
A List of definitions and notations

For the convenience of the reader, we summarize a list of notations blow.

1. Ĝj(π̂) := [ĝ
(1)
j (π̂), · · · , ĝ(K)

j (π̂)] and G̃j(π̂) := [g̃
(1)
j (π̂), · · · , g̃(K)

j (π̂)].

2. For all k ∈ [K], the eigenvalues of Σ(k) are in [Λmin,Λmax], for some constants 0 < Λmin ≤
Λmax <∞.

3. σmax = supk∈[K],j∈[p],π∈Sp |σ
(k)
j (π)|. Note that σ2

max ≤ Λmax.

4. cmax := supk,j,π |1− σ
(k)
j (π)2|. Note that cmax ≤ 1 + σ2

max ≤ 1 + Λmax.

5. ρ = supk∈[K],j∈[p] Σ
(k)
jj . Note that ρ ≤ Λmax.

6. s(π) := |S(π)| where S(π) := ∪k∈[K]supp(G̃(k)(π)). s0 := s(π0). s := supπ∈Sp s(π).

7. gmax := supπ∈Sp,(i,j)∈S(π)

∥∥∥G̃(1:K)
ij (π)

∥∥∥
2
/
√
K.

8. gmin := inf(i,j)∈S(π0)

∥∥∥G̃(1:K)
0ij

∥∥∥
2
/
√
K.

9. RSj := {i ∈ [p] : ∃k ∈ [K] s.t. G̃
(k)
0ij 6= 0}.

10. rmax := supj∈[p]

∣∣RSj
∣∣.

11. Dmax := supj∈[p],S=RSj ,k∈[K]

∥∥∥(Σ
(k)
SS)−1

∥∥∥
∞

.

12. ρu := supj∈[p],S=RSj ,k∈[K] maxi∈Sc
(

Σ
(k)
ScSc|S

)
ii

.

13. Sj(π) := {i : π(i) < π(j)}.

14. Uj(π) := ∪k∈[K]supp
(
g̃

(k)
j (π)

)
= {i : ∃k ∈ [K] s.t. G̃

(k)
ij (π) 6= 0}.

15. dj := supπ∈Sp |Uj(π)|. d = supj∈[p] dj .

B Details of Theorem 3.1: causal order recovery

In Appendix B.1, we present a general statement of Theorem 3.1 (a) along with its proof. Proof of
part (b) in Theorem 3.1 is given in Appendix B.3.

B.1 Order recovery: proof of Theorem 3.1 (a) (Theorem B.1)

Theorem 3.1 (a) states the order recovery guarantee for a specified parameter λ =
√

p log p
n . In the

following, we will present a more general statement of Theorem 3.1 (a) that does not specify the
choice of λ, after which we will present the proof.
Theorem B.1 (General statement of Theorem 3.1 (a)). For any δ1, δ2, δ3, δ4, δ5 ∈ (0, 1), if the
following conditions are satisfied

K ≤ δ2
2δ

2
3δ

2
4λ

2n

64ρσ2
max

,

n ≥
((

4(1− δ3)δ−2
3 − δ5

))−1
(logK + (d+ 1) log p) ,

1

ηw
>

(
16σ8

max

δ1(1− δ1)
+

4σ4
maxcmax

1− δ1

)
2 log p

nK ′
+

4σ4
maxgmax

δ1

λ (s(π0) + δ2s(π̂))

p

√
K

K ′2

+
8σ6

max

δ1

√
2 log p

n

K −K ′
K ′2

,

then π̂ = π0 with probability at least

1− exp (−t∗(1− δ4) + (d+ 2) log p)− exp (−δ5n)− 2 exp (−p log p) ,

where t∗ :=
δ22δ

2
3λ

2n
16ρσ2

max
.
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Proof outline. By optimality of the joint estimator, (for simplicity, we write Ĝ(k) := Ĝ(k)(π̂))

K∑
k=1

1

2n
‖X(k)Ĝ(k) −X(k)G̃(k)(π̂)‖2F + λ‖Ĝ(1:K)‖l1/l2

≤
K∑
k=1

1

2n

(
‖X(k) −X(k)G̃

(k)
0 ‖2F − ‖X(k) −X(k)G̃(k)(π̂)‖2F

)
︸ ︷︷ ︸

(I)

+

K∑
k=1

1

n
〈X(k) −X(k)G̃(k)(π̂),X(k)Ĝ(k) −X(k)G̃(k)(π̂)〉F︸ ︷︷ ︸

(II)

+λ‖G̃(1:K)
0 ‖l1/l2 .

The proof is based on a bound for the term (I) and a bound for the term (II).

To bound (I), we show that the empirical variances of the error terms are close to their expectations,
which is achieved mainly by a concentration bound on a linear combination of Chi-squared random
variables.

To bound (II), we show the following inequality holds true for all j ∈ [p] and π̂ ∈ Sp with high
probability (where ε̃

(k)
j (π̂) is the empirical error):

sup
{β(k)∈Rm}

1

n

K∑
k=1

〈ε̃(k)
j (π̂),X

(k)
Sj
β(k)〉 − δ

2n

K∑
k=1

‖X(k)
Sj
β(k)‖22 − δλ‖[β(1), · · · , β(K)]‖l1/l2 ≤ 0.

We highlight two technical aspects in bounding (II):

• For each fixed j and π̂, the above inequality is proved by showing the null-consistency of l1/l2-
penalized group Lasso problem (see Appendix B.2.3). Null-consistency means successfully
recovering the true linear regression model when the true parameters have null support (all parame-
ters are zeros). Technically, the improvement in sample complexity for recovering multiple DAGs
partially comes from the benefit of a larger K for guaranteeing the null-consistency.

• We need to insure the bounds hold uniformly over all permutations π̂ ∈ Sp and j ∈ [p]. To
avoid using a naive union bound over p! many permutations, we leverage the sparsity of the graph
structures and prove that the number of elements in the set {G̃(1:K)(π) : π ∈ Sp} can be fewer
than p! (see Appendix E), so that we can take a uniform control over this smaller set instead.

We summarize the bounds for (I) and (II) in Lemma B.1 and Lemma B.2, which can be found in
Appendix B.2.1 and Appendix B.2.2.

Detailed proof of Theorem B.1. Collecting the results in Lemma B.1 and Lemma B.2 and reorga-
nizing the terms in the inequalities, we have the following conclusion.

For any δ1, δ2, δ3, δ4, δ5 ∈ (0, 1) and t∗ :=
δ22δ

2
3λ

2n
16ρσ2

max
, if the following conditions are satisfied:

K ≤ δ2
4

4
t∗ =

δ2
2δ

2
3δ

2
4λ

2n

64ρσ2
max(

4(1− δ3)δ−2
3 − δ5

)
n ≥ logK + (d+ 1) log p,
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then with probability at least 1−exp (−t∗(1− δ4) + (d+ 2) log p)−exp (−δ5n)−2 exp (−p log p),
it holds for all π̂ ∈ Sp that

1− δ2
2n

K∑
k=1

‖X(k)Ĝ(k) −X(k)G̃(k)(π̂)‖2F + λ‖Ĝ(1:K)‖l1/l2

+
δ1

4σ4
max

K′∑
k=1

p∑
j=1

(
σ

(k)
j (π̂)2 − σ(k)

j (π0)2
)2

≤
(

4σ4
max

1− δ1
+ 2σ2

max

)
2p log p

n
+ 2σ2

max

√
(K −K ′)2p2 log p

n
(16)

+ δ2λ‖Ĝ(1:K) − G̃(1:K)(π̂)‖l1/l2 + λ‖G̃(1:K)
0 ‖l1/l2

≤
(

4σ4
max

1− δ1
+ 2σ2

max

)
2p log p

n
+ 2σ2

max

√
(K −K ′)2p2 log p

n

+ δ2λ‖Ĝ(1:K)‖l1/l2 + δ2λ‖G̃(1:K)(π̂)‖l1/l2 + λ‖G̃(1:K)
0 ‖l1/l2 . (17)

Suppose π̂ 6= π0. Condition 3.5 implies

δ1
4σ4

max

pK ′

ηw
≤
(

4σ4
max

1− δ1
+ 2σ2

max

)
2p log p

n
+ λ‖G̃(1:K)

0 ‖l1/l2 + δ2λ‖G̃(1:K)(π̂)‖l1/l2

+ 2σ2
max

√
(K −K ′)2p2 log p

n
.

Divide both sides by pK ′, it implies

δ1
4σ4

max

1

ηw
≤
(

4σ4
max

1− δ1
+ 2σ2

max

)
2 log p

nK ′
+
λ‖G̃(1:K)

0 ‖l1/l2
pK ′

+ δ2
λ‖G̃(1:K)(π̂)‖l1/l2

pK ′

+ 2σ2
max

√
(K −K ′)2 log p

nK ′2

≤
(

4σ4
max

1− δ1
+ cmax

)
2 log p

nK ′
+
λ (s(π0) + δ2s(π̂)) gmax

√
K

pK ′

+ 2σ2
max

√
(K −K ′)2 log p

nK ′2
.

The last inequality uses the fact that ‖G̃(1:K)(π)‖l1/l2 ≤ s(π)
√
Kgmax. It contradicts with the

condition

1

ηw
>

(
16σ8

max

δ1(1− δ1)
+

4σ4
maxcmax

1− δ1

)
2 log p

nK ′
+

4σ4
maxgmax

δ1

λ (s(π0) + δ2s(π̂))

p

√
K

K ′2

+
8σ6

max

δ1

√
2 log p

n

K −K ′
K ′2

.

Therefore, π̂ ∈ Π0.

Theorem 3.1 (a) is straightforward by taking λ =
√
p log p/n.
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B.2 Key lemmas for proving Theorem 3.1 (a)

B.2.1 Lemma B.1: Analysis of (I)

Lemma B.1. Denote σmax = supk∈[K],j∈[p],π∈Sp |σ
(k)
j (π)|. With probability at least 1− 2e−p log p,

it holds for any δ1 ∈ (0, 1) and any permutations π̂ ∈ Sp that,

K∑
k=1

1

2n

(
‖X(k) −X(k)G̃

(k)
0 ‖2F − ‖X(k) −X(k)G̃(k)(π̂)‖2F

)

≤− δ1
4σ4

max

K′∑
k=1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)2

+

(
σ4

max

1− δ1
+ 2σ2

max

)
2p log p

n
+ 2σ2

max

√
(K −K ′)2p2 log p

n
.

We now state the proof of this Lemma. Denote the j-th column of G̃(k)(π) as g̃(k)
j (π), and the noise

as

ε̃
(k)
j (π) := X

(k)
j −X(k)g̃

(k)
j (π) ∈ Rn. (18)

Then we can rewrite the term (I) as follows.

(I) =

K∑
k=1

1

2n

(
‖X(k) −X(k)G̃

(k)
0 ‖2F − ‖X(k) −X(k)G̃(k)(π̂)‖2F

)

=
1

2

K∑
k=1

 p∑
j=1

1
n‖ε̃

(k)
j (π̂)‖22

σ
(k)
j (π̂)2

σ
(k)
j (π0)2 −

p∑
j=1

1

n
‖ε̃(k)
j (π̂)‖22


=

1

2

K∑
k=1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)( 1

n‖ε̃
(k)
j (π̂)‖22

σ
(k)
j (π̂)2

− 1

)
+

1

2

K∑
k=1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)

≤ 1

2

K∑
k=1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)( 1

n‖ε̃
(k)
j (π̂)‖22

σ
(k)
j (π̂)2

− 1

)

− 1

4σ4
max

K′∑
k=1

p∑
j=1

(
σ

(k)
j (π̂)2 − σ(k)

j (π0)2
)2

The last inequality holds because for k = 1, · · · ,K ′,
∑p
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)
≤

− 1
2σ4

max

∑p
j=1

(
σ

(k)
j (π̂)2 − σ(k)

j (π0)2
)2

, and that for k > K ′,
∑p
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)
≤ 0.

Then we bound the first term using the concentration bound on Chi-squared random variables.

K∑
k=1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)( 1

n‖ε̃
(k)
j (π̂)‖22

σ
(k)
j (π̂)2

− 1

)

d.
=

K∑
k=1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)( 1

n
ξ2
j − 1

)
=

1

n

K∑
k=1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
) (
ξ2
j − n

)
,

where ξ2
j ∼ χ2(n) are i.i.d. Chi-squared random variables of degree n.
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By Lemma H.1, for any fixed π̂ ∈ Sp and for any t > 0, it holds with probability at least 1− e−t that

1

n

K′∑
k=1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
) (
ξ2
j − n

)

≤ 2

√√√√∑K′

k=1

∑p
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)2

n

√
t+

2σ2
max

n
t

≤ δ
K′∑
k=1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)2

+

(
1

δ
+ 2σ2

max

)
t

n
,

The last inequality holds because 2ab ≤ δa2 + 1
δ b

2 for any δ > 0. Now it remains to take a union
bound over the permutation π̂ ∈ Sp. There are p! many permutations. Take an uniform control over
all possible π̂ ∈ Sp. It implies that with probability at least 1− (p!)e−t, the above inequality holds
for all π̂ ∈ Sp. Equivalently, we can say it holds with probability at least 1− e−t that it holds for all
π̂ that

1

n

K′∑
k=1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
) (
ξ2
j − n

)
≤ δ

K′∑
k=1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)2

+

(
1

δ
+ 2σ2

max

)
t+ p log p

n
.

For the non-identifiable models, we can use Lemma H.1 in a similar way to obtain that with probability
at least 1− e−t, the following holds for all π̂,

1

n

K∑
k=K′+1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
) (
ξ2
j − n

)

≤ 2

√√√√∑K
k=K′+1

∑p
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)2

n

√
t+

2σ2
max

n
t

≤ 2σ2
max

√
(K −K ′)p(t+ p log p)

n
+

2σ2
max

n
(t+ p log p).

Putting the above results back into the term (I), taking δ′ = 2δ, and taking t = p log p, we have with
probability at least 1− 2e−p log p that

(I) ≤ δ′

4

K′∑
k=1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)2

− 1

4σ4
max

K′∑
k=1

p∑
j=1

(
σ

(k)
j (π̂)2 − σ(k)

j (π0)2
)2

+

(
1

δ′
+ 2σ2

max

)
2p log p

n
+ 2σ2

max

√
(K −K ′)2p2 log p

n

Finally, take δ1 = 1 − σ4
maxδ

′ so that δ′ = 1
σ4

max
(1 − δ1). Then for any δ1 ∈ (0, 1), the following

inequality holds with probability at least 1− e−p log p for all π̂ ∈ Sp:

(I) ≤− δ1
4σ4

max

K′∑
k=1

p∑
j=1

(
σ

(k)
j (π0)2 − σ(k)

j (π̂)2
)2

+

(
σ4

max

1− δ1
+ 2σ2

max

)
2p log p

n
+ 2σ2

max

√
(K −K ′)2p2 log p

n
.
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B.2.2 Lemma B.2: Analysis of (II)

Lemma B.2. Denote ρ := supk∈[K],j∈[p] Σ
(k)
jj and σmax := supk∈[K],j∈[p],π∈Sp |σ

(k)
j (π)|. For any

δ2, δ3 ∈ (0, 1), assume λ satisfies t∗ :=
δ22δ

2
3λ

2n
16ρσ2

max
> K. With probability at least

1− exp

(
−t∗

[
1− 2

√
K

t∗

]
+ (d+ 2) log p

)
− exp

(
−4(1− δ3)

δ2
3

n+ logK + (d+ 1) log p

)
,

the following inequality holds true:

1

2n

K∑
k=1

〈X(k) −X(k)G̃(k)(π̂),X(k)Ĝ(k) −X(k)G̃(k)(π̂)〉

≤ δ2
2n

K∑
k=1

‖X(k)Ĝ(k) −X(k)G̃(k)(π̂)‖2F + δ2λ‖Ĝ(1:K) − G̃(1:K)(π̂)‖l1/l2 .

We now state the proof of this Lemma. To show the inequality in Lemma B.2 holds true, it is sufficient
to show the following inequality holds true for all j and π̂:

1

n

K∑
k=1

〈ε̃(k)
j (π̂),X(k)

(
ĝ

(k)
j (π̂)− g̃(k)

j (π̂)
)
〉F ≤

δ

2n

K∑
k=1

‖X(k)
(
ĝ

(k)
j (π̂)− g̃(k)

j (π̂)
)
‖22

− δλ‖ĝ(1:K)
j (π̂)− g̃(1:K)

j (π̂)‖l1/l2 , (19)

where we denote

Ĝj(π̂) := [ĝ
(1)
j (π̂), · · · , ĝ(K)

j (π̂)] and G̃j(π̂) := [g̃
(1)
j (π̂), · · · , g̃(K)

j (π̂)].

Now consider a fixed j and a fixed π̂. Recall Sj(π̂) which denotes the set of ancestors of the node

j specified by the permutation π̂, and let m = |Sj(π̂)| ∈ [0, p − 1] be its cardinality. Let X(k)
Sj

=

X(k)|Sj(π̂) denote the submatrix of X(k) whose column indices are in Sj(π̂). We define the event

E(δ, λ; ε̃
(k)
j (π̂)) :={

sup
{β(k)∈Rm}

1

n

K∑
k=1

〈ε̃(k)
j (π̂),X

(k)
Sj
β(k)〉 − δ

2n

K∑
k=1

‖X(k)
Sj
β(k)‖22 − δλ‖[β(1), · · · , β(K)]‖l1/l2 ≤ 0

}
.

It’s easy to see that with probability at least Pr
[
E(δ, λ; ε̃

(1:K)
j (π̂))

]
, the inequality in Eq. 19 holds

true. Therefore, we need to derive the probability of the joint event ∩j∈[p],π̂∈SpE(δ, λ; ε̃
(1:K)
j (π̂)) in

this proof. Observe that:

E(δ, λ; ε̃
(1:K)
j (π̂)) ⊆{

sup
{β(k)∈Rm}

1

2n

K∑
k=1

‖
ε̃

(k)
j (π̂)

δ
‖22 −

1

2n

K∑
k=1

‖
ε̃

(k)
j (π̂)

δ
−X

(k)
Sj
β(k)‖22 − λ‖[β(1), · · · , β(K)]‖l1/l2 ≤ 0

}

=

{
0 ∈ arg min

{β(k)∈Rm}

1

2n

K∑
k=1

‖
ε̃

(k)
j (π̂)

δ
−X

(k)
Sj
β(k)‖22 + λ‖[β(1), · · · , β(K)]‖l1/l2

}
Therefore, we resort to bound the probability of the above event, which is the null-consistency of
l1/l2-penalized group Lasso problem. We present the null-consistency analysis by Lemma B.3, and
its proof is given in Sec B.2.3.

Note that in the event E(δ, λ; ε̃
(1:K)
j (π̂)), the variance is

ε̃
(k)
j (π̂)

δ

d.
= wk with

wk ∼ N

0,

(
σ

(k)
j (π̂)

δ

)2

In

 .
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Therefore, we can take σ0 in Lemma B.3 to be σ0 = σmax
δ , which implies for any δ′ ∈ (0, 1), if

t∗ :=
δ′2δ2λ2n

16ρσ2
max

> K,

then

Pr
[
E(δ, λ; ε̃

(1:K)
j (π̂))

]
≥ 1− p exp

(
−t∗

[
1− 2

√
K

t∗

])
−K exp

(
−4(1− δ′)

δ′2
n

)
.

Now what remains is to take a uniform control over all events ∩j∈[p],π̂∈SpE(δ, λ; ε̃
(1:K)
j (π̂)). A naive

way is to enumerate over all permutations π̂ and all j which will constitute p · p! events. However,
recall ε̃(k)

j (π) := X
(k)
j −X(k)g̃

(k)
j (π). Then it is enough to take a uniform control over the set

{g̃(1:K)
j (π) : π ∈ Sp, j ∈ [p]}. By Eq. 35, this set contains at most p · pd many elements. Therefore,

Pr
[
∩j∈[p],π̂∈SpE(δ, λ; ε̃

(1:K)
j (π̂))

]
≥ 1− p2pd exp

(
−t∗

[
1− 2

√
K

t∗

])
−Kp · pd exp

(
−4(1− δ′)

δ′2
n

)

≥ 1− exp

(
−t∗

[
1− 2

√
K

t∗

]
+ (d+ 2) log p

)
− exp

(
−4(1− δ′)

δ′2
n+ logK + (d+ 1) log p

)
which implies Eq. 19 holds with the above probability.

B.2.3 Lemma B.3: Null Consistency

Lemma B.3 (Null-consistency). Let S ⊆ [p] be a set of m indices. Consider the following linear
regression model with zero vector as the true parameters:

y(k) = X
(k)
S 0 + w(k), for k ∈ [K]

where y(k) = w(k) ∈ Rn, X(k)
S ∈ Rn×m and 0 ∈ Rm. Assume that for each k, the row vectors of

X(k) are i.i.d. sampled from N (0,Σ(k)) and the noise is sampled from w(k) ∼ N (0, σ
(k)2
W In). De-

note ρ := maxk∈[K] Σ
(k)
jj and σ0 := maxk∈[K] σ

(k)
W . Consider the following l1/l2-regularized

Lasso problem:

B̂ = arg min
B∈Rm×K

1

2n

K∑
k=1

‖y(k) −X
(k)
S β(k)‖22 + λ‖B‖l1/l2 , (20)

where B = [β(1), · · · , β(k)]. For any δ ∈ (0, 1), if

t∗ =
δ2λ2n

16ρσ2
0

> K,

then with probability at least

1−m exp

(
−t∗

[
1− 2

√
K

t∗

])
−K exp

(
−4(1− δ)

δ2
n

)
,

B̂ = 0 is an optimal solution to the problem in Eq. 20.

The proof of this lemma is stated below, in which we simply use the notation X(k) to replace X
(k)
S .

Lemma B.4. Suppose there exists a primal-dual pair (B̂, Ẑ) ∈ Rm×K × Rm×K which satisfies the
following conditions:

Ẑ ∈ ∂‖B̂‖l1/l2 , (21a)

− 1

n
X(k)>

(
y(k) −X(k)β̂(k)

)
+ λẑ(k) = 0, ∀k ∈ [K], (21b)

‖Ẑ‖l∞/l2 < 1, (21c)

where [β̂(1), · · · , β̂(K)] are the columns of B̂ and [ẑ(1), · · · , ẑ(K)] are the columns of Ẑ. Then 0 is
the solution to the problem in Eq. 7 and it is the only solution.
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Proof. Straightforward by Lemma 1 in [19].

Therefore, to show 0 ∈ arg minB∈Rm×K
1

2n

∑K
k=1 ‖y(k) −X(k)β(k)‖22 + λ‖B‖l1/l2 , it is sufficient

to show the existence of (B̂, Ẑ) which satisfies the conditions in Eq. 21. We construct such a pair by
the following definitions:

B̂ := 0, (22)

ẑ(k) :=
1

λn
X(k)>y(k). (23)

Clearly, they satisfy Eq. 21b. If we can show ‖Ẑ‖l∞/l2 < 1, then Eq. 21 holds. Therefore, in this

proof, the main goal is the analyze Pr
[
|Ẑ‖l∞/l2 < 1

]
.

Denote the row vectors of Ẑ as Ẑj := [ẑ
(1)
j , · · · , ẑ(K)

j ]. Then ‖Ẑ‖l∞/l2 = maxj∈[m] ‖Ẑj‖2. By
definition in Eq. 23,

ẑ
(k)
j =

1

λn
X

(k)
j
>y(k) =

1

λn
X

(k)
j
>w(k).

Since the linear combination of Gaussian distribution is still Gaussian, then given w(1:K), the variable
‖Ẑj‖22 is equivalent to a Chi-squared random variable in distribution:

‖Ẑj‖22 | w(1:K) =
1

λ2n2

K∑
k=1

(
X

(k)
j
>w(k)

)2

| w(1:K)

d.
=

1

λ2n2

K∑
k=1

Σ
(k)
jj ‖w

(k)‖22ξ2
jk where ξjk ∼ N (0, 1)

≤ 1

λ2n2
max
k∈[K]

Σ
(k)
jj max

k∈[K]
‖w(k)‖22

K∑
k=1

ξ2
jk

By Lemma H.2, for any δ > 0,

Pr

[
max
k∈[K]

‖w(k)‖22 ≥ σ
(k)2
W 2n(1 + δ)

]
≤ K exp

(
−n(1 + δ)

[
1− 2

√
1

1 + δ

])
.

Therefore, for all δ > 0,

Pr

[
max
j
‖Ẑj‖2 < 1

]
≥ Pr

[
max
j∈[p]

K∑
k=1

ξ2
jk <

λ2n

2(1 + δ)ρσ2
0

]
Pr

[
max
k
‖w(k)‖22 < 2n(1 + δ)

]
where

ρ := max
k∈[K]

Σ
(k)
jj and σ0 := max

k∈[K]
σ

(k)
W .

Take t∗ = λ2n
4(1+δ)ρσ2

0
, then if t∗ > K, we have

Pr

[
max
j∈[p]

K∑
k=1

ξ2
jk < 2t∗

]
≥ 1− p exp

(
−t∗

[
1− 2

√
K

t∗

])
.

Rewrite δ = 4
δ′2 − 1 for some δ′ ∈ (0, 1) so that 1 + δ = 4

δ′2 > 4. If λ is taken to be some value that
satisfies the condition

t∗ =
δ′2λ2n

16ρσ2
0

> K,

then

Pr

[
max
j
‖Ẑj‖2 < 1

]
≥ 1− p exp

(
−t∗

[
1− 2

√
K

t∗

])
−K exp

(
−4(1− δ′)

δ′2
n

)
.
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B.3 Proof of error in F-norm

Denote the error vector as ∆
(k)
j := ĝ

(k)
j (π̂)− g̃(k)

j (π̂). Then

K∑
k=1

1

2n
‖X(k)Ĝ(k) −X(k)G̃(k)(π̂)‖2F =

K∑
k=1

p∑
j=1

1

2n
‖X(k)∆k

j ‖22

By Theorem 7.3 in [14], with probability at least 1− exp(− log p− logK), it holds for all k ∈ [K]
and j ∈ [p] that

1√
n
‖X(k)∆

(k)
j ‖2 ≥

3/4Λmin − 3σmax

√
d̂ (log p+ logK)

n
−
√

4(log p+ logK)

n

 ‖∆(k)
j ‖2

≥

3/4Λmin − 3σmax

√
d̂ (log p+ logK)

n
− c

 ‖∆(k)
j ‖2

where d̂ := supj,k ‖∆
(k)
j ‖0. If the sample size n satisfies the condition with a suitable constant

κ(Λmin):

n ≥ κ(Λmin)d̂ (log p+ logK) ,

then 1√
n
‖X(k)∆

(k)
j ‖2 ≥ κ′(Λmin)‖∆(k)

j ‖2 for some constant κ′(Λmin). Therefore,

1

K

K∑
k=1

p∑
j=1

‖∆(k)
j ‖

2
2 ≤

2

κ′(Λmin)2

K∑
k=1

1

2nK
‖X(k)Ĝ(k) −X(k)G̃(k)(π̂)‖2F

≤ 2

κ′(Λmin)2

(
κ(σmax)

p log p

nK
+ cgmax

s0λ√
K

)
,

which implies

1

K

K∑
k=1

p∑
j=1

‖∆(k)
j ‖

2
2 = O

(
p log p

nK
+
s0λ√
K

)
= O

(
s0λ√
K

)
.

The last equation holds for the case when λ =
√

p log p
nK .

C Proof of Theorem 3.2: Support Recovery

We are interested in showing that the support union of Ĝ(1:K) is the same as that of G̃(1:K)
0 . To

prove this, we can equivalently show the support union of ĝ(1:K)
j is the same as that of g̃(1:K)

j for any
j ∈ [p].

Now we state the proof of Theorem 3.2.

Proof. Given a permutation π0 ∈ Π0, the DAG structure learning problem is equivalent to solving
p separate group Lasso problems, where for each j, the following l1/l2-penalized group Lasso is
solved:

ĝ
(1:K)
j |Sj(π0) = arg min

B∈R|Sj(π0)|×K

K∑
k=1

1

2n
‖X(k)

j −
(
X(k)|Sj(π0)

)
β(k)‖22 + λ‖B‖l1/l2 , (24)

where Sj(π0) := {i : π0(i) < π0(j)}, and we denote the columns of B as B =
[
β(1), · · · , β(K)

]
.

The proof in this section is based on a uniform control over all j. For each j, the estimation in form
of Eq. 24 is called a multi-design multi-response (or multivariate) regression problem, which has
been studied in the last decade [18, 19]. Our support recovery analysis is based on techniques for
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analyzing multivariate regression problem in existing literature, but careful adaptation is needed to
simultaneously handle a set of p problems where p is the dimension of the problem.

More precisely, we present the analysis of multivariate regression problems in Appendix D, where
the main results are summarized in Theorem D.1. Then the results in Theorem 3.2 can be obtained
with direct computations by applying Theorem D.1 to p separate problems defined by Eq. 24 and
taking a union bound over all j ∈ [p].

D Support Union Recovery for Multi-Design Multi-response Regression

The analysis in this section can be independent of the other content in this paper. We first introduce
the multivariate regression setting and notations below.

Problem setting and assumptions. Consider the following K linear regression models

y(k) = X(k)β∗(k) + w(k), for k = 1, · · · ,K,

where y(k) ∈ Rn, X(k) ∈ Rn×p, β∗(k) ∈ Rp, and w(k) ∈ Rn. Assume that for each k, the
row vectors of X(k) are i.i.d. sampled from N (0,Σ(k)) and the noise is sampled from w(k) ∼
N (0, σ(k)2In). Denote S as the support union of true parameters {β∗(k)}k∈[K], i.e., S := {j : ∃k ∈
[K] s.t., β∗j

(k) 6= 0}, and s = |S| as its size. Note that the s in this section has a different meaning
from s in other sections. Furthermore, for the true parameters, we denote B∗ = [β∗(1), · · · , β∗(K)]
as the matrix whose columns are β∗(k). Besides, we use B∗j to denote the j-th row of B∗.

Assumptions and definitions. Consider the following list of assumptions and definitions:

1. There exists γ ∈ (0, 1] such that ‖A‖∞ ≤ 1− γ, where Ajs = maxk∈[K]

∣∣∣∣(Σ
(k)
ScS(Σ

(k)
SS)−1

)
js

∣∣∣∣
for j ∈ Sc and s ∈ S.

2. There exist constants 0 < Λmin ≤ Λmax <∞ such that all eigenvalues of Σ
(k)
SS are in [Λmin,Λmax]

for all k = 1, 2, · · · ,K.

3. ρu := maxj∈Sc,k∈[K]

(
Σ

(k)
ScSc|S

)
jj

4. σmax := maxk∈[K] σ
(k)

5. bmin := minj∈S
∥∥B∗j ∥∥2

/
√
K.

With the above assumptions, we are ready to present the theorem.
Theorem D.1. Assume the problem setting and assumptions in this section stated above. Consider
the following l1/l2-regularized Lasso problem:

min
B∈Rp×K

1

2n

K∑
k=1

‖y(k) −X(k)β(k)‖22 + λ‖B‖l1/l2 , (25)

where B = [β(1), · · · , β(k)]. If the following condition holds

n ≥ κ6s log p,

K ≤ c0 log p√
8σ2

max log p

Λminn
+

2

Λmin

√
sp log p

nK
= o (b∗min) ,

then Eq. 25 has a unique solution B̂, and that with probability at least

1− c1K exp (−c2(n− s))− exp (−c3 log p)− s exp (−c4K log p) ,

the support union of B̂ is the same as S, and that
∥∥∥B̂ −B∗∥∥∥

l∞/l2
/
√
K = o(bmin).

In this statement, κ6 is a constant depending on γ,Λmin, ρu, σmax and ci are universal constants.
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D.1 Proof of Theorem D.1

The proof is based on a constructive procedure as specified by Lemma D.1, which characterizes an
optimal primal-dual pair for which the primal solution B̂ correctly recovers the support set S.

Lemma D.1. Define a pair B̂ = [β̂(1), · · · , β̂(K)] and Ẑ = [ẑ(1), · · · , ẑ(K)] as follows.

B̂Sc := 0 (26a)

B̂S := arg min
BS∈Rs×K

1

2n

K∑
k=1

‖y(k) −X
(k)
S β

(k)
S ‖

2
2 + λ‖BS‖l1/l2 (26b)

ẑ
(k)
S := −λ−1

(
Σ̂

(k)
SS(β̂

(k)
S − β∗(k)

S )− 1

n
X

(k)
S
>w(k)

)
(26c)

ẑ
(k)
Sc := −λ−1

(
Σ̂

(k)
ScS(β̂

(k)
S − β∗(k)

S )− 1

n
X

(k)
Sc
>w(k)

)
(26d)

The following statements hold true.

(a) If the matrix ẐSc := [ẑ
(1)
Sc , · · · , ẑ

(K)
Sc ] defined by Eq. 26d satisfies

‖ẐSc‖l∞/l2 < 1, (27)

then (B̂, Ẑ) is a primal-dual optimal solution to the l1/l2-regularized Lasso problem in Eq. 25.
Furthermore, any optimal solution B̂ to Eq. 25 satisfies B̂Sc = 0.

(b) Define a matrix US = [u
(1)
S , · · · ,u(K)

S ] whose column vectors are

u
(k)
S := β̂

(k)
S − β∗(k)

S = (Σ̂
(k)
SS)−1

(
1

n
X

(k)
S
>w(k) − λẑ(k)

S

)
.

If the conditions in (a) are satisfied, and furthermore, US satisfies

‖US‖l∞/l2√
K

≤ 1

2
b∗min, (28)

then B̂ correctly recovers the union support S. That is,{
i ∈ [p] : ∃k ∈ [K] s.t. β̂

(k)
i 6= 0

}
= S.

Remark D.1. Note that the matrix ẐS := [ẑ
(1)
S , · · · , ẑ(K)

S ] defined by Eq. 26c is a dual solution to
the restricted optimization in Eq. 26b, and thus satisfies ẐS ∈ ∂‖B̂S‖l1/l2 .

Proof. The proof of Lemma D.1 (a) is similar to Lemma 1 in [19] and Lemma 2 in [18]. The proof of
Lemma D.1 (b) is straightforward from the condition in Eq. 28. By definition of bmin, Eq. 28 implies
‖β̂(1:K)

j ‖2 ≥ ‖β∗j (1:K)‖2 − ‖β̂(k)
j − β∗(k)

j ‖2 ≥ 1
2

√
Kb∗min > 0 for any j ∈ S.

Based on Lemma D.1, if we can show the primal-dual pair defined in its statement can satisfy both
conditions in Eq. 27 and Eq. 28, then the support recovery guarantee is proved. We provide the
analysis of these two conditions in Appendix D.1.1 and Appendix D.1.4 respectively.

Collecting the results in Appendix D.1.1 and Appendix D.1.4, we conclude that, if the following
conditions are satisfied:

n ≥ κ6s log p, K ≤ 5

64
log p,√

8σ2
max log p

Λminn
+

2

Λmin

√
sp log p

nK
= o (b∗min) ,
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then with probability at least

1− 3K exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
−K exp

(
−(1 + δ)(n− s)

[
1− 2

√
1

1 + δ

])

− exp

(
−2

3

4
log p

)
− s exp

(
−2K log p

(
1− 2

√
1

2 log p

))
≥ 1− c1K exp (−c2(n− s))− exp (−c3 log p)− s exp (−c4K log p) ,

conditions in Eq. 27 and Eq. 28 are satisfied and therefore B̂ correctly recovers the union support S.

D.1.1 No false recovery: ‖ẐSc‖l∞/l2 < 1

Denote the row vectors of ẐSc as Ẑj := [ẑ
(1)
j , · · · , ẑ(k)

j ]. Then

‖ẐSc‖l∞/l2 = max
j∈Sc

‖Ẑj‖2.

Since

Ẑj =E[Ẑj |X(1:K)
S ]︸ ︷︷ ︸

Tj1

+E[Ẑj |X(1:K)
S ,w(1:K)]− E[Ẑj |X(1:K)

S ]︸ ︷︷ ︸
Tj2

+ Ẑj − E[Ẑj |X(1:K)
S ,w(1:K)]︸ ︷︷ ︸

Tj3

,

to prove ‖ẐSc‖l∞/l2 < 1, we resort to bound maxj∈Sc ‖Tja‖2 for a = 1, 2, 3 separately. The
analyses of Tj1 and Tj2 largely follow the arguments in [19] and [18], so details are omitted for
brevity. We summarize the results of these two terms below, after which we present the detailed
analysis for Tj3.

D.1.2 Analysis of Tj1 and Tj2

Tj1: Following the same arguments as the derivations of Equation (28) in [19] and Equation (39) in
[18], we have maxj∈Sc ‖Tj1‖2 ≤ 1− γ.

Tj2: Following the same arguments as the derivations of Equation (32) in [19], we have that

max
j∈Sc

‖Tj2‖2 ≤ (1− γ)‖ẐS − Z∗S‖l∞/l2 + (1− γ)E[‖ẐS − Z∗S‖l∞/l2 |X
(1:K)
S ],

where the rows of Z∗S are defined as Z∗i := B∗i /‖B∗i ‖ for i ∈ S. Define the matrix ∆ ∈ Rs×K with
rows ∆i := (B̂i −B∗i )/‖B∗i ‖2. By Lemma H.3, if ‖∆‖l∞/l2 < 1/2, then it holds true that

max
j∈Sc

‖Tj2‖2 ≤ 4(1− γ)
(
‖∆‖l∞/l2 + E[‖∆‖l∞/l2 |X

(1:K)
S ]

)
.

We will show later in the analysis pf US that ‖∆‖l∞/l2 is of order o(1) with high probability.

D.1.3 Analysis of Tj3

Following the same arguments as the derivations of Equation (36) in [19] and Equation (42) [18], we
have that for each j ∈ Sc,

given
(
X

(1:K)
S ,w(1:K)

)
,

ẑ
(k)
j − E[ẑ

(k)
j |X(1:K)

S ,w(1:K)]
d.
= σjkξjk,

where 
ξjk ∼ N (0, 1),

σ2
jk := (Σ

(k)
ScSc|S)jjMk ≤ ρuMk,

Mk := 1
n ẑ

(k)
S
>(Σ̂

(k)
SS)−1, ẑ

(k)
S −

1
n2λ2w

(k)>(Π
(k)
S − In)w(k).
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Therefore,

given
(
X

(1:K)
S ,w(1:K)

)
,

max
j∈Sc

‖ẑ(k)
j − E[ẑ

(k)
j |X(1:K)

S ,w(1:K)]‖22
d.
= max

j∈Sc

K∑
k=1

σ2
jkξ

2
jk

≤ ρu max
k∈[K]

|Mk|max
j∈Sc

K∑
k=1

ξ2
jk (29)

(1) Bounding maxk∈[K] |Mk|.

Bound the term 1
n ẑ

(k)
S
>(Σ̂

(k)
SS)−1, ẑ

(k)
S is based on the following relations:

max
k∈[K]

‖z∗(k)
S ‖2 ≤

√
s (by definition),

max
k∈[K]

‖(Σ̂(k)
SS)−1‖2 ≤

2

Λmin
w.p. ≥ 1−K exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
(Lemma 10 in [18]).

Therefore, with probability ≥ 1−K exp
(
−n2

(
1
4 −

√
s
n

)2
+

)
,

1

n

∣∣∣ẑ(k)
S
>(Σ̂

(k)
SS)−1ẑ

(k)
S

∣∣∣ ≤ 1

n
‖(Σ̂(k)

SS)−1‖2‖ẑ(k)
S ‖

2
2 ≤

1

n

2s

Λmin
,

For the second term in maxk∈[K] |Mk|, note that

w(k)>(In −Π
(k)
S )w(k) d.= σ(k)2

n−s∑
j=1

ζ2
jk with ζjk ∼ N (0, 1).

By Lemma H.2, for any δ > 0,

Pr

max
k∈[K]

n−s∑
j=1

ζ2
jk ≥ 2(1 + δ)(n− s)

 ≤ K exp

(
−(1 + δ)(n− s)

[
1− 2

√
1

1 + δ

])
.

To summarize, with probability at least

1−K exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
−K exp

(
−(1 + δ)(n− s)

[
1− 2

√
1

1 + δ

])
,

it holds that

max
k∈[K]

|Mk| <
1

n

2s

Λmin
+

2σ2
max(1 + δ)(n− s)

n2λ2
.

(2) Bounding maxj∈Sc
∑K
k=1 ξ

2
jk.

Combining the bound on maxk∈[K] |Mk| with Eq. 29, it implies

max
j∈Sc

‖Tj3‖22 ≤ ρu
(

1

n

2s

Λmin
+

2σ2
max(1 + δ)(n− s)

n2λ2

)
max
j∈Sc

K∑
k=1

ξ2
jk

=⇒
{

max
j∈Sc

‖Tj3‖2 < γ

}
⊆

{
max
j∈Sc

K∑
k=1

ξ2
jk <

γ2

2ρu

λ2n

λ2s/Λmin + σ2
max(1 + δ)n−sn

}
.

What’s left is to bound the term
∑K
k=1 ξ

2
jk. Take t∗ = γ2

4ρu
λ2n

λ2s/Λmin+σ2
max(1+δ)n−sn

. If t∗ > K, by
Lemma H.2 and a union bound over j ∈ Sc, we have that

Pr[max
j∈Sc

K∑
k=1

ξ2
jk ≥ 2t∗] ≤ (p− s) exp

(
−t∗

[
1− 2

√
K

t∗

])
.
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(3) Collecting all results.

To conclude, for any δ > 0, if the following conditions are satisfied:

‖∆‖l∞/l2 <
1

2
,

t∗ =
γ2

4ρu

λ2n

λ2s/Λmin + σ2
max(1 + δ)n−sn

> K, (30)

then for any δ > 0, with probability at least

1−K exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
−K exp

(
−(1 + δ)(n− s)

[
1− 2

√
1

1 + δ

])

− (p− s) exp

(
−t∗

[
1− 2

√
K

t∗

])
,

it holds that

max
j∈Sc

‖Tj3‖2 < γ.

(4) Condition in Eq. 30.

If we assume that

n ≥ Cs log p

for some constant C. Then

t∗ ≥ γ2

4ρu

λ2n

λ2n/(CΛmin log p) + σ2
max(1 + δ)n−sn

=
γ2

4ρu

1

(CΛmin log p)−1 + σ2
max(1 + δ) n−sλ2n2

.

With the specified choice of parameter λ =
√
p log p/n, it implies

t∗ ≥ γ2

4ρu

log p

(CΛmin)−1 + σ2
max(1 + δ)n−snp

.

Assume C is chosen such that C ≥ Λ−1
min

(
γ2

20ρu
− σ2

max(1 + δ)n−snp

)
−1 which can be easily satisfied

since n−s
np < 1. Then it implies t∗ ≥ 5 log p. To satisfy the condition in Eq. 30, it is sufficient to

assume K ≤ 5
64 log p, which implies K ≤ 1

64 t
∗. Furthermore, it implies exp

(
−t∗

[
1− 2

√
K
t∗

])
<

exp
(
−3 3

4 log p
)
.

To conclude, if ‖∆‖l∞/l2 < 1
2 and that

n ≥ κ6s log p, K ≤ 5

64
log p,

then maxj∈Sc ‖Tj3‖2 < γ holdes with probability at least

1−K exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
−K exp

(
−(1 + δ)(n− s)

[
1− 2

√
1

1 + δ

])

− (p− s) exp

(
−3

3

4
log p

)
.

D.1.4 No exclusion: ‖US‖l∞/l2√
K

≤ 1
2b
∗
min

Eq. 26c implies that

β̂
(k)
S − β∗(k)

S =
(

Σ̂
(k)
SS

)−1
(

1

n
X

(k)
S
>w(k) − λẑ(k)

S

)
.
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Define w(k) := 1√
n

(Σ̂
(k)
SS)−1/2X

(k)
S
>w(k) d.= σ(k)ξk with ξk ∼ N (0, Ip). Then

β̂
(k)
S − β∗(k)

S
d.
= (Σ̂

(k)
SS)−1/2w

(k)

√
n︸ ︷︷ ︸

A(k)

− (Σ̂
(k)
SS)−1λẑ

(k)
S︸ ︷︷ ︸

B(k)

.

Denote the i-the entry in the vector A(k) as A(k)
i . Then for a fixed i ∈ S, the entry {A(k)

i }k∈[K] are
independent. Its easy to see that

A
(k)
i | X(1:K) d.=

σ(k)

√
n

√(
(Σ̂kSS)−1

)
ii
ξik with ξik ∼ N (0, 1) and Cov(ξik, ξik′) = 0.

Therefore,

max
i∈S

K∑
k=1

A
(k)
i

2 | X(1:K) ≤ σ2
max

n
max
k∈[K]

∥∥∥(Σ̂
(k)
SS)−1

∥∥∥
2

max
i∈S

K∑
k=1

ξ2
ik.

Since we have

Pr

[
max
k∈[K]

∥∥∥(Σ̂
(k)
SS)−1

∥∥∥
2
≤ 2

Λmin

]
≥ 1−K exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
by Lemma 10 in [18],

Pr

[
max
i∈S

K∑
k=1

ξ2
ik ≤ 4K log p

]
≥ 1− s exp

(
−2K log p

(
1− 2

√
1

2 log p

))
by Lemma H.2,

then with probability at least 1−K exp
(
−n2

(
1
4 −

√
s
n

)2
+

)
− s exp

(
−2K log p

(
1− 2

√
1

2 log p

))
,

it holds that

max
i∈S

√√√√ K∑
k=1

A
(k)
i

2 ≤

√
8σ2

maxK log p

Λminn
.

Tuning now to the term B(k):

max
i∈S

√√√√ K∑
k=1

B
(k)
i

2 = λmax
i∈S

√√√√ K∑
k=1

(
e>i (Σ̂

(k)
SS)−1ẑ

(k)
S

)2

≤ λmax
i∈S

√√√√ K∑
k=1

‖(Σ̂(k)
SS)−Tei‖22‖ẑ

(k)
S ‖22 by Cauchy-Schwarz inequality

≤ λmax
i∈S

max
k∈[K]

‖(Σ̂(k)
SS)−Tei‖2

√√√√ K∑
k=1

‖ẑ(k)
S ‖22 ≤ λ max

k∈[K]
‖(Σ̂(k)

SS)−1‖2
√
s.

The last inequality holds because ‖ẐS‖l∞/l2 ≤ 1. Applying Lemma 10 in [18] to

maxk∈[K] ‖(Σ̂
(k)
SS)−1‖2 again, with probability at least 1 − K exp

(
−n2

(
1
4 −

√
s
n

)2
+

)
, it holds

that

max
i∈S

√√√√ K∑
k=1

B
(k)
i

2 ≤ 2λ
√
s

Λmin
.

To conclude, with probability at least

1− 2K exp

(
−n

2

(
1

4
−
√
s

n

)2

+

)
− s exp

(
−2K log p

(
1− 2

√
1

2 log p

))
, (31)
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it holds that (with specified λ =
√

p log p
n )

‖B̂S −B∗S‖l∞/l2 ≤

√
8σ2

maxK log p

Λminn
+

2

Λmin

√
sp log p

n

=⇒
‖US‖l∞/l2√

K
≤

√
8σ2

max log p

Λminn
+

2

Λmin

√
sp log p

nK
.

Therefore, if √
8σ2

max log p

Λminn
+

2

Λmin

√
sp log p

nK
≤ 1

2
b∗min,

then Eq. 28 is satisfied with probability specified in Eq. 31.

E Invariant Sets

We often need to take a union control over all permutations π ∈ Sp in the proofs. However, in these
steps, we often care about the connection matrices G̃(1:K)(π) instead of the permutation π itself.
Therefore, we want to see whether we can control a fewer number of events instead of enumerating
over all p! many permutations. Alternatively, we want to should that, given Σ(1:K), the number of
elements in the set {G̃(1:K)(π) : π ∈ Sp} can be fewer than p!.

We start with the following definition which specifies the population-level quantity that we are
interested in.
Definition E.1 (Population SEM). For any S ⊆ [p] \ {j}, let

g
(k)
j (S) := arg min

g∈Rp,supp(g)⊆S
E[X

(k)
j − g>X(k)]2, (32)

where X(k) is the random variable that follows N (0,Σ(k)).

g
(k)
j (S) is called the SEM coefficients for variable Xj regressed on the nodes in S [15, 17]. It is

a population-level quantity that depends on Σ(k), but not on the sample X(k). In [15, 17], this
quantity is used for a similar purpose on the single DAG estimation task. It is easy to verify that
g

(k)
j (Sj(π)) = g̃

(k)
j (π). Lemma E.1 summarizes the key observations.

Lemma E.1. Let Sj(π) = {i : π(i) < π(j)} and g̃(k)
j (π) is the j-th column of G̃(k)(π). Then

g
(k)
j (S) = g̃

(k)
j (π)

for any set S such that

supp
(
g̃

(k)
j (π)

)
⊆ S ⊆ Sj(π). (33)

Since the set of union parents Uj(π) := ∪k∈[K]supp
(
g̃

(k)
j (π)

)
satisfies Eq. 33, it implies that

g
(k)
j (Uj(π)) = g̃

(k)
j (π), ∀k ∈ [K]. (34)

A direct consequence of this Lemma E.1 is that:∣∣∣{g̃(1:K)
j (π) : π ∈ Sp}

∣∣∣ =
∣∣∣{g̃(1:K)

j (Uj(π)) : π ∈ Sp}
∣∣∣ ≤ ∣∣∣{Uj(π) : π ∈ Sp}

∣∣∣.
Recall that dj := maxπ∈Sp |Uj(π)|. Then there are at most

∑
0≤m≤dj

(
p
m

)
many elements in this set.

Note that ∑
0≤m≤dj

(
p

m

)
≤

∑
0≤m≤d

(
p

m

)
≤ pd.

The last inequality holds for all p ≥ d ≥ 2. Therefore,∣∣∣{g̃(1:K)
j (π) : π ∈ Sp}

∣∣∣ ≤ ∣∣∣{Uj(π) : π ∈ Sp}
∣∣∣ ≤ ∑

0≤m≤dj

(
p

m

)
≤ pd. (35)
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F Details of Continuous Formulation

We first prove that T̂ ∈ Tp:

Lemma F.1. If (Ĝ(1:K), T̂ ) is a pair of optimal solution to Eq. 14, then T̂ is in the discrete space Tp.
Equivalently, if T̂ is an optimal solution, then there exists a permutation π̂ ∈ Sp such that

T̂ij =

{
1 if π̂(i) < π̂(j),

0 otherwise.
(36)

Proof. By the constraint h(T ) = 0 in Eq. 15, the graph structure induced by the matrix T̂ must
be acyclic. Therefore, T̂ represents a DAG and has an associated topological order (causal order).
Denote this order by π̂. What remains is to show Eq. 36 holds true.

Assume there exists an entry (i′, j′) such that π̂(i′) < π̂(j′) and T̂i′j′ 6= 1. We construct the following
pair of (T,G(1:K)):

T :=

{
Ti′j′ = 1

Tij = T̂ij for (i, j) 6= (i′, j′)
G(k) :=

{
G

(k)
i′j′ = T̂i′j′ · Ĝ(1:K)

i′j′

G
(k)
ij = Ĝ

(k)
ij for (i, j) 6= (i′, j′)

∀k ∈ [K].

It is constructed by modifying the (i′, j′)-th entries in the solution pair (T̂ , Ĝ(1:K)). It is easy to
see that: (i) this constructed pair (T,G(1:K)) is a feasible solution to Eq. 14; and (ii) (T,G(1:K))

achieves a smaller objective value than (T̂ , Ĝ(1:K)).

The reason for (ii) is that after the modification, the matrix G
(1:K)

remains unchanged. That is,
T̂ ◦ Ĝ(k) = T ◦ G(k). Therefore, the squared loss and the group-norm in the objective remain
unchanged. However, the term ‖1p×p − T‖2F has been reduced by setting Ti′j′ = 1.

This makes a contradiction to the optimality of (T̂ , Ĝ(1:K)). Therefore, the assumption is not true
and we conclude that:

π̂(i) < π̂(j) =⇒ T̂ij = 1.

Finally, since T̂ is consistent with π̂, by definition, T̂ij = 0 if π̂(i) ≥ π̂(j).

We now start to show the equivalence between the optimization in Eq. 7 and in Eq. 14.

Firstly, the solution search spaces are the same. We have shown that T̂ ∈ Tp. For each element in Tp,
we denote it by T̂ (π) based on its associated order π. Since T̂ (π) is a dense DAG with topological
order π, it is easy to see the space {G ◦ T̂ (π) : G ∈ Rp×p} includes all DAGs that are consistent with
π̂ and excludes any DAGs that are not. In other words, {G ◦ T̂ (π) : G ∈ Rp×p} = D(π). Therefore,
the solution search spaces of these two optimization problems are equivalent.

Secondly, the optimization objectives are the same. Again, since T̂ ∈ Tp, the term ρ‖1p×p − T̂‖2F is
a constant with a fixed value ρ(p−1)p

2 . The remaining two terms in the objective are the same as the
objective in Eq. 7.

Since both the solution search space and the optimization objectives are equivalent, these two
optimizations are equivalent.

G Details of Synthetic Experiments in Sec 6.1

G.1 Evaluation of structure prediction

We classify the positive predictions in three types:

• True Positive: predicted association exists in correct direction.

• Reverse: predicted association exists in opposite direction.
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• False Positive: predicted association does not exist

Based on them, we use five metrics:

• False Discovery Rate (FDR): (reverse + false positive) / (true positive + reverse + false
positive)

• True Positive Rate (TPR): (true positive) / (ground truth positive)

• False Positive Rate (FPR): (false positive) / (ground truth positive)

• Structure Hamming Distance (SHD): (false negative + reverse + false positive)

• Number of Non-Zero (NNZ): (true positive + reverse + false positive)

G.2 A more complete result for Fig 3

We demonstrate our methods on synthetic data with (p, s) ∈ {(32, 40), (64, 96), (128, 224), (256,
512)}, K ∈{1, 2, 4, 8, 16, 32}, n ∈ {10, 20, 40, 80, 160, 320}. For each {p, s,K, n}, we run
experiments on 64 graphs. We report the full results in Fig.5.
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Figure 5: Full results of FDR, TPR, FPR, SHD, and NNZ.
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G.3 Computing resources

Since we need to run a large set of experiments spanning different values of {p, s,K, n}, the synthetic
experiments are run on a CPU cluster containing 416 nodes. On each node, there are 24 CPUs (Xeon
6226 CPU @ 2.70GHz) with 192 GB memory. Each individual experiment is run on 4 CPUs. It takes
about 10 hours to finish a complete set of experiments on about 400 CPUs.
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H Useful Results In Existing Works

Lemma H.1 (Laurent-Massart). Let a1, · · · , am be nonnegative, and set

‖a‖∞ = sup
i∈[m]

|ai|, ‖a‖22 =

m∑
i=1

a2
i .

For i.i.d Zi ∼ N (0, 1), the following inequalities hold for any positive t:

Pr

[
m∑
i=1

ai(Z
2
i − 1) ≥ 2‖a‖2

√
t+ 2‖a‖∞t

]
≤ e−t,

Pr

[
m∑
i=1

ai(Z
2
i − 1) ≤ −2‖a‖2t

]
≤ e−t.

Lemma H.2. [18] Let Z be a central Chi-squared distributed random variable with the degree m.
Then for all t > m, we have

Pr[Z ≥ 2t] ≤ exp

(
−t
[
1− 2

√
m

t

])
.

Lemma H.3. [18] Consider the matrix ∆ ∈ Rs×K with rows ∆i := (B̂i − B∗i )/‖B∗i ‖2. If
‖∆‖l∞/l2 < 1

2 , then ‖ẐS − Z∗S‖l∞/l2 ≤ 4‖∆‖l∞/l2 .
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