the joint event Nje(,) 7es,E (0, A; € 41 K)( )) in
this proof. Observe that:
£(8, N () €
K ~(k) K k ﬂ_
a‘ NG B2 A8, ... g <0
PR SRR ol - N 5, <)
D e o0 (1) (K)
0¢c ar rmn— & — XpR2 LAWY, ..., K
{ armin 5 3125 - XA, 5

Therefore, we resort to bound the probability of the above event, which is the null-consistency of
l1 /l1a-penalized group Lasso problem. We present the null-consistency analysis by Lemma B.3, and
its proof is given in Sec B.2.3.

RO)
Note that in the event £(J, \; € A{l K)( )). the variance is =2 ( ) & =wy, with
OIPN
o (7
Wy ~ N 0, ( J 5( )> In
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Therefore, we can take og in Lemma B.3 to be 09 = %, which implies for any ¢’ € (0, 1), if
5"26%\%n
t" = ——— > K,
16p07ax
then

Y
e £ & )] 21— posp (t* [1 - gﬁb Ko (020,

Now what remains is to take a uniform control over all events Nje(,) zes, € (0, A; E{]-LK) (7)). A naive
way is to enumerate over all permutations & and all 7 which will constitute p - p! events. However,

recall éﬁvk)(w) =X ;k) - X (k)g(.k) (). Then it is enough to take a uniform control over the set

j
{§§1:K)(7r) :m €S,,j € [p]}. By Eq. 35, this set contains at most p - p? many elements. Therefore,

Pr (e res, €00, 1850 ()]
K 41— ¢
1-— 2\/2]) — Kp-pdexp (—(5/2)71)
K
>1—exp (—t* [1 =24 I

which implies Eq. 19 holds with the above probability.

>1—p*p exp <—t*

5

4(1-¢")
+(d+2)logp | —exp ( ———5—n+log K + (d+1)logp

B.2.3 Lemma B.3: Null Consistency

Lemma B.3 (Null-consistency). Let S C [p] be a set of m indices. Consider the following linear
regression model with zero vector as the true parameters:

y® = xXPo+w®,  fork e K]
where y*) = w®) ¢ R™, Xék) € R™™ and 0 € R™. Assume that for each k, the row vectors of
X®) are i.i.d. sampled from N(0, E(k)) and the noise is sampled from w*) ~ N (0, 01(,};)2]”). De-

note p := Maxy¢(k] Eyj and 0 = max¢(k] aw. Consider the following 1 /ls-regularized
Lasso problem:
1K
~ . k
B = argmin oY g™ — X7 8D 5 + N Bi, .. (20)
BERmMXK n 1
where B = [0 ... W], Forany § € (0,1), if
5%X\3%n
* __ 2 7 K
16po? >

then with probability at least

- (- 1-25]) - (25

B = 0 is an optimal solution to the problem in Eq. 20.

The proof of this lemma is stated below, in which we simply use the notation X (*) to replace X ék).

Lemma B.4. Suppose there exists a primal-dual pair (E, 2) € RM¥K x Rm*K \phich satisfies the
following conditions:

Z € 9||Bl|i, 1, (21a)
1 - ~
——x M7 (y(k) - X(’%(’f)) +az0) =0, Vke K], (21b)
HZHzm/l2 <1, (21¢)
where [E(l), . ,E(K)] are the columns ofﬁ and [, - 2] are the columns on Then 0 is

the solution to the problem in Eq. 7 and it is the only solution.
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Proof. Straightforward by Lemma 1 in [19]. O

Therefore, to show 0 € argmingepmxx 5= Zf:l |y — X ®) 3R |2 X||B|;, 1, it is sufficient

to show the existence of (é , Z ) which satisfies the conditions in Eq. 21. We construct such a pair by
the following definitions:

B:=0, (22)
N 1

(k) .— TX(k)Ty(k)' (23)
n

Clearly, they satisfy Eq. 21b. If we can show HZHloo/lz < 1, then Eq. 21 holds. Therefore, in this
proof, the main goal is the analyze Pr [|Z\|lm/l2 < 1} .

27 )

Denote the row vectors of Z as Z; := ;o525 ] Then (| Z]i, 1, = maxjepm) 1 Z)]2- By

definition in Eq. 23,
gj(k) X(k)Ty(k) 1 Xj(k)Tw(k).
n

A AN

Since the linear combination of Gaussian distribution is still Gaussian, then given wK ), the variable
| Z;||3 is equivalent to a Chi-squared random variable in distribution:

HZ ”2 ‘ w (LK) _ ( k)T (k))2 |,w(1:K)

)\2n2
4 F) 140 (F) |22 h O N(01
22 Z i 1w ™ 15€5,  where {5, ~ N(0,1)
< o o S ma [l Zs
= X202 jeli) 99 ke[aK 2 ik

By Lemma H.2, for any 6 > 0,

Pr [;n?[)(( w®)3 > 033)2271(1 + 5)] < Kexp <—n(1 +0)
€

1
1-2 MD

] Pr {mgx |w™ |2 < 2n(1 + 5)}

Therefore, for all § > 0,

An

K
Pr |max ||Z; < 1| > Pr |max [ A —
a2, < 1] > Lem;@k T

where
p = max E( and o0 := max 01(/5)
ke[K] kE[K]
Take t* = #, then if t* > K, we have
Pr

Ina <2t >1—pe 1—2 .
i
572

Rewrite § = 55 — 1 for some 8’ € (0,1) sothat 1 4+ § =
satisfies the condition

> 4. If A\ is taken to be some value that

5% \2n

~ 16pc?

Y/
P [max 712 <1] 21— peso ( [/KD ey (0200,
J

21
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B.3 Proof of error in F-norm

Denote the error vector as A( —ﬁj(k)( ) — Ej(k)( ). Then
Ko R
Z %HX(’“)G(’“) — X®OGE (7)||3, = ZZ ||X(k)Ak\|2
k=1 k=1j=1

By Theorem 7.3 in [14], with probability at least 1 — exp(— log p — log K), it holds for all k¥ € [K]
and j € [p| that

v

ll2

d (logp + log K 4(logp + log K
3/4Amin_30_max\/ (logp +1logK) (gpn g K) 1A%

n

1 k
NORSESE

%

d(l log K
3 /4 A — 3Jmax\/ % ) 2ty

where d := Sup; i ||A§-k) llo- If the sample size n satisfies the condition with a suitable constant
H(Amin)i

n > H(Amin)d(logp +1logK),

then ﬁ ||X(k)A§»k) 2 > K'(Amin)HAék) ||2 for some constant k(A ). Therefore,

— ZZ ”A(k)H2 /( NE Z o K”x(k)G(k) x® G k)( )IZ

k 17=1
2 i )plogp+c SoA
K’(Amin)Q O max DK gmax\/E s

<

which implies

K2 (k) plogp  sgA SoA
A,»k 20( +°>o<°).
The last equation holds for the case when A = 4/ prlf#.

C Proof of Theorem 3.2: Support Recovery

We are interested in showing that the support union of G(1:K) ig the same as that of é(()l:K). To
prove this, we can equivalently show the support union of §](»1:K) is the same as that of §§1:K)
j € lpl.

Now we state the proof of Theorem 3.2.

for any

Proof. Given a permutation 7y € Ily, the DAG structure learning problem is equivalent to solving
p separate group Lasso problems, where for each j, the following [ /lI3-penalized group Lasso is
solved:

K
LK . 1 k
3 sy = argmin 37 ) XP — (XP g, ) AP NBll e 24

BeRISi (ro)I x K =1 4T
where S (o) := {i : m(i) < mo(j)}, and we denote the columns of B as B = [, ... )]
The proof in this section is based on a uniform control over all j. For each j, the estimation in form

of Eq. 24 is called a multi-design multi-response (or multivariate) regression problem, which has
been studied in the last decade [18, 19]. Our support recovery analysis is based on techniques for
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analyzing multivariate regression problem in existing literature, but careful adaptation is needed to
simultaneously handle a set of p problems where p is the dimension of the problem.

More precisely, we present the analysis of multivariate regression problems in Appendix D, where
the main results are summarized in Theorem D.1. Then the results in Theorem 3.2 can be obtained
with direct computations by applying Theorem D.1 to p separate problems defined by Eq. 24 and
taking a union bound over all j € [p).

O

D Support Union Recovery for Multi-Design Multi-response Regression

The analysis in this section can be independent of the other content in this paper. We first introduce
the multivariate regression setting and notations below.

Problem setting and assumptions. Consider the following K linear regression models
y® = X®EgF) 4 w®)  fork=1, - K,

where y*) ¢ R", X(®) ¢ R»*?, (k) ¢ RP, and w®) € R™. Assume that for each k, the
row vectors of X (*) are i.i.d. sampled from A(0,X(*)) and the noise is sampled from w*) ~
N(0,0"2,). Denote S as the support union of true parameters {6*(k)}ke[K]’ ie,S:={j:3k e
[K]s.t., ﬁj’-‘(k) # 0}, and s = | S| as its size. Note that the s in this section has a different meaning
from s in other sections. Furthermore, for the true parameters, we denote B* = [ *(1) .. prE )]
as the matrix whose columns are B*(’“). Besides, we use Bj to denote the j-th row of B*.

Assumptions and definitions. Consider the following list of assumptions and definitions:

1. There exists v € (0, 1] such that ||A[[_, < 1 —~, where Aj; = max¢[k] ‘(E(S]?S(Egkg)l)

js
forj e S°ands € S.

2. There exist constants 0 < Apin < Anax < oo such that all eigenvalues of Eg@ are in [Amin, Amax]
forallk =1,2,--- | K.

3. Pu = manGSc_’ke[K] (Zg]z)sc‘s)jj

4. Opax = maXge[K] g(k)
5. bmin := minjeg HB;Hz /VE.

With the above assumptions, we are ready to present the theorem.

Theorem D.1. Assume the problem setting and assumptions in this section stated above. Consider
the following 11 /lo-regularized Lasso problem:

K

1

: E (k) _ x (k) g(k))2 B

BgllklpriK 2n k=1 ”y X"p ||2 + /\H Hll/l27 (25)

where B = [, ... | B, If the following condition holds
n = keslogp,
K <cylogp

802 logp n 2 /splogp — o),
Aminn Amin nk

then Eq. 25 has a unique solution B, and that with probability at least

1 —c1K exp (—c2(n — s)) — exp (—czlogp) — sexp (—csK logp)

/\/? = O(bmin)o

loc/l2

the support union ofé is the same as S, and that HE — B*

In this statement, kg is a constant depending on 7y, Anin, Pu, Omax and c; are universal constants.
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D.1 Proof of Theorem D.1

The proof is based on a constructive procedure as specified by Lemma D.1, which characterizes an
optimal primal-dual pair for which the primal solution B correctly recovers the support set S.

Lemma D.1. Define a pair B= [3(1), e ,E(K)} and 7 = (2, ... 2] as follows.

Bge :=0 (262)

Bg := argmin —ZH Xék)ﬁ(sk)”%Jr)‘”BS”ll/lQ (26b)
Bocpexk 2

2 = A (ié (B — g™ - iXé’“”w““)) (26¢)

29 (A0 53 - L) 260

The following statements hold true.
(a) If the matrix Zge = [Eglc), e A( )] defined by Eq. 26d satisfies
|Zse i < 1. 27)

then (§ .z ) is a primal-dual optimal solution to the ly /ly-regularized Lasso problem in Eq. 25.
Furthermore, any optimal solution B to Eq. 25 satisfies Bge = 0.

(b) Define a matrix Ug = [ug), e ,u(SK)] whose column vectors are
Sk * 1 ~
B G _ g _ (50)1 (Xék)Tw(k) _ )\z(sk)) .
n

If the conditions in (a) are satisfied, and furthermore, Ug satisfies

U,
sl iﬂ;/ E < b 8)

then B correctly recovers the union support S. That is,
{i € lp] : 3k € [K]s.t. B # o} Sy

Remark D.1. Note that the matrix Zg : [Eg), SR EgK)] defined by Eq. 26c¢ is a dual solution to
the restricted optimization in Eq. 26b, and thus satisfies Zs € 9||Bs|;, /i,-

Proof. The proof of Lemma D.1 (a) is similar to Lemma 1 in [19] and Lemma 2 in [18]. The proof of
Lemma D.1 (b) is straightforward from the condition in Eq. 28. By definition of b.,;,, Eq. 28 implies

1By = 187 g — 1B — 87 ®) |l > LV/Kbry, > 0 forany j € S. 0

Based on Lemma D.1, if we can show the primal-dual pair defined in its statement can satisfy both
conditions in Eq. 27 and Eq. 28, then the support recovery guarantee is proved. We provide the
analysis of these two conditions in Appendix D.1.1 and Appendix D.1.4 respectively.

Collecting the results in Appendix D.1.1 and Appendix D.1.4, we conclude that, if the following
conditions are satisfied:

5
n > kgslogp, K < 6—410gp,

802, logp n 2 sp logp of

b*
Aminn Amin ’I’LK

mm) ’
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then with probability at least

2
n (1 s /1
3 1
—exp | —2-logp | —sexp| —2Klogp|1—2
4 2logp

>1—c1Kexp(—c2(n—s)) —exp(—cslogp) — sexp (—caK logp),

)

conditions in Eq. 27 and Eq. 28 are satisfied and therefore B correctly recovers the union support S.

D.1.1 No false recovery: ||ch||loo/l2 <1

Denote the row vectors of Zge as 2j = [Ej(l), - ,Ej(.k)]. Then

| Zse

o/ts = 2% |1 Z51]>
Since
Z; =ElZ; | XSS +E[Z; | X3 w0 —E[Z; | X$]
T Tj2
+ 2, —E[Z; | X$HO ),

Tjs

to prove || Zse|;_s1, < 1, we resort to bound max;ege || Tjq|2 for a = 1,2, 3 separately. The
analyses of T}j; and T}, largely follow the arguments in [19] and [18], so details are omitted for
brevity. We summarize the results of these two terms below, after which we present the detailed
analysis for T73.

D.1.2 Analysis of T;; and T}

T}1: Following the same arguments as the derivations of Equation (28) in [19] and Equation (39) in
[18], we have maxjege || Tj1lla <1 —7.
T}2: Following the same arguments as the derivations of Equation (32) in [19], we have that
~ " = * 1:K
max | Tallz < (1= 1)1 Zs = Z s + (L= NENZs = Ziliysy | X5™)

where the rows of Z} are defined as Z; := B;/||B}|| fori € S. Define the matrix A € R¥*¥ with
rows A; := (B; — B})/|| B ||2. By Lemma H.3, if [|A[;__ /i, < 1/2, then it holds true that

1K
mee [ Talla < 40 =) (181 e +ELA 2 | X54)).
We will show later in the analysis pf Us that [|Al|;__ s, is of order o(1) with high probability.

D.1.3 Analysis of T}3

Following the same arguments as the derivations of Equation (36) in [19] and Equation (42) [18], we
have that for each j € S¢,

given (Xél:K), w(ltK)) ,

2 —EEP | x{ w0 L e,

where
ik ~ N (0, 1),
k
sz.k = (E(SG)SC‘S)ijk < pu My,

My = LzPT (S0 20 - o w® T — 1,)w®.
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Therefore,
given (Xé‘l:K)7 w(l:K)) ,

_ mrsk) (1:K) w(K) 2 d. 2 2
]Hgggllz E[z;" | Xg 115 max > 058k
k=1
K
< pu M, 2 29
< pu max | k|§%%)§;€gk (29)

(1) Bounding maxj.ex) | My|.

Bound the term lE(k)T(i(m)*l E(k) is based on the following relations:

max st My < /s (by definition),
ke[K]

2
2 1
max IEEH 1), < i >1— Kexp <;L (4 — ﬁ) +> (Lemma 10 in [18]).

Therefore, with probability > 1 — K exp <—% (l — i)2 ),

4 n/) 4+
LT sty-120] o Lysty-1y izky2 o 1 28
S ESTED TR < IEE) T alE 1 < S 5
For the second term in maxy,¢[x] | M|, note that
(k)T( H(k)),w(k: - (k)2 Z C]k with Cjx ~ N(0,1).

By Lemma H.2, for any § > 0,

n—s

Pr ]gn% (?k22(1+5)(n—s) < Kexp (—(1+(5)(n—5) [1—2
L

L
1496

)

) |

To summarize, with probability at least

1Kexp<;l (i Z)+> Kexp<(1+5)(ns) llQ 1;—5

it holds that

1 25 205(1+08)(n—-s)
M < mdx
Igrel?l? | Ml 7 Amin + n2\2

(2) Bounding max j¢ ge Ele &
Combining the bound on maxy.¢x) | My| with Eq. 29, it implies

125 202 (146
e |1 3||2<pu( 1 20ma(1 4 0)(n - )maxszk

7 Amin n2\2 jese

A2n
T c 2 .
= {I]Ié%{)f” 33”2 < 7} = {Inangjk 20 )\2S/Amln +dex(1 +5) n’r_ts }

What'’s left is to bound the term Zk 1§jk Take t* = 4p2 /A +22”(1+5)D. Ift* > K, by

Lemma H.2 and a union bound over j € S¢, we have that

. K
%%§Z§k>2t 5)exp<t [12 t*])

26



(3) Collecting all results.

To conclude, for any § > 0, if the following conditions are satisfied:

1

1Al /12 < 5
P X’n
" 4pu A28/ Apin + 02, (1 + §) =2

n

> K, (30)

)

then for any § > 0, with probability at least

1 — K exp (—Z <i - Z)j) — Kexp <—(1+5)(n_8) ll _2\/3
)

it holds that

Tislla < 7.
jrrgggll jalla <

(4) Condition in Eq. 30.
If we assume that
n > Cslogp
for some constant C. Then
. i A2n _ i 1 _
= 4pu M0/ (CApinlogp) +02,(14+8)"2 4py (CApinlogp) =t + 02, (1 +0) 355
With the specified choice of parameter A = \/ZW, it implies

2 log p

Apu (Chin) ™" + 02 (1 +0) 22

np

>

Assume C' is chosen such that C' > A ! ( o o2 (1+ 5)”%;) ~1 which can be easily satisfied

min \ 20p,,
since % < 1. Then it implies t* > 5logp. To satisfy the condition in Eq. 30, it is sufficient to
assume K < 2 log p, which implies K < g;t*. Furthermore, it implies exp (—t* {1 -2 tK*D <
exp (—3% logp).

To conclude, if || Al s, < 3 and that
5
n > reslogp, K < 6—410gp7

then max;cge ||Tj3]|2 < v holdes with probability at least
2

1— Kexp (—Z (i— ;)Jr) — Kexp <—(1+5)(n—5) ll—Q ﬁ

—(p—s)exp <3?1 logp> .

)

. NUsllig 1
D.1.4 No exclusion: —E 2 < 5h

Eq. 26¢ implies that

e a1 .
® g5 = (31) (nXék)Tw(k) _ )\z(sk)> .
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Define w'*) := T(Z(k)) 1/2X(k)Tw(k) = oM ¢, with & ~ N(0,I,). Then

wF)
* d _ w 2

ne B(k)

Denote the i-the entry in the vector A*) as Agk). Then for a fixed 7 € S, the entry {Agk) }re[k) are
independent. Its easy to see that

(k)
k) | y(:K) & 97 Sk \—1) ¢ Sh e ) —
X080 £ T J(Bhs)71) G with G~ N0,1) and Cov(Gur, ) = 0

Therefore,

K

2 K
o
max A(k)2 | X (LK) < Zmax iy H H maxZﬁfk.

i€S T n k€EK] 2 €S P

k=1

Since we have

2
2 1
Pr maxHZ H < >1—Kexp| -2 _\/; by Lemma 10 in [18],
ke[K] 2 Amin 2 \4 n +

1
2logp

K
Pr [masx Z{fk <4K 1ogp] >1—sexp <—2K log p (1 -2 )) by Lemma H.2,
1€
k=1

then with probability at least 1 — K exp (—% (i - %)i) — sexp (—QK log p (1 — 2,4 /@)),
it holds that

max

i€S Apinn

K
ZA(k)Q < 8 maxK logp
k=1

Tuning now to the term B*):

K
= Amax,| Y (e;@g@)—lg@f

€S
k=1

max
i€S

K
<)\max ZH Egks) —Te;|13]|z (k)||2 by Cauchy-Schwarz inequality

Zn (’“)H2<Amax 19D 2/

<A kN-Te,
I;leaglgelﬁéll( ss) "eill2

The last inequality holds because ||Zg||lm/l2 < 1. Applying Lemma 10 in [18] to

maXye (k] 1(E%))=1||, again, with probability at least 1 — K exp (—f (- ﬁ)i), it holds
that

WA
Z B 2 < Amln

max
i€S

To conclude, with probability at least

1 1
1— 2K exp <—Z (4— Z) >—sexp <—2Klogp (1—2 210gp>>, 31)
+
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it holds that (with specified A = ,/Z1%52)

~ 802, Klogp 2 sp logp
B _ B* < max
1Bs = Bl /12 < A T mm\/
_ WUslieps - [8o8alogp /8plogp
\/? - Aminn mm

807 logp splogp _ 1.

—_ 2 min>’

Therefore, if

mmn

then Eq. 28 is satisfied with probability specified in Eq. 31.

E Invariant Sets

We often need to take a union control over all permutations 7 € S, in the proofs. However, in these

steps, we often care about the connection matrices G:K )(r) instead of the permutation 7 itself.
Therefore, we want to see whether we can control a fewer number of events instead of enumerating
over all p! many permutations. Alternatively, we want to should that, given (%) the number of
elements in the set {G5) () : 7 € Sp} can be fewer than p!.

We start with the following definition which specifies the population-level quantity that we are
interested in.

Definition E.1 (Population SEM). For any S C [p] \ {j}. let

g§k)(S) := argmin IE[X](»k) - gTX(k)P, (32)
' gERP ;supp(g)C S

where X (¥) is the random variable that follows A/ (0, (F)).

gj(»k) (S) is called the SEM coefficients for variable X; regressed on the nodes in S [15, 17]. It is

a population-level quantity that depends on X(*), but not on the sample X¥). In [15, 17], this
quantity is used for a similar purpose on the single DAG estimation task. It is easy to verify that

ggk) (S;(m) = §j(-k) (). Lemma E.1 summarizes the key observations.
Lemma E.1. Let S;(m) = {i : n(i) < 7(j)} and ﬁj(-k) () is the j-th column of G®) (r). Then
9, (5) =5," ()
for any set S such that
supp (g i (x )) €S C S;(m). (33)

Since the set of union parents U, () := Uke[K]supp( gk )( ) satisfies Eq. 33, it implies that

a7 (U;(m) =g (m). vk € [K]. (34)
A direct consequence of this Lemma E.1 is that:

G m i m e s} = [EOWm) i me s} < |{Uim) i mes,).

Recall that d; := maxres, |U;(m)]. Then there are at most » o, <, (?) many elements in this set.

Note that
>, )= 2, 0=

0<m<d; 0<m<d

The last inequality holds for all p > d > 2. Therefore,

(G () mes,)

< ){Uj(ﬂ) M ES,}H <

3 (Z) <pl. (35)

0<m<d;
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F Details of Continuous Formulation

We first prove that T’ € Tp:

Lemma F.1. If(@(l:K)7 f) is a pair of optimal solution to Eq. 14, then T is in the discrete space Tp.
Equivalently, if T' is an optimal solution, then there exists a permutation © € S, such that

T, = 36
’ {O otherwise. (36)
Proof. By the constraint h(T) = 0 in Eq. 15, the graph structure induced by the matrix T must

be acyclic. Therefore, T represents a DAG and has an associated topological order (causal order).
Denote this order by 7. What remains is to show Eq. 36 holds true.

Assume there exists an entry (i’, j') such that #(i') < #(j') and T} j+ # 1. We construct the following
pair of (T, G1+5)):

_ (k) _p AL K)
T:= Lo _Al s Y G .= Gzlk])/ B z—‘Z(,lg)l .Gi/j.., . e vk € [K].
T;; = Tij for (i, ) # (i, j") Gy’ = Gy for (i, ) # (i',5')

It is constructed by modifying the (¢’, j')-th entries in the solution pair (f, G:K )). Tt is easy to
see that: (i) this constructed pair (7', G(*¥)) is a feasible solution to Eq. 14; and (ii) (T, G(1:%))
achieves a smaller objective value than (7', G(*5)),

vey . . . . —=(I:K . .
The reason for (ii) is that after the modification, the matrix G( ) remains unchanged. That is,

ToGK =ToGH, Therefore, the squared loss and the group-norm in the objective remain
unchanged. However, the term ||1,, — 7T'||% has been reduced by setting T;/;» = 1.

This makes a contradiction to the optimality of (7', G(1:))
and we conclude that:

. Therefore, the assumption is not true

#(i) < #(j) = T, = 1.
Finally, since T is consistent with 7, by definition, ﬁj =0if 7 (i) > 7(j). O

We now start to show the equivalence between the optimization in Eq. 7 and in Eq. 14.

Firstly, the solution search spaces are the same. We have shown that T € 7Tp. For each element in 7,
we denote it by ’f(ﬁ) based on its associated order 7. Since 7(r) is a dense DAG with topological
order 7, it is easy to see the space {G o f(ﬁ) : G € RP*P} includes all DAGs that are consistent with
# and excludes any DAGs that are not. In other words, {G o T(x): G € RP*P } = D(nr). Therefore,
the solution search spaces of these two optimization problems are equivalent.

Secondly, the optimization objectives are the same. Again, since Te Tp, the term p|| 1,5, — T % is

p(p—1)
2

a constant with a fixed value P, The remaining two terms in the objective are the same as the

objective in Eq. 7.

Since both the solution search space and the optimization objectives are equivalent, these two
optimizations are equivalent.

G Details of Synthetic Experiments in Sec 6.1
G.1 Evaluation of structure prediction
We classify the positive predictions in three types:
* True Positive: predicted association exists in correct direction.

* Reverse: predicted association exists in opposite direction.

30



* False Positive: predicted association does not exist
Based on them, we use five metrics:

* False Discovery Rate (FDR): (reverse + false positive) / (true positive + reverse + false
positive)

* True Positive Rate (TPR): (true positive) / (ground truth positive)
* False Positive Rate (FPR): (false positive) / (ground truth positive)
* Structure Hamming Distance (SHD): (false negative + reverse + false positive)

* Number of Non-Zero (NNZ): (true positive + reverse + false positive)

G.2 A more complete result for Fig 3

We demonstrate our methods on synthetic data with (p, s) € {(32, 40), (64, 96), (128, 224), (256,
512)}, K €{1, 2, 4, 8, 16, 32}, n € {10, 20, 40, 80, 160, 320}. For each {p, s, K,n}, we run
experiments on 64 graphs. We report the full results in Fig.5.

p =32 p =64 p =128 p = 256
_05 0.7 0.7
z k=1 06 k=1 k=1 k=1
E 0.6 0.6
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Figure 5: Full results of FDR, TPR, FPR, SHD, and NNZ.



G.3 Computing resources

Since we need to run a large set of experiments spanning different values of {p, s, K, n}, the synthetic
experiments are run on a CPU cluster containing 416 nodes. On each node, there are 24 CPUs (Xeon
6226 CPU @ 2.70GHz) with 192 GB memory. Each individual experiment is run on 4 CPUs. It takes
about 10 hours to finish a complete set of experiments on about 400 CPUs.
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H Useful Results In Existing Works

Lemma H.1 (Laurent-Massart). Let ay,--- , a., be nonnegative, and set
m
lalloo = sup [ail, [lafl5 =" ai.
i€[m] i—1

Fori.i.d Z; ~ N(0,1), the following inequalities hold for any positive t:

Pr [Z a;(Z} = 1) > 2|lal2vt + 2||a|oo1ﬁ1 <e™,

i=1
m
Pr [ ai(ZF —1) < —2||a||2t] <e .
i=1

Lemma H.2. [18] Let Z be a central Chi-squared distributed random variable with the degree m.
Then for all t > m, we have

Pilz > 2] < oxp (<t 1 2\/?}) .

Lemma H.3. [18] Consider the matrix A € RS*X with rows A; := (B; — BN/ Bf 2. If
ANtz < 30 then | Zs = Zg i 1, < 4 Allicg /1,
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