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Abstract

We consider the problem of discoveringK related Gaussian directed acyclic graphs
(DAGs), where the involved graph structures share a consistent causal order and
sparse unions of supports. Under the multi-task learning setting, we propose a l1/l2-
regularized maximum likelihood estimator (MLE) for learning K linear structural
equation models. We theoretically show that the joint estimator, by leveraging data
across related tasks, can achieve a better sample complexity for recovering the
causal order (or topological order) than separate estimations. Moreover, the joint
estimator is able to recover non-identifiable DAGs, by estimating them together
with some identifiable DAGs. Lastly, our analysis also shows the consistency of
union support recovery of the structures. To allow practical implementation, we
design a continuous optimization problem whose optimizer is the same as the joint
estimator and can be approximated efficiently by an iterative algorithm. We validate
the theoretical analysis and the effectiveness of the joint estimator in experiments.

1 Introduction

Estimating causal effects among a set of random variables is of fundamental importance in many
disciplines such as genomics, epidemiology, health care and finance [1, 2, 3, 4, 5, 6]. Therefore,
designing and understanding methods for causal discovery is of great interests in machine learning.

Causal discovery from finite observable data is often formulated as a directed acyclic graph (DAG)
estimation problem in graphical models. A major class of DAG estimation methods are score-based,
which search over the space of all DAGs for the best scoring one. However, DAG estimation remains
a very challenging problem from both the computational and statistical aspects [7]. On the one hand,
the number of possible DAG structures grows super-exponentially in the number of random variables,
whereas the number of observational sample size is normally small. On the other hand, some DAGs
are non-identifiable from observational data even with infinitely many samples.

Fortunately, very often multiple related DAG structures need to be estimated from data, which
allows us to leverage their similarity to improve the estimator. For instance, in bioinformatics, gene
expression levels are often measured over patients with different subtypes [8, 9] or under various
experimental conditions [10]. In neuroinformatics, fMRI signals are often recorded for multiple
subjects for studying the brain connectivity network [11, 12]. In these scenarios, multiple datasets
will be collected, and their associated DAGs are likely to share similar characteristics. Intuitively, it
may be beneficial to estimate these DAGs jointly.
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In this paper, we focus on the analysis of the multi-task DAG estimation problem where the DAG
structures can be related by a consistent causal order and a (partially) shared sparsity pattern, but
allowed to have different connection strengths and edges, and differently distributed variables. In
this setting, we propose a joint estimator for recovering multiple DAGs based on a group norm
regularization. We prove that the joint l1/l2-penalized maximum likelihood estimator (MLE) can
recover the causal order better than individual estimators.

Intuitively, it is not surprising that joint estimation is beneficial. However, our results provide a
quantitative characterization on the improvement in sample complexity and the conditions under
which such improvement can hold. We show that:

• For identifiable DAGs, if the shared sparsity pattern (union support) size s is of order O(1) in K
where K is the number of tasks (DAGs), then the effective sample size for order recovery will be
nK where n is the sample size in each problem. Furthermore, as long as s is of order o(

√
K) in K,

the joint estimator with group norm regularization leads to an improvement in sample complexity.
• A non-identifiable DAG cannot be distinguished by single-task estimators even with indefinitely

many observational data. However, non-identifiable DAGs can be recovered by our joint estimator
if they are estimated together with other identifiable DAGs.

Apart from the theoretical guarantee, we design an efficient algorithm for approximating the joint
estimator through a formulation of the combinatorial search problem to a continuous programming.
This continuous formulation contains a novel design of a learnable masking matrix, which plays an
important role in ensuring the acyclicity and shared order for estimations in all tasks. An interesting
aspect of our design is that we can learn the masking matrix by differentiable search over a continuous
space, but the optimum must be contained in a discrete space of cardinality p! (reads p factorial,
where p is the number of random variables).

We conduct a set of synthetic experiments to demonstrates the effectiveness of the algorithm and
validates the theoretical results. Furthermore, we apply our algorithm to more realistic single-cell
expression RNA sequencing data generated by SERGIO [13] based on real gene regulatory networks.

The remainder of the paper is organized as follows. In Section 2, we introduce the linear structural
equation model (SEM) interpretation of Gaussian DAGs and its properties. Section 3 is devoted to the
statement of our main results, with some discussion on their consequences and implications. In Sec-
tion 4, we present the efficient algorithm for approximating the joint estimator. Section 5 summarizes
related theoretical and practical works. Experimental validations are provided in Section 6.

2 Background

A substantial body of work has focused on the linear SEM interpretation of Gaussian DAGs [14, 15,
16, 17]. Let X = (X1, · · · , Xp) be a p-dimensional random variable. Then a linear SEM reads

X = G̃>0 X +W, W ∼ N (0,Ω0), (1)

where Ω0 is a p×p positive diagonal matrix which indicates the variances of the noiseW . G̃0 ∈ Rp×p
is the connection strength matrix or adjacency matrix. Each nonzero entry G̃0ij represents the direct
causal effect of Xi on Xj . This model implies that X is Gaussian, X ∼ N (0,Σ), where

Σ := (I − G̃0)−>Ω0(I − G̃0)−1. (2)

Causal order π0. The nonzero entries of G̃0 defines its causal order (also called topological order),
which informs possible “parents” of each variable. A causal order can be represented by a permutation
π0 over [p] := (1, 2, · · · , p). We say G̃0 is consistent with π0 if and only if

G̃0ij 6= 0⇒ π0(i) < π0(j). (3)

There could exist more than one permutations that are consistent with a DAG structure G̃0, so we
denote the set of permutations that satisfy Eq. 3 by Π0. Once a causal order π0 is identified, the con-
nection strengths G̃0 can be estimated by ordinary least squares regression which is a comparatively
easier problem.

Identifiability and equivalent class. However, estimating the true causal order π0 is very challeng-
ing, largely due to the existence of the equivalent class described below.
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Let Sp be the set of all permutations over [p]. For every π ∈ Sp, there exists a connection strength
matrix G̃(π), which is consistent with π, and a diagonal matrix Ω(π) = diag

[
σ1(π)2, · · · , σp(π)2

]
such that the variance Σ in Eq. 2 equals to

Σ = (I − G̃(π))−>Ω(π)(I − G̃(π))−1, (4)
and therefore the random variable X in Eq. 1 can be equivalently described by the model [15]:

X = G̃(π)>X +W (π), W (π) ∼ N (0,Ω(π)). (5)

Without further assumption, the true underlying DAG, G̃0 = G̃(π0), cannot be identified from the

equivalent class: {G̃(π) : π ∈ Sp} (6)
based on the distribution of X , even if infinitely many samples are observed.

3 Joint estimation of multiple DAGs

In the multi-task setting, we consider K linear SEMs:

X(k) = G̃
(k)
0
>X(k) +W (k), for k = 1, · · · ,K.

The superscript notation (k) indicates the k-th model. As mentioned in Sec 2, each model defines a
random variable X(k) ∼ N (0,Σ(k)) with Σ(k) = (1− G̃(k)

0 )−>Ω
(k)
0 (1− G̃(k)

0 )−1.

3.1 Assumption

Similarity. In Condition 3.1 and Definition 3.1, we make a few assumptions about the similarity
of these models. Condition 3.1 ensures the causal orders in the K DAGs do not have conflicts.
Definition 3.1 measures the similarity of the sparsity patterns in the K DAGs. If the sparsity patterns
are strongly overlapped, then the size of the support union s will be small. We do not enforce a strict
constraint on the support union, but we will see in the later theorem that a smaller s can lead to a
better recovery performance.
Condition 3.1 (Consistent causal orders). There exists a nonempty set of permutations Π0 ⊆ Sp such
that ∀π0 ∈ Π0, it holds for all k ∈ [K] that G̃0

(k)
ij 6= 0⇒ π0(i) < π0(j).

Definition 3.1 (Support union). Recall G̃(π) in Eq. 6. The support union of the K DAGs associated
with permutation π is denoted by S(π) :=

{
(i, j) : ∃k ∈ [K] s.t. G̃

(k)
ij (π) 6= 0

}
. The support union

of the K true DAGs G̃(k)
0 is S0 := S(π0). We further denote s0 := |S0| and s := supπ∈Sp |S(π)|.

Identifiability. To ensure the consistency of the estimator based on least squared loss, we first assume
that the DAGs to be recovered are minimum-trace DAGs.
Condition 3.2 (Minimum-trace). Recall the equivalent class defined in Eq. 4 to Eq. 4. Assume for all
k = 1, · · · ,K, trace(Ω

(k)
0 ) = minπ∈Sp trace(Ω(π)(k)).

However, the minimum-trace DAG may not be unique without further assumptions, making the true
DAG indistinguishable from other minimum-trace DAGs. Therefore, we consider the equal variance
condition in Condition 3.3 which ensures the uniqueness of the minimum-trace DAG. In this paper,
we assume the first K ′ ≤ K models satisfy this condition, so they are identifiable. We do not make
such an assumption on the other K −K ′ models, so the K −K ′ models may not be identifiable.
Condition 3.3 (Equal variance). For all k = 1, · · · ,K ′ with K ′ ≤ K, the noise W (k) ∼ N (0,Ω

(k)
0 )

has equal variance with Ω
(k)
0 = σ

(k)
0 Ip.

3.2 l1/l2-penalized joint estimator

Denote the sample matrix by X(k) whose row vectors are n i.i.d. samples fromN (0,Σ(k)). Based on
the task similarity assumptions, we propose the following l1/l2-penalized joint maximum likelihood
estimator (MLE) for jointly estimating the connection strength matrices {G̃(k)

0 }Kk=1:

π̂, {Ĝ(k)} = arg min
π∈Sp,{G(k)∈D(π)}

K∑
k=1

1

2n
‖X(k) −X(k)G(k)(π)‖2F + λ‖G(1:K)(π)‖l1/l2 . (7)
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Similar to the notation in Eq. 4, G(k)(π) indicates its consistency with π. D(π) denote the space of
all DAGs that are consistent with π. It is notable that a single π shared across all K tasks is optimized
in Eq. 7, which respects Condition 3.1. The group norm over the set of K matrices is defined as

‖G(1:K)(π)‖l1/l2 :=
∑p
i=1

∑p
j=1 ‖G

(1:K)
ij ‖2, where G(1:K)

ij := [G
(1)
ij (π), · · · , G(K)

ij (π)].

It will penalize the size of union support in a soft way. When K = 1, this joint estimator will be
reduced to the l1-penalized maximum likelihood estimation.
Remark 3.1. The optimization in Eq. 7 is used for analysis only. A continuous program with the
same optimizer will be discussed in Section 4 for practical implementation.

3.3 Main result: causal order recovery

We start with a few pieces of notations and definitions. Then the theorem statement follows.

Definition 3.2. Let g̃(k)
j (π) denote the j-th column of G̃(k)(π). Let

d := supj∈[p],π∈Sp
∣∣ ∪k∈[K] supp(g̃

(k)
j (π))

∣∣, gmax := supπ∈Sp,(i,j)∈S(π) ‖G̃
(1:K)
ij (π)‖2/

√
K.

In Definition 3.2, d is the maximal number of parents (in union) in the DAGs G̃(k)(π), which is also
a measure of the sparsity level. gmax is bounded by the maximal entry value in the matrices G̃(k)(π).
Condition 3.4 (Bounded spectrum). Assume for all k = 1, · · · ,K, the covariance matrix Σ(k) is
positive definite. There exists constants 0 < Λmin ≤ Λmax <∞ such that for all k = 1, · · · ,K,

(a) all eigenvalues of Σ(k) are upper bounded by Λmax;
(b) all eigenvalues of Σ(k) are lower bounded by Λmin.

Condition 3.5 (Omega-min). There exists a constant ηw > 0 such that for any permutations π /∈ Π0,

1
pK′

∑K′

k=1

∑p
j=1(σ

(k)
j (π)2 − σ(k)

0
2)2 > 1

ηw
.

Condition 3.5 with K ′ = K = 1 is called ‘omega-min’ condition in [14], so we follows this
terminology. In some sense, when ηw is larger, σj(π) with π /∈ Π0 is allowed to deviate less from
the true variance σj(π0) = σ0 with π0 ∈ Π0, which will make it more difficult to separate the set Π0

from its complement in a finite sample scenario. Ideally, we should allow ηw to be large, so that the
recovery is not only restricted to easy problems.

Now we are ready to present the recovery guarantee for causal order. Theorem 3.1 is a specific
statement when the regularization parameter λ follows the classic choice in (group) Lasso problems.
A more general statement which allows other λ is given in Appendix B along with the proof.
Theorem 3.1 (Causal order recovery). Suppose we solve the joint optimization in Eq. 7 with specified

regularization parameter λ =
√

p log p
n for a set of K problems that satisfy Condition 3.1, 3.4 (a),

3.2, 3.3 and 3.5. If the following conditions are satisfied:

θ(n,K,K ′, p, s) :=
p

s

√
n

p log p

K ′2

K
> κ1ηw, (8)

n ≥ c1 logK + c2(d+ 1) log p, (9)
K ≤ κ2p log p, (10)

then the following statements hold true:

(a) With probability at least 1− c3 exp (−κ4(d+ 1) log p)− exp (−c4n), it holds that

π̂ ∈ Π0.

(b) If in addition, n satisfies n ≥ κ5d̂(logK + log p) with d̂ := maxj∈[p],k∈[K] ‖ĝ
(k)
j − g̃(k)

j ‖0,
and Condition 3.4 (b) holds, then with probability at least 1 − c3 exp (−κ4(d+ 1) log p) −
exp (−c4n)− exp(− log p− logK),

1
K

∑K
k=1 ‖Ĝ(k) − G̃(k)

0 ‖2F = O
(
s0

√
p log p
nK

)
.
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In this statement, c1, c2, c3, c4 are universal constants (i.e., independent of n, p,K, s,Σ(k)),
κ1, κ2, κ3, κ4 are constants depending on gmax and Λmax, and κ5 is a constant depending on Λmin.

Discussion on Eq. 8-Eq. 10. (i) In Eq. 8, Theorem 3.1 identifies a sample complexity parameter
θ(n,K,K ′, p, s) . Following the terminology in [18], our use of the term “sample complexity”
for θ reflects the dominant role it plays in our analysis as the rate at which the sample size much
grow in order to obtain a consistent causal order. More precisely, for scalings (n,K,K ′, p, s) such
that θ(n,K,K ′, p, s) exceeds a fixed critical threshold κ1ηw, we show that the causal order can be
correctly recovered with high probability.

(ii) The additional condition for the sample size n in Eq. 9 is the sample requirement for an ordinary
linear regression problem. It is in general much weaker than Eq. 8, unless K grows very large.

(iii) The last condition in Eq. 10 on K could be relaxed if a tighter analysis on the distribution
properties of Chi-squared distribution is available. However, it is notable that this restriction on the
size of K has already been weaker than many related works on multi-task `1 sparse recovery, which
either implicitly treat K as a constant [18, 19] or assume K = o(log p) [20, 21].

Recovering non-identifiable DAGs. A direct consequence of Theorem 3.1 is that as long as the
number of identifiable DAGs K ′ is non-zero, the joint estimator can recover the causal order of
non-identifiable DAGs with high probability. This is not achievable in separate estimation even with
infinitely many samples. Therefore, we show that how the information of identifiable DAGs helps
recover the non-identifiable ones.

Effective sample size. As indicated by θ(n,K,K ′, p, s) in Eq. 8, the effective sample size for
recovering the correct causal order is nK′2

K if the support union size s is of orderO(1) in K. To show
the improvement in sample complexity, it is more fair to consider the scenario when the DAGs are
identifiable, i.e., K ′ = K. In this case, it is clear that the parameter θ(n,K,K, p, s) indicates a lower
sample complexity relative to separate estimation as long as s is of order o(

√
K).

Separate estimation. Consider the special case of a single task estimation with K = K ′ = 1,
in which the joint estimator reduces to `1-penalized MLE. We discuss how our result can recover
previously known results for single DAG recovery. Unfortunately, existing analyses were conducted
under different frameworks with different conditions. [14] and [22] are the most comparable ones
since they were based on the same omega-min condition (i.e., Condition 3.5), but they chose a
smaller regularization parameter λ. In our proof, the sample complexity parameter is derived from
θ(n,K,K ′, p, s) = pK ′/

(
sλ
√
K
)

and Eq. 8 is pK ′/
(
sλ
√
K
)
> κ1ηw. When K = K ′ = 1, this

condition matches what is identified in [14] and [22] for recovering the order of a single DAG.

Error of Ĝ(k). To compare the estimation of Ĝ(k) to the true DAG G̃
(k)
0 , Theorem 3.1 (b) says the

averaged error in F-norm goes to zero when nK →∞. It decreases in K as long as s = o(K).

To summarize, Theorem 3.1 analyzes the causal order consistency for the joint estimator in Eq. 7.
Order recovery is the most challenging component in DAG estimation. After π̂ ∈ Π0 has been
identified, the DAG estimation becomes p linear regression problems that can be solved separately.
Theorem 3.1 (b) only shows the estimation error of connection matrices in F-norm. To characterize
the structure error, additional conditions are required.

3.4 Support union recovery

Theorem 3.1 has shown that π̂ = π0 ∈ Π0 holds with high probability. Consequently, the support
recovery analysis in this section is conditioned on this event. In fact, given the true order π0, what
remains is a set of p separate l1/l2-penalized group Lasso problems, in each of which the order π0

plays a role of constraining the support set by the set Sj(π0) := {i : π0(i) < j}. However, we need
to solve p such problems simultaneously where p is large. A careful analysis is required, and directly
combining existing results will not give a high recovery probability.

In the following, we impose a set of conditions and definitions, which are standard in many l1 sparse
recovery analyses [18, 19], after which theorem statement follows. See Appendix C for the proof.

Definition 3.3. The union support of j-th columns of {G̃(k)
0 }k∈[K] is denoted by RSj := {i ∈ [p] :

∃k ∈ [K] s.t. G̃
(k)
0ij 6= 0}. The maximal cardinality is rmax := supj∈[p]

∣∣RSj
∣∣.
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Definition 3.4. ρu := supk∈[K],j∈[p],S=RSj maxi∈Sc
(
Σ

(k)
ScSc|S

)
ii

is the maximal diagonal entry of

the conditional covariance matrices, where Σ
(k)
ScSc|S := Σ

(k)
ScSc − Σ

(k)
ScS(Σ

(k)
SS)−1Σ

(k)
SSc .

Definition 3.5. gmin := inf(i,j)∈S0
‖G̃(1:K)

0ij ‖2/
√
K represents the signal strength.

Condition 3.6 (Irrepresentable condition). There exists a fixed parameter γ ∈ (0, 1] such that
sup

j∈[p],S=RS(g̃
(1:K)
0j )

‖A(S)‖∞ ≤ 1− γ, where A(S)ij := supk∈[K]

∣∣(Σ(k)
ScS(Σ

(k)
SS)−1

)
ij

∣∣.
Theorem 3.2 (Union support recovery). Assume on the subset of probability space where {π̂ ∈ Π0}
holds, and assume Condition 3.6. Assume the following conditions are satisfied

n ≥ κ6rmax log p, (11)
K ≤ c7 log p, (12)√

8Λmax log p

Λminn
+

2

Λmin

√
p log p

n

rmax

K
= o(gmin), (13)

where κ6 is a constant depending on γ,Λmin, ρu, σmax, and c7 is some universal constant. Then w.p. at
least 1− rmax exp (−c5K log p)− exp (−c6 log p)− c8K exp (−c9(n− rmax − log p)), the support
union of Ĝ(1:K) is the same as that of G̃(1:K)

0 , and that
∥∥Ĝ(1:K) − G̃(1:K)

∥∥
l∞/l2

/
√
K = o(gmin).

Discussion on Eq. 11 and Eq. 12. (i) Eq. 11 poses a sample size condition. The value rmax is
the sparsity overlap defined in Definition 3.3 (i). It takes value in the interval [d,min{s0, p, dK}],
depending on the similarity in sparsity pattern.

(ii) The restriction on K in Eq. 12 plays a similar role as Eq. 10 in Theorem 3.1. This a stronger
restriction, but also guarantees the stronger result of support recovery. Existing analyses on l1/l2-
penalized group Lasso were not able to relax this constraint, neither, so some of them treated K as a
constant in the analysis [18, 19]. Recall that in Theorem 3.1, we were able to allow K = O(p log p).
Technically, this was achieved because in the proof of Theorem 3.1, we avoid analyzing the general
recovery of group Lasso, but only its null-consistency (i.e., the special case of true structures having
zero support), where tighter bound can be derived and it is sufficient for order recovery.

Benefit of joint estimation. Eq. 13 plays a similar role as Eq. 8 in Theorem 3.1. It specifies a rate at
which the sample size must grow for successful union support recovery. As long as rmax is of order
o(
√
K), K will effectively reduce the second term in Eq. 8. Apart from that, the recover probability

specified in Theorem 3.2 grows in K.

4 Algorithm

Solving the optimization in Eq. 7 by searching over all permutations π ∈ Sp is intractable due to
the large combinatorial space. Inspired by the smooth characterization of acyclic graph [16], we
propose a continuous optimization problem, whose optimizer is the same as the estimator in Eq. 7.
Furthermore, we will design an efficient iterative algorithm to approximate the solution.

4.1 Continuous program

We convert Eq. 7 to the following constrained continuous program

min T∈Rp×p
G(1),··· ,G(K)∈Rp×p

K∑
k=1

1

2n

∥∥∥X(k) −X(k)G(k)
∥∥∥2

F
+ λ‖G(1:K)‖l1/l2 + ρ‖1p×p − T‖2F (14)

subject to h(T ) := trace(eT◦T )− p = 0, (15)

whereG(k) := G(k)◦T is element-wise multiplication betweenG(k) and T , and 1p×p is a p×pmatrix
with entries equal to one. Eq. 15 is a smooth ‘DAG-ness’ constraint proposed by NOTEARS [16],
which ensures T is acyclic. One can also use h(T ) := trace((I + T ◦ T )p)− p proposed in [23].

We would like to highlight the novel and interesting design of the matrix T in Eq. 14. What makes
Eq. 7 difficult to solve is the requirement that {G(k)} must be DAGs and share the same order. A
straightforward idea is to apply the smooth acyclic constraint to every G(k), but it is not clear how to
enforce their consistent topological order. Our formulation realizes this by a single matrix T .
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Algorithm 1: Joint Estimation Algorithm
Hyperparameters :ρ, α, λ, t, δ
Initialize G(1:K), T randomly;
for itr = 1, · · · ,M do

for itr′ = 1, · · · ,M ′ do
[G(1:K), T ]← GradOptStep

(
f ;G(1:K), T, β

)
; . Gradient-based update on f

∀i, j ∈ [p], G
(1:K)
ij ← G

(1:K)
ij

‖G(1:K)
ij ‖2

max
{

0, ‖G(1:K)
ij ‖2 − tλ|Tij |

}
; . Proximal step

∀i, j ∈ [p], Tij ← sign(Tij) max
{

0, |Tij | − tλ‖G(1:K)
ij ‖2

}
; . Proximal step

β ← β + τh(T ); . Dual ascent
α← α · (1 + δ); . Typical rule [23]

π = (1, 2, 3, 4)

⇔

T =

 0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0


π = (4, 2, 1, 3)

⇔

T =

 0 0 1 0
1 0 1 0
0 0 0 0
1 1 1 0



To better understand the design rationale of
T , recall in Eq. 3 that a matrix G is a DAG
of order π if and only if its support set is in
{(i, j) : π(i) < π(j)}. The matrix T plays
a role of restricting the support set of G(k) by
masking its entries. Two examples are shown
above. However, unlike the learning of masks in
other papers which allows T to have any combi-
nations of nonzero entries, here we need T to exactly represent the support set for each π. That is
T is from a space Tp with p! elements: Tp := {T ∈ {0, 1}p×p : Tij = 1 ⇔ π(i) < π(j)}. Now a
key question arises: How to perform a continuous and differentiable search over Tp? The following
finding motivates our design:

T ∈ Tp ⇐⇒ T ∈ arg minT∈Rp×p
{
‖1p×p − T‖2F subject to h(T ) = 0

}
.

In other words, T is a continuous projection of 1p×p to the space of DAGs. We can then optimize the
mask T in the continuous space Rp×p but the optimal solution must be an element in the discrete
space Tp. This observation also naturally leads to the design of Eq. 14.

Finally, we want to emphasize that it is important for the optimal T to have binary entries. Without
this property, any nonzero value c can scale the (G,T ) pair to give an equivalent masked DAG, i.e.,
G ◦ T = (cG) ◦ ( 1

cT ). This scaling equivalence will make the optimization hard to solve in practice.

Proofs for the above arguments and the equivalence between Eq. 7 and Eq. 14 are in Appendix F.

4.2 Iterative algorithm

We derive an efficient iterative algorithm using the Lagrangian method with quadratic penalty, which
converts Eq. 14 to an unconstrained problem:

min
T,G(1),··· ,G(K)∈Rp×p

max
β≥0

L(G(1:K), T ; β) := f(G(1:K), T ; β) + λ‖G(1:K)‖l1/l2 ,

where f(G(1:K), T ; β) :=

K∑
k=1

1

2n

∥∥∥X(k) −X(k)G(k)
∥∥∥2

F
+ ρ‖1p×p − T‖2F + βh(T ) + αh(T )2,

β is dual variable, α is the coefficient for quadratic penalty, and f is the smooth term in the objective.

We can solve this min-max problem by alternating primal updates on (G(1:K), T ) and dual updates
on β. Due to the non-smoothness of group norm, the primal update is based on proximal-gradient
method, where the proximal-operator with respect to ‖ · ‖l1/l2 has a closed form:[

arg minZ(1:K)∈RK×p×p
1
2

∑K
k=1 ‖Z(k) −X(k)‖2F + c‖Z(1:K)‖l1/l2

](1:K)

ij

=
X

(1:K)
ij

‖X(1:K)
ij ‖2

max{0, ‖X(1:K)
ij ‖2 − c},

which is a group-wise soft-threshold. Since G(k) and T are multiplied together element-wisely inside
the group norm, the proximal operator will be applied to both of them separately. Together with the
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dual update for β, β ← β + τh(T ) with τ as the step size, we summarize the overall algorithm for
solving Eq. 14 in Algorithm 1.

5 Related work

Single DAG estimation. Unlike the large literature of research on undirected graphical models [24,
25, 26, 27], statistical guarantees for score-based DAG estimator have been available only in recent
years. [14, 15, 17] have shown the DAG estimation consistency in high-dimensions, but they do not
consider joint estimation. Nevertheless, some techniques in [14, 15] are useful for our derivations.

Multi-task learning. (i) Undirected graph estimation. There have been extensive studies on the
joint estimation of multiple undirected Gaussian graphical models [28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39]. (ii) DAG estimation. In contrast, not much theoretical work has been done for
joint DAG learning. A few pieces of recent works addressed certain statistical aspects of multi-task
DAG estimation [9, 20, 21], but [20, 21] tackle the fewer task regime with K = o(log p), and [9]
assumes the causal order is given. Another related work that we notice after the paper submission is
[40], which also assumes the DAGs have a consistent causal order, but it focuses on estimating the
difference between two DAGs. (iii) Linear regression. Multi-task linear regression is also a related
topic [41, 42, 43, 44, 45, 46, 47], because the techniques for analyzing group Lasso are used in our
analysis [18, 19].

Practical Algorithms. Works on practical algorithm design for efficiently solving the score-based
optimization are actively conducted [48, 49, 50, 51]. Our algorithm is most related to recent methods
exploiting a smooth characterization of acyclicity, including NOTEARS [16] and several subsequent
works [23, 52, 53, 54], but they only apply for single-task DAG estimation. Although algorithms for
the multi-task counterpart were proposed a decade ago [11, 55, 56, 57], none of them leverage recent
advances in characterizing DAGs and providing theoretically guarantees.

6 Experiments

6.1 Synthetic data

The set of experiments is designed to reveal the effective sample size predicted by Theorem 3.1, and
demonstrate the effectiveness of the proposed algorithm. In the simulations, we randomly sample a
causal order π and a union support set S0. Then we randomly generate multiple DAGs that follow
the order π and have edges contained in the set S0. For each DAG, we construct a linear SEM with
standard Gaussian noise, and sample n data points from it. On tasks with different combinations of
(p, n, s,K), we exam the behavior of the joint estimator, estimated by Algorithm 1, on 64 tasks and
report the statistics in the following for evaluation. In this experiment, we take K ′ = K so that all
the DAGs are identifiable. This simpler case will make it easier to verify the proposed algorithm and
the rates in the theorem.
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Figure 1: Success probability vs log θ.

Success probability for order recovery. For each fixed tuple
(p, n, s,K), we measure the sample complexity in terms of the
parameter θ specified by Theorem 3.1. Fig 1 plots the success
probability Pr[π̂ ∈ Π0], versus θ = p/s

√
nK/(p log p) at

a logarithmic scale. Theorem 3.1 predicts that the success
probability should transition to 1 once θ exceeds a critical
threshold. Curves in Fig 1 actually have sharp transitions,
showing step-function behavior. The sharpness is moderated
by the logarithmic scale in x-axis. Moreover, by scaling the
sample size n using θ, the curves align well as predicted by
the theory and have a similar transition point, even though they
correspond to very different model dimensions p.

Fig 2 shows the success probability in the form of Heat Maps, where the rows indicate an increase in
per task sample size n, and the columns indicate an increase in the number of tasks K. The results
show that the increases in these two quantities have similar effect to the success probability.
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Figure 2: Heat map: Darker colors indicate lower success probability, and lighter colors are higher.
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Figure 3: False discovery rate (FDR) and true positive rate (TPR) of the edges.

Effectiveness of K in structure recovery. In this experiment, we aim at verifying the effectiveness
of the joint estimation algorithm for recovering the structures. For brevity, we only report the numbers
for false discovery rate (FDR) and true positive rate (TPR) of edges in Fig 3, but figures for additional
metrics can be found in Appendix G. In Fig 3, we can observe consistent improvements when
increasing the number of tasks K. When per task sample size is small, this improvement reveals to
be more obvious.

Comparison with other joint estimator. In this experiment, we compare our method MultiDAG
with JointGES [21] on models with p = 32 and p = 64. Results in Table 1 show that two algorithms
have similar performance when K = 1. However, when K increases, our method returns consistently
better structures in terms of SHD.

Table 1: Comparison of MultiDAG (MD) and JointGES (JG) in SHD
p = 32 p = 64

n = 10 n = 20 n = 80 n = 320 n = 10 n = 20 n = 80 n = 320

MD(k=1) 39± 5 25± 5 10± 4 6± 3 104± 7 77± 8 29± 6 19± 8
MD(k=2) 37± 5 22± 5 8± 3 4± 3 103± 7 68± 8 22± 6 13± 6
MD(k=8) 29± 5 13± 3 4± 2 2± 1 85± 7 42± 6 13± 3 6± 3
MD(k=32) 23± 4 11± 3 3± 2 1± 1 66± 5 35± 5 10± 3 3± 2

JG(k=1) 31± 5 19± 5 8± 4 6± 5 100± 11 53± 11 18± 11 18± 9
JG(k=2) 32± 4 19± 5 9± 5 7± 5 99± 10 51± 10 20± 9 21± 10
JG(k=8) 30± 5 19± 5 12± 4 10± 4 82± 10 42± 10 20± 5 27± 9
JG(k=32) 26± 4 18± 4 12± 3 9± 3 57± 9 36± 6 19± 5 26± 6

6.2 Recovery of gene regulatory network

We investigate how our joint estimator works on more realistic models, by conducting a set of
experiments on realistic gene expression data generated by SERGIO [13], which models the additive
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effect of cooperative transcription factor binding across multiple gene regulators in parallel with
protein degradation and noisy expression.

(a) True: Ecoli 100 (b) K = 1, n = 1000 (c) K = 10, n = 100 (d) K = 1, n = 100

FDR: 0.11, TPR: 0.47 FDR:0.06, TPR:0.41 FDR: 0.18, TPR: 0.29

Figure 4: Visualization of the recovered DAG structures. Each light green colored pixel at position
(i, j) indicates an edge from node i to j.

We conduct this experiment on the E. coli 100 network, which includes 100 known genes and
137 known regulatory interactions. To evaluate our algorithm, we generate multiple networks by
rearranging and re-weighting 5 edges at random in this network without violating the topological order.
We simulate the gene expression from each network using SERGIO with a universal non-cooperative
hill coefficient of 0.05, which works well with our linear recovery algorithm.

Fig 4 provides a visual comparison of the recovered structures. It can be seem from the true
network that there are a few key transcription factors that highlight several rows in the figure. These
transcription factors are better identified by the two structures in (b) and (c), but not that clear in (d).
Combining this observation with the more quantitative results in Table 2, we see that the combination
(K = 10, n = 100) achieves comparable performance to K = 1 with the same total number of
samples, and outperforms the single task estimation with n = 100.

K n FDR TPR FPR SHD
1 100 0.18± 3.8e−3 0.30± 1.2e−3 0.001± 7.3e−7 104.61± 3.2e1

10 100 0.07± 1.2e−3 0.42± 5.1e−4 0.001± 2.8e−7 84.0± 1.5e1
1 1000 0.09± 2.9e−3 0.50± 1.4e−3 0.002± 9.2e−7 76.4± 5.9e1

Table 2: Recovery across 25 independent initializations of SERGIO for each experiment. FPR and SHD stand
for false positive rate and structural hamming distance, respectively.

7 Conclusion and discussion
In this paper, we have analyzed the behavior of l1/l2-penalized joint MLE for multiple DAG
estimation tasks. Our main result is to show that its performance in recovering the causal order is
governed by the sample complexity parameter θ(n,K,K ′, p, s) in Eq. 8. Besides, we have proposed
an efficient algorithm for approximating the joint estimator via formulating a novel continuous
programming, and demonstrated its effectiveness experimentally. The current work applies to DAGs
that have certain similarity in sparsity pattern. It will be interesting to consider whether the joint
estimation without the group-norm (and without the union support assumption) can also lead to
similar improvement in causal order recovery.
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