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Abstract

This work considers the problem of selective-sampling for best-arm identification.
Given a set of potential optionsZ ⊂ Rd, a learner aims to compute with probability
greater than 1 − δ, arg maxz∈Z z

>θ∗ where θ∗ is unknown. At each time step,
a potential measurement xt ∈ X ⊂ Rd is drawn IID and the learner can either
choose to take the measurement, in which case they observe a noisy measurement
of x>θ∗, or to abstain from taking the measurement and wait for a potentially more
informative point to arrive in the stream. Hence the learner faces a fundamental
trade-off between the number of labeled samples they take and when they have
collected enough evidence to declare the best arm and stop sampling. The main
results of this work precisely characterize this trade-off between labeled samples
and stopping time and provide an algorithm that nearly-optimally achieves the
minimal label complexity given a desired stopping time. In addition, we show that
the optimal decision rule has a simple geometric form based on deciding whether a
point is in an ellipse or not. Finally, our framework is general enough to capture
binary classification improving upon previous works.

1 Introduction

In this work we consider selective sampling for online best-arm identification. In this setting, at every
time step t = 1, 2, . . . , Nature reveals a potential measurement xt ∈ X ⊂ Rd to the learner. The
learner can choose to either query xt (ξt = 1) or abstain (ξt = 0) and immediately move on to the next
time. If the learner chooses to take a query (ξt = 1), then Nature reveals a noisy linear measurement
of an unknown θ∗ ∈ Rd, i.e. yt = 〈xt, θ∗〉+ εt where εt is mean zero sub-Gaussian noise. Before
the start of the game, the learner has knowledge of a set Z ⊂ Rd. The objective of the learner is to
identify z∗ := arg maxz∈Z〈z, θ∗〉 with probability at least 1− δ at a learner specified stopping time
U . It is desirable to minimize both the stopping time U which counts the total number of unlabeled or
labeled queries and the number of labeled queries requested L :=

∑U
t=1 1{ξt = 1}. In this setting, at

each time t the learner must make the decision of whether to accept the available measurement xt, or
abstain and wait for an even more informative measurement. While abstention may result in a smaller
total labeled sample complexity L, the stopping time U may be very large. This paper characterizes
the set of feasible pairs (U ,L) that are necessary and sufficient to identify z∗ with probability at
least 1 − δ when xt are drawn IID at each time t from a distribution ν. Moreover, we propose an
algorithm that nearly obtains the minimal information theoretic label sample complexity L for any
desired unlabeled sample complexity U .

While characterizing the sample complexity of selective sampling for online best arm identification is
the primary theoretical goal of this work, the study was initially motivated by fundamental questions
about how to optimally trade-off the value of information versus time. Even for this idealized linear
setting, it is far from obvious a priori what an optimal decision rule ξt looks like and if it can even be
succinctly described, or if it is simply the solution to an opaque optimization problem. Remarkably,
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we show that for every feasible, optimal operating pair (U ,L) there exists a matrix A ∈ Rd×d such
that the optimal decision rule takes on the form ξt = 1{x>Ax ≥ 1} when xt ∼ ν iid. The fact that
for any smooth distribution ν the decision rule is a hard decision equivalent to xt falling outside a
fixed ellipse or not, and not a stochastic rule that varies complementarily with the density of ν over
space is perhaps unexpected.

To motivate the problem description, suppose on each day t = 1, 2, . . . a food blogger posts the
Cocktail of the Day with a recipe described by a feature vector xt ∈ Rd. You have the ingredients
(and skills) to make any possible cocktail in the space of all cocktails Z , but you don’t know which
one you’d like the most, i.e., z∗ := arg maxz∈Z〈z, θ∗〉, where θ∗ captures your preferences over
cocktail recipes. You decide to use the Cocktail of the Day to inform your search. That is, each day
you are presented with the cocktail recipe xt ∈ Rd, and if you choose to make it (ξt = 1) you observe
your preference for the cocktail yt with E[yt] = 〈xt, θ∗〉. Of course, making cocktails can get costly,
so you don’t want to make each day’s cocktail, but rather you will only make the cocktail if xt is
informative about θ∗ (e.g., uses a new combination of ingredients). At the same time, waiting too
many days before making the next cocktail of the day may mean that you never get to learn (and
hence drink) the cocktail z∗ you like best. The setting above is not limited to cocktails, but rather
naturally generalizes to discovering the efficacy of drugs and other therapeutics where blood and
tissue samples come to the clinic in a stream and the researcher has to choose whether to take a
potentially costly measurement.

Our results hold for arbitrary θ∗ ∈ Rd, sets X ⊂ Rd and Z ⊂ Rd, and measures ν ∈ 4X 1 for which
we assume xt ∼ ν is drawn IID. The assumption that each xt is IID allows us to make very strong
statements about optimality. To summarize, our contributions are as follows:

• We present fundamental limits on the trade-off between the amount of unlabelled data and labelled
data in the form of (the first) information theoretic lower bounds for selective sampling problems
that we are aware of. Naturally, they say that there is an absolute minimum amount of unlabelled
data that is necessary to solve the problem, but then for any amount of unlabelled data beyond this
critical value, the bounds say that the amount of labelled data must exceed some value as a function
of the unlabelled data used.

• We propose an algorithm that nearly matches the lower bound at all feasible trade-off points in the
sense that given any unlabelled data budget that exceeds the critical threshold, the algorithm takes
no more labels than the lower bound suggests. Thus, the upper and lower bounds sketch out a curve
of all possible operating points, and the algorithm achieves any point on this curve.

• We characterize the optimal decision rule of whether to take a sample or not, based on any critical
point is a simple test: Accept xt ∈ Rd if x>t Axt ≥ 1 for some matrix A that depends on the desired
operating point and geometry of the task. Geometrically, this is equivalent to xt falling inside or
outside an ellipsoid.

• Our framework is also general enough to capture binary classification, and consequently, we prove
results there that improve upon state of the art.

1.1 Related Work

Selective Sampling in the Streaming Setting: Online prediction, the setting in which the selective
sampling framework was introduced, is a closely related problem to the one studied in this paper
and enjoys a much more developed literature [6, 9, 1, 7]. In the linear online prediction setting, for
t = 1, 2, . . . Nature reveals xt ∈ Rd, the learner predicts ŷt and incurs a loss `(ŷt, yt), and then the
learner decides whether to observe yt (i.e., ξt = 1) or not (ξt = 0), where yt is a label generated by a
composition of a known link function with a linear function of xt. For example, in the classification
setting [1, 6, 9], one setting assumes yt ∈ {−1, 1} with E[yt|xt] = 〈xt, θ∗〉 for some unknown
θ∗ ∈ Rd, and `(ŷt, yt) = 1{ŷt 6= yt}. In the regression setting [7], one observes yt ∈ [−1, 1] with
E[yt|xt] = 〈xt, θ∗〉 again, and `(ŷt, yt) = (ŷt − yt)2. After any amount of time U , the learner is
incentivized to minimize both the amount of requested labels

∑U
t=1 1{ξt = 1} and the cumulative

loss
∑U
t=1 `(yt, ŷt) (or some measure of regret which compares to predictions using the unknown

θ∗). If every label yt is requested then L = U and this is just the classical online learning setting.

1We denote the set of probability measures over X as 4X .
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These works give a guarantee on the regret and labeled points taken in terms of the hardness of the
stream relative to a learner which would see the label at every time. Most do not give the learner the
ability to select an operating point that provides a trade-off between the amount of unlabeled versus
labeled data taken. Those few works that propose algorithms that do provide this functionality do not
provide lower bounds that match their given upper bounds, leaving it unclear whether their algorithm
optimally negotiates this trade-off. In contrast, our work fully characterizes the trade-off between the
amount of unlabeled and labeled data through an information-theoretic lower bound and a matching
upper bound. Speci�cally, our algorithm includes a tuning parameter, call it� , that controls the
trade-off between the evaluation metric of interest (for us, the quality of the recommendedz 2 Z ),
the label complexityL , and the amount of unlabelled dataU that is necessary before the metric
of interest can be non-trivial. We prove that each possible setting of� parametrizesall possible
trade-offs between unlabeled and labeled data.

Our work is perhaps closest to the streaming setting for agnostic active classi�cation [8, 15] where
eachxs is drawn i.i.d. from an underlying distribution� on X , and indeed our results can be
specialized to this setting as we discuss in Section 3. These papers also evaluate themselves at
a single point on the tradeoff curve, namely the number of samples needed in passive supervised
learning to obtain a learner with excess risk at most� . They provide minimax guarantees on the
amount of labeled data needed in terms of the disagreement coef�cient [12]. In contrast, again, our
results characterize the full trade-off between the amount of unlabeled data seen, and the amount of
labeled data needed to achieve the target excess risk� . We note that using online-to-batch conversion
methods, [9, 1, 6] also provide results on the amount of labeled data needed but they assume a very
speci�c parametric form to their label distribution unlike our setting which is agnostic. Other works
have characterized selective sampling for classi�cation in the realizable setting that assumes there
exists a classifer among the set under consideration that perfectly labels everyyt [13]–our work
addresses the agnostic setting where no such assumption is made. Finally, our results apply under the
more general setting ofdomain adaptation under covariate shiftwhere we are observing data drawn
from the stream� , but we will evaluate the excess risk of our resulting classi�er on a different stream
� [22, 23, 26].

Best-Arm Identi�cation and Online Experimental Design. Our techniques are based on experi-
mental design methods for best-arm identi�cation in linear bandits, see [24, 11, 5]. In the setting of
these works, there exists a pool of examplesX and at each time anyx 2 X can be selected with
replacement. The goal is to identify the best arm using as few total selections (labels) as possible.
Their algorithms are based on arm-elimination. Speci�cally, they select examples with probability
proportional to an approximateG-optimal design with respect to the current remaining arms. Then,
during each round after taking measurements, those arms with high probability of being suboptimal
will be eliminated. Remarkably, near-optimal sample complexity has been achieved under this setting.
While we apply these techniques of arm-elimination and sampling throughG-optimal design, the
major difference is that we are facing a stream instead of a pool of examples. Finally, [10] considers a
different online experiment design setup where (adversarially chosen) experiments arrive sequentially
and a primal-dual algorithm decides whether to choose each, subject to a total budget. [10] studies
the competitive ratio of such algorithms (in the manner of online packing algorithms) for problems
such asD-optimal experiment design.

2 Selective Sampling for Best Arm Identi�cation

Consider the following game: Given knownX ; Z � Rd and unknown� � 2 Rd at each time
t = 1 ; 2; : : : :

1. Nature revealsx t
iid� � with support(� ) = X

2. Player choosesQt 2 f 0; 1g. If Qt = 1 then nature revealsyt with E[yt ] = hx t ; � � i

3. Player optionally decides to stop at timet and output somebz 2 Z

If the player stops at timeU after observingL =
P U

t =1 Qt labels, the objective is to identify
z� = arg max z2Z hz; � � i with probability at least1 � � while minimizing a trade-off ofU; L .

This paper studies the relationship betweenU andL in the context of necessary and suf�cient
conditions to identifyz� with probability at least1 � � . ClearlyU must be “large enough” forz� to

3



be identi�able even if all labels are requested (i.e.,L = U). But if U is very large, the player can start
to become more picky with their decision to observe the label or not. Indeed, one can easily imagine
scenarios in which it is advantageous for a player to forgo requesting the label of the current example
in favor of waiting for a more informative example to arrive later if they wished to minimizeL alone.
Intuitively, L should decrease asU increases, but how?

Any selective sampling algorithm for the above protocol at timet is de�ned by 1) a selection rule
Pt : X ! [0; 1] whereQt � Bernoulli(Pt (x t )) , 2) a stopping ruleU, and 3) a recommendation rule
bz 2 Z . The algorithm's behavior at timet can use all information collected up to timet
De�nition 1. For any� 2 (0; 1) we say a selective sampling algorithm is� -PAC for� 2 4 X if for all
� 2 Rd the algorithm terminates at timeU which is �nite almost surely and outputsarg maxz2Z hz; � i
with probability at least1 � � .

2.1 Optimal design

Before introducing our own algorithm, let us consider a seemingly optimal procedure. For any
� 2 4 X = f p :

P
x 2X px = 1 ; px � 0 8x 2 X g de�ne

� (� ) := max
z2Znf z� g

kz � z� k2
EX � � [XX > ]� 1

h� � ; z� � zi 2 : (1)

Intuitively, � (� ) captures the number of labeled examples drawn from distribution� to identifyz� .
Speci�cally, for any� � � (� ) log(jZj =� ), if x1; : : : ; x � � � andyi = hx i ; � � i + � i where� i is
iid 1 sub-Gaussian noise, then there exists an estimatorb� := b� (f (x i ; yi )g�

i =1 ) such thathb�; z � i >
maxz2Zn z� hb�; z i with probability at least1 � � [11]. In particular,� � � (� ) log(jZj =� ) samples
suf�ce to guarantee thatarg maxz2Z hb�; z i = arg max z2Z h� � ; zi =: z� .

Thus, if our� samples are coming from� , we would expect any reasonable algorithm to require
at least� (� ) log(jZj =� ) examples and labels. However, since we only want to take informative
examples, we instead choose to select thetth examplex t = x according to a probabilityP(x) so that
our �nal labeled samples are coming from the distribution� where� (x) / P(x)� (x). In particular,
P(x) should be chosen according to the following optimization problem

P � = argmin
P :X ! [0;1]

� EX � � [P(X )] subject to max
z2Znf z� g

kz� � zk2
EX � � [�P (X )XX > ]� 1

hz� � z; � � i 2 � � � 1 (2)

for � � = log( jZj =� ) where the objective captures the number of samples we select usingP � , and the
constraint captures the fact that we have solved the problem. Remarkably, we can reparametrize this
result in terms of an optimization problem over� 2 � X instead ofP � : X ! [0; 1] as

� EX � � [P � (X )] = min
� 24 X

� (� )� � subject to � � k �=� k1 � (� )� �

wherek�=� k1 = max x 2X � (x)=� (x), as shown in Proposition 2. Note that as� ! 1 the constraint
becomes inconsequential. Also notice that� (� )� � appears to be a necessary amount of labels to solve
the problem even ifP(x) � 1 (albeit, by arguing about minimizing the upperbound of above).

2.2 Main results

In this section we formally justify the sketched argument of the previous section, showing nearly
matching upper and lower bounds.
Theorem 1(Lower bound). Fix any� 2 (0; 1), X ; Z � Rd, and� � 2 Rd. Any selective sampling
algorithm that is� -PAC for� 2 4 X and terminates after drawingU unlabelled examples from�
and requests the labels of justL of them satis�es

• E[U] � � (� ) log(1=� ), and

• E[L ] � min
� 24 X

� (� ) log(1=� ) subject to E[U] � k �=� k1 � (� ) log(1=� ).

The �rst part of the theorem quanti�es the number of rounds or unlabelled drawsU thatanyalgorithm
must observe before it could hope to stop and outputz� correctly. The second part describes a
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trade-off betweenU andL . One extreme is ifE[U] ! 1 , which effectively removes the constraint
so that the number of observed labels must scale likemin � 24 X � (� ) log(1=� ). Note that this is
precisely the number of labels required in the pool-based setting where the agent can chooseany
x 2 X that she desires at each timet (e.g. [11]). In the other extreme,E[U] = � (� ) log(1=� ) so that
the constraint in the label complexityE[L ] is equivalent to� (� ) � k �=� k1 � (� ). This implies that
the minimizing� must either stay very close to� , or must obtain a substantially smaller value of
� (� ) relative to� (� ) to account for the in�ation factork�=� k1 . In some sense, this latter extreme is
the most interesting point on the trade-off curve because its asking the algorithm to stop as quickly
as the algorithm that observes all labels, but after requesting a minimal number of labels. Note that
this lower bound holds even for algorithms that known� exactly. The proof of Theorem 1 relies on
standard techniques from best arm identi�cation lower bounds (see e.g. [17, 11]).

Remarkably, every point on the trade-off suggested by the lower bound is nearly achievable.

Theorem 2 (Upper bound). Fix any � 2 (0; 1), X ; Z � Rd, and � � 2 Rd. Let � =
minz2Znf z� ghz� � z; � � i and � � / log(log( 1

� )jZj =� ) where the precise constant is given in the
appendix. For any� � � (� )� � there exists a� -PAC selective sampling algorithm that observesU
unlabeled examples and requests justL labels that satis�es with probability at least1 � �

• U � log2( 4
� ) � , and

• L � 3 log2( 4
� ) min

� 24 X

� (� ) � � subject to � � k �=� k1 � (� ) � � .

Aside from thelog( 1
� ) factor and thelog(jZj ) that appears in the� � term, this nearly matches the

lower bound. Note that the parameter� parameterizes the algorithm and makes the trade-off between
U andL explicit. The next section describes the algorithm that achieves this theorem.

2.3 Selective Sampling Algorithm

Algorithm 1 contains the pseudo-code of our selective sampling algorithm for best-arm identi�cation.
Note that it takes a con�dence level� 2 (0; 1) and a parameter� that controls the unlabeled-labeled
budget trade-off as input. The algorithm is effectively an elimination style algorithm and closely
mirrors the RAGE algorithm for the pool-based setting of best-arm identi�cation problem [11]. The
key difference, of course, is that instead of being able to plan over the pool of measurements, this
algorithm must plan over thex's that the algorithm maypotentiallysee and account for the case that
it might not see thex's it wants.

Algorithm 1 Selective Sampling for Best-arm Identi�cation

1: Input Z � Rd, � 2 (0; 1); �
2: while jZ ` j � 1 do
3: Let bP` ; b� bP`

 OPTIMIZEDESIGN(Z ` ; 2� ` ; � ) // b� bP`
approximates EX � � [ bP` (X )XX > ]

4: for t = ( ` � 1)� + 1 ; : : : ; `� do
5: Nature revealsx t drawn iid from� (with supportRd)
6: SampleQt (x t ) � Bernoulli( bP` (x t )) . If Qt = 1 then observeyt // E[yt jx t ] = h� � ; x t i
7: end for
8: Let b� `  RIPS(f b� � 1

bP`
Qs(xs)xsysg`�

s=( ` � 1) � +1 , Z � Z ) // b� ` approximates � �

9: Z ` +1 = Z ` n f z 2 Z ` : max
z02Z `

hz0 � z; b� ` i � 2� ` g

10: end while

In round`, the algorithm maintains an active setZ ` � Z with the guarantee that each remaining
z 2 Z ` satis�es,hz� � z; � � i � 8 � 2� ` . In each round, on Line 3 of the algorithm, it calls out
to a sub-routineOPTIMIZEDESIGN(Z ; �; � ) that is trying to approximate the ideal optimal design
of (2). In particular, the ideal response toOPTIMIZEDESIGN(Z ; �; � ) would return aP �

� and
� P �

�
= EX � � [P �

� (X )XX > ] whereP �
� is the solution to Equation 2 with the one exception that the

denominator of the constraint is replaced withmaxf � 2; h� � ; z� � zi 2g. Of course,� � is unknown
so we cannot solve Equation 2 (as well as other outstanding issues that we will address shortly).
Consequently, our implementation will aim toapproximatethe optimization problem of Equation 2.
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But assuming our sample complexity is not too far off from this ideal, each round should not request
more labels than the number of labels requested by the ideal program with� = 0 . Thus, the total
number of samples should be bounded by the ideal sample complexity times the number of rounds,
which isO(log(� � 1)) . We will return to implementation issues in the next section.

Assuming we are returned( bP` ; b� bP`
) that approximate their ideals as just described, the algorithm

then proceeds to process the incoming stream ofx t � � . As described above, the decision to request
the label ofx t is determined by a coin �ip coming up heads with probabilitybP` (x t )–otherwise we
do not request the label. Given the collected datasetf (x t ; yt ; Qt ; bP` (x t ))gt , line 8 then computes an
estimateb� ` of � � using the RIPS estimator of [5] which will satisfy

jhz� � z; b� ` � � � ij � O
�

kz� � zkEX � � [� bP` (X )XX > ]� 1

p
log(2`2jZj 2=� )

�
� 2� `

for all z 2 Z ` simultaneously with probability at least1 � � . Thus, the �nal line of the algorithm
eliminates anyz 2 Z ` such that there exists anotherz0 2 Z ` (think z� ) that satis�eshb� ` ; z0� zi > 2� ` .
The process continues untilZ ` = f z� g.

2.4 Implementation of OPTIMIZE DESIGN

For the subroutineOPTIMIZEDESIGN passed(Z ` ; �; � ) the next best thing to computing Equation 2
with the denominator of the constraint replaced withmaxf � 2; h� � ; z� � zi 2g, is to compute

P� = argmin
P :X ! [0;1]

EX � � [P(X )] subject to max
z;z 02Z `

kz � z0k2
EX � � [�P (X )XX > ]� 1

� 2 � � � 1 (3)

and� P � = EX � � [P� (X )XX > ] for an appropriate choice of� � = �(log( jZj =� )) . To see this,
�rstly, any z 2 Z with gaph� � ; z� � zi that we could accurately estimate would not be included in
Z ` , thus we don't need it in themax of the denominator. Secondly, to get rid ofz� in the numerator
(which is unknown, of course), we note that for any normmaxz;z 0 kz � z0k � maxz 2kz � z� k �
maxz;z 0 2kz � z0k. Assuming we could solve this directly and compute� P � = EX � � [P� (X )XX > ],
we can obtain the result of Theorem 2 (proven in the Appendix).

However, even if we knew� exactly, the optimization problem of Equation 3 is quite daunting as
it is a potentially in�nite dimensional optimization problem overX . Fortunately, after forming
the Lagrangian with dual variables for eachz � z0 2 Z � Z , optimizing the dual amounts to
a �nite dimensional optimization problem over the �nite number of dual variables. Moreover,
this optimization problem is maximizing a simple expectation with respect to� and thus we can
apply standard stochastic gradient ascent and results from stochastic approximation [20]. Given the
connection to stochastic approximation, instead of sampling a freshex � � each iteration, it suf�ces to
“replay” a sequence ofex's from historical data. Summing up, this construction allows us to compute a
satisfactoryP� and avoid both an in�nite-dimensional optimization problem and requiring knowledge
of � (as long as historical data is available).

Meanwhile, with historical data, we can also empirically computeEX � � [P� (X )XX > ]. Historical
data could mean of�ine samples from� or just samples from previous rounds. In this setting, Theorem
2 still holds albeit with larger constants. Theorem 7 in the appendix characterizes the necessary
amount of historical data needed. Unfortunately (in full disclosure) the theoretical guarantees on the
amount of historical data needed is absurdly large, though we suspect this arises from a looseness in
our analysis. Similar assumptions and approaches to historical or of�ine data have been used in other
works in the streaming setting e.g. [15].

3 Selective Sampling for Binary Classi�cation

We now review streaming Binary Classi�cation in the agnostic setting [8, 12, 15] and show that our
approach can be adapted to this setting. Consider a binary classi�cation problem whereX is the
example space andY = f� 1; 1g is the label space. Fix a hypothesis classH such that eachh 2 H is
a classi�erh : X ! Y . Assume there exists a �xed regression function� : X ! [0; 1] such that the
label ofx is Bernoulli with probability� (x) = P(Y = 1 jX = x). Being in the agnostic setting, we
make no assumption on the relationship betweenH and� . Finally, �x any � 2 4 X and� 2 4 X .
Given knownX ; H and unknown regression function� , at each timet = 1 ; 2; : : : :

6



1. Nature revealsx t � �

2. Player choosesQt 2 f 0; 1g. If Qt = 1 then nature revealsyt � Bernoulli(� (x t )) 2 f� 1; 1g

3. Player optionally decides to stop at timet and output somebh 2 H .

De�ne therisk of anyh 2 H asR� (h) := PX � �;Y � � (X ) (Y 6= h(X )) . If the player stops at time
U after observingL =

P U
t =1 Qt labels, the objective is to identifyh� = arg min h2H R� (h) with

probability at least1 � � while minimizing a trade-off ofU; L . Note thath� is the true risk minimizer
with respect to distribution� but we observe samplesx t � � ; � is not necessarily equal to� . While
we have posed the problem as identifying the potentially uniqueh� , our setting naturally generalizes
to identifying an� -goodh such thatR� (h) � R� (h� ) � � .

We will now reduce selective sampling for binary classi�cation problem to selective sampling for
best arm identi�cation, and thus immediately obtain a result on the sample complexity. For simplicity,
assume thatX andH are �nite. EnumerateX and for eachh 2 H de�ne a vectorz(h) 2 [0; 1]jX j

such thatz(h)
x := � (x)1f h(x) = 1 g for z(h) = [ z(h)

x ]x 2X . Moreover, de�ne� � := [ � �
x ]x 2X where

� �
x := 2 � (x) � 1. Then

R� (h) = EX � �;Y � � (X ) [1f Y 6= h(X )g]=
X

x 2X

� (x)( � (x)1f h(x) 6= 1g+(1 � � (x))1f h(x) 6= 0g)

=
X

x 2X

� (x)� (x) +
X

x 2X

� (x)(1 � 2� (x))1f h(x) = 1 g = c � h z(h) ; � � i

wherec =
P

x 2X � (x)� (x) does not depend onh. Thus, if Z := f z(h) gh2H then identifying
h� = arg min h2H R� (h) is equivalent to identifyingz� = arg max z2Z hz; � � i . We can now apply
Theorem 2 to obtain a result describing the sample complexity trade-off. First de�ne,

� � (�; " ) := max
z2Znf z� g

kz � z� k2
EX � � [XX > ]� 1

maxfh� � ; z� � zi 2; "2g
= max

h2Hnf h � g

EX � �

h
1f h(X ) 6= h0(X )g � (X )

� (X )

i

maxf (R� (h) � R� (h� ))2; "2g

An important case of the above setting is whenX � � and � = � , i.e. we are evaluating the
performance of a classi�er relative to the same distribution our samples are drawn from. This is
the setting of [8, 15, 12]. The following theorem shows that the sample complexity obtained by our
algorithm is at least as good as the results they present.

Theorem 3. Fix any� 2 (0; 1), domainX with distribution� , �nite hypothesis classH, regression
function� : X ! [0; 1]. Set� � 0 and� � = 2048 log(4 log2

2(4=�)jHj =� ). Then for� � � � (�; � )� �
there exists a selective sampling algorithm that returnsh 2 H satisfyingR� (h) � R� (h� ) � � by
observingU unlabeled examples and requesting justL labels such that

• U � log2(4=�)�

• L � 3 log2( 4
" ) min

� 24 X

� � (�; " )� � s.t. � � k �=� k1 � � (�; " )� �

with probability at least1 � � . Furthermore when� = � and if � � 16� (�; � )� � we have that

L � 36 log2(4=�)
�

R � (h � )2

� 2 + 4
�

sup
� � �

� � (2R� (h� ) + �; � )� �

where� � (u; � ) is the disagreement coef�cient, de�ned in Appendix E.

Note that if� is suf�ciently large then the labeled sample complexity we obtainmin � 2 � X � (�; � )
could be signi�cantly smaller than previous results in the streaming setting, e.g. see [16]. The proof
of Theorem 3 can be found in Appendix E.

4 Solving the Optimization Problem

Recall that in Algorithm 1, during round̀, we need to solve optimization problem(3). Solving this
optimization problem is not trivial because the number of variables can potentially be in�nite ifX is
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an in�nite set. In this section, we will demonstrate how to reduce it to a �nite-dimensional problem
by considering its dual problem. To simplify the notation, letY` = f z � z0 : z; z0 2 Z ` ; z 6= z0g,
and rewrite the problem as follows, wherec` > 0 is a constant that may depend on round`.

minP EX � � [P(X )]
subject to y> EX � �

�
P(X )XX >

� � 1
y � c2

` ; 8y 2 Y ` ;
0 � P(x) � 1; 8x 2 X :

(4)

Using the Schur complement technique, we show in Lemma 13 (Appendix C) the following equiva-
lence: y> EX � �

�
P(X )XX >

� � 1
y � c2

` () EX � �
�
P(X )XX >

�
� 1

c2
`
yy> . This transforms

a constraint involving matrix inversion into one with ordering between PSD matrices. Then,
we remove the bound constraints0 � P(x) � 1, 8x 2 X by introducing the barrier function
� log(1 � x) � log(x). That is, instead of working with the objectiveEX � � [P(X )] directly, we
consider the following problem.

minP EX � � [P(X ) � � b(log(1 � P(X )) + log( P(X )))]
subject to EX � �

�
P(X )XX >

�
� 1

c2
`
yy> ; 8y 2 Y ` : (5)

Here,� b 2 (0; 1) is some small constant that controls how strong the barrier is. Intuitively, a smaller
� b will make problem(5) closer to the original problem. We now show that unlike the primal, the
dual problem is indeed �nite-dimensional. For each constraint ofy 2 Y ` , let the matrix� y � 0 be
its dual variable. Further, let� =

P
y2Y `

� y and� = (� y )y2Y `
. The corresponding Lagrangian is

L (� ; P) = EX � �
�
P(X ) � � b (log(1� P(X ))+log( P(X ))) � P(X )X > � X

�
+

1
c2

`

X

y2Y `

y> � y y:

The dual problem ismax� y � 0;8y2Y ` minP L (� ; P). Notice that minimization overP : X 7! [0; 1]
can be done via minimizingP(x) point-wise for eachx 2 X . To do this, we take the gradient with
respect to eachP(x) and set it to zero to get

1 +
� b

1 � P(x)
�

� b

P(x)
� x> � x = 0 : (6)

Solving this equation and de�ningq� (x) = x> � x � 1, we get

P� (x) =
1
2

�
� b

q� (x)
+

q
(2� b � q� (x))2 + 4 � bq� (x)

2q� (x)
: (7)

Note that if � b = 0 (no barrier), the above reduces to the “threshold” decision ruleP� (x) =
1
2 + j q� (x ) j

2q� (x ) , which gives0 whenq� (x) < 0 and1 whenq� (x) > 0.2 This is exactly the hard elliptical
threshold rule mentioned before, in which whether to query the label forx depends on whether it
falls inside (x> � x < 1) or outside (x> � x > 1) of the ellipsoid de�ned by the positive semide�nite
matrix � . A visualization of the decision ruleP� is given in Figure 2 in the Appendix.

Now, by plugging inP� (x), our dual problem becomesmax� y � 0;8y D(� ) := L (� ; P� ). This is a
�nite-dimensional optimization problem, and can be solved by projected gradient ascent (or projected
stochastic gradient ascent when we have only samples from� ). The gradient ofD (� ) is

r � y D(� ) = EX � �

��
1+

� b

1 � P� (x)
�

� b

P� (X )
� X > � X

�
r � y P� (X ) � P� (X )XX >

�
+

yy>

c2
`

=
yy>

c2
`

� EX � �
�
P� (X )XX > �

: (SinceP� (X ) solves Eq. (6))

The algorithm to solve the problem has been summarized in Algorithm 2, in which the gradient during
kth iteration is replaced by its unbiased estimatoryy >

c2
`

� P�̂ ( k ) (xk )xk x>
k . The adaptive learning rate

is chosen by following the discussion in chapter 4 of [21]. Optimizing the assignment of̂� y to each y
in line 10 ensures that the re-scaling step in line 11 increases the function value in an optimized way.
Finally, the re-scaling step is used to ensure that the output primal objective valueEX � � [P(X )] is
bounded well, which will be explained in more details in Appendix C.

2Whenq� (x) = 0 , P� (x) is undetermined from the dual.
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Algorithm 2 Projected Stochastic Gradient Ascent to Solve OPTIMIZEDESIGN

1: Input: Number of iterationsK ; number of samplesu; barrier weight� b 2 (0; 1)
2: Initialize �̂ (0)

y = 0 for eachy 2 Y `
3: for k = 0 ; 1; 2; : : : ; K � 1 do
4: Samplexk � �
5: Setgk;y = yy >

c2
`

� P�̂ ( k ) (xk )xk x>
k , whereP� is de�ned in Eq. (7)

6: Set�̂ (k+1)
y  �̂ (k )

y + � k gk;y for eachy 2 Y ` , where� k = 1q
2

P k
s =1

P
y 2Y `

kgs;y k2
2

7: Update�̂ (k+1)
y  � Sd

+
(�̂ (k+1)

y ) for eachy 2 Y ` , a projection to the set ofd � d PSD matrices
8: end for
9: Let �̂ y = 1

K

P K
k=1 �̂ (k )

y for eachy 2 Y ` and�̂ =
P

y2Y `
�̂ y

10: Update(�̂ y )y2Y `  argmax�
P

y2Y `
y> � y y, subject to

P
y2Y `

� y = �̂ ; � y � 0; 8y 2 Y ` :

11: Find s�  argmaxs2 [0;1] DE (s � �̂ ), whereDE empirically evaluatesD usingu i.i.d. samples

12: return e� = s� �
P

y2Y `
�̂ y

Let � � be an optimal solution forD (� ). Intuitively, as long as we run this algorithm with suf�ciently
large number of iterationsK and number of samplesu, we can guarantee thatD ( e� ) andD(� � ) are
close enough with high probability, which in turn guarantees that the primal constraints are violated
by only a tiny amount andEX � �

�
Pe� (X )

�
is close enough to the optimal value. Speci�cally, we can

prove the following theorem.
Theorem 4. Supposekxk2 � M for anyx 2 supp(� ) and� = EX � �

�
XX >

�
is invertible. Let

� � 2 argmax� y � 0;8y2Y `
D(� ) and� (�) = � max (�)

� min (�) be its condition number. Assumek� � kF > 0

and de�ne! = min � 2 Sd :k� kF =1 EX � �

h�
X > � X

� 2
i
, whereSd is the set ofd� d symmetric matrices.

Then, � � =
P

y2Y `
� �

y is unique. Further, for any� > 0 and � > 0, if it holds that � b �

O
� p

k� � kF � (�) M
�

�
p

(1 + � )=� and

K � O

 
jY` j

3� (�) 2k� � k8
F M 16 log(1=� )

! 2� 6
b

!

�
�

1 + �
�

� 2

; u � O

 
� (�) 2k� � k6

F M 16 log(1=� )
! 2� 6

b

!

�
�

1 + �
�

� 2

;

then, with probability at least1 � � , Algorithm 2 will outpute� that satis�es

• y> EX � �
�
Pe� (X )XX >

� � 1
y � (1 + � )c2

` ; 8y 2 Y ` .

• EX � �
�
Pe� (X )

�
� EX � �

h
eP(X )

i
+ 4

p
� b, where eP is the optimal solution to problem(4)

with barrier constraint repaced by0 � P(x) � 1 � � b; 8x 2 X .

The proof is in Appendix C. AlthougheP is not exactly the same as the optimal solution of the original
problem(4), when� b is suf�ciently small, they will be very close. Meanwhile, it should be noted that
Theorem 4 mainly reveals that with suf�ciently large number of iterations and number of samples,
Algorithm 2 can output suf�ciently good solution. In future work, we plan to examine how much this
bound can be improved via a tighter analysis.

Finally, notice that Algorithm 2 needs to maintainjY` j d2 = O(jZ ` j
2 d2) variables, which can be

large when we have a large setZ ` . Therefore, as an alternative, we also propose Algorithm 3 that
only needs to maintaind2 variables but requires more computational power in each iteration. The
details are given in Appendix C.

5 Empirical results

In this section we present a benchmark experiment validating the fundamental trade-offs that are
theoretically characterized in Theorem 1 and Theorem 2. We take inspiration from [24] to de�ne our
experimental protocol:
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• d = 2 , a two-dimensional problem.
• Z = [ e1; e2; (cos(! ); sin(! ))] for ! = 0 :3, wheree1; e2 are canonical vectors.

• � � = 2e1 andy = x> � � + � , where� � N (0; 1).

• The distribution � for streaming measurementsx t
i:i:d:� � is such that x t =

(cos(2I t �=N ); sin(2I t �=N )) whereI t 2 f 0; : : : ; N � 1g, P(I t = i ) / cos(2i�=N )2, andN = 30.

In this problem, the angle! is small enough that the item(cos(! ); sin(! )) is hard to discriminate
from the best iteme1. As argued in [24], an ef�cient sampling strategy for this problem instance
would be to pull arms in the direction of� e2 in order to reduce the uncertainty in the direction of
interest,e1 � (cos(! ); sin(! )) . However, the distribution� is de�ned such that it is more likely
to receive a vectorx t in the direction of� e1 rather than� e2. Thus, if one seeks a small label
complexity, thenP should be taken to reject measurements in the direction of� e1.

In the benchmark experiment, we compare the following three algorithms which all use Algorithm 1
as a meta-algorithm and just swap out the de�nition ofbP` . Naive Algorithm uses no selective
sampling so thatbP` (x) = 1 for all x; theOracle Algorithm usesbP` = P� whereP� is the ideal
solution to(2), andOur Algorithm uses the solution to(5) for bP` , where we take� b = 2 � 10� 5.
We swept over the values of� and plotted on the y-axis the amount of labeled data needed before
termination, as shown in Figure 1.

Figure 1: (left) For each value of� , we plot the average label complexity over 50 repeated
trials. (middle) Visualization ofP� (x) and � (x) v.s. x, wherex is indexed byI such that
x I = (cos(2I�=N ); sin(2I�=N )) . Here,P� is solved with� = 4 � 105 and distribution� is
not normalized. (right) A heat map ofP� (x) along with the setting of experimental protocol.

We observe in Figure 1 that the algorithms using non-naive selection rules require far less label
complexity than the naive algorithm for all� . This re�ects the intuition that selection strategies that
focus on requesting the more informative streaming measurements are much more ef�cient than
naively observing every streaming measurement. Meanwhile, the trade-off between label complexity
L and sample complexityU characterized in Theorem 1 and Theorem 2 is precisely illustrated in
Figure 1. Indeed, we see the number of labels queried by the two selective sampling algorithms
decrease as the number of unlabeled data seen in each round increases.

6 Conclusion

In this paper, we proposed a new approach for the important problem ofselective sampling for best
arm identi�cation. We provide a lower bound that quanti�es the trade-off between labeled samples
and stopping time and also presented an algorithm that nearly achieves the minimal label complexity
given a desired stopping time.

One of the main limitations of this work is that our approach depends on a well-speci�ed model
following stationary stochastic assumptions. In practice, dependencies over time and model mis-
match are common. Utilizing the proposed algorithm outside of our assumptions may lead to poor
performance and unexpected behavior with adverse consequences. While negative results justify
some of the most critical assumptions we make (e.g., allowing the streamx t to be arbitrary, rather
than iid, can lead to trivial algorithms, see Theorem 7 of [7]), exploring what theoretical guarantees
are possible under relaxed assumptions is an important topic of future work.
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A Selective Sampling Lower Bound

First, we review the standard argument for best-arm identi�cation lower bounds applied to linear
bandits. Fix� � 2 Rd and letz� = arg max z2Z hz; � � i . De�ne the setC = f � 2 Rd : 9z 2
Z s.t. h�; z � z� i � 0g as those� in which z� is note the best arm under� . We now recall the
transportation lemma of [17]. Under a� -PAC strategy for �nding the best arm for the bandit instance
(X ; Z ; � � ), let Tx denote the random variable which is the number of times armx is pulled. In
addition letN �;x denote the reward distribution of the armx of X , i.e. N �;x = N (x> �; 1). Then for
any� -PAC algorithm

log(1=2:4� ) � min
� 2C

X

x 2X

E[Tx ]KL(N � � ;x ; N �;x )

= min
� 2C

X

x 2X

E[Tx ] 1
2 k� � � � k2

xx >

= min
� 2C

1
2 k� � � � k2

(
P

x 2X E[Tx ] xx > )

� min
z2Zn z�

1
2 k� � � � z (� )k2

(
P

x 2X E[Tx ] xx > )

where

� z (" ) = � � �
((z� � z)> � � + ")(

P
x 2X E[Tx ] xx > ) � 1(z� � z)>

(z� � z)> (
P

x 2X E[Tx ] xx > ) � 1(z� � z)

for some small� . This is a valid choice since for allz 2 Z n z� we have(z� � z)> � z (" ) = � " < 0
and thus� z (" ) 2 C. A straightforward calculation shows that

k� � � � z (� )k2
(
P

x 2X E[Tx ] xx > ) =
(hz� � z; � � i + " )2

kz� � zk2
(
P

x 2X E[Tx ] xx > ) � 1

so that after rearranging and lettering� ! 0 we have that any� -PAC algorithm satis�es

max
z2Zn z�

2kz� � zk2
(
P

x 2X E[Tx ] xx > ) � 1

hz� � z; � � i 2 log(1=2:4� ) � 1: (8)

This series of steps will be applied for each bullet point of the theorem.

A.1 Proof of Theorem 1, part I

We use the consequence of Lemma 19 of [17]. Consider a� -PAC algorithm that setsP(x) = 1 for all
x 2 X for all time until it exits at timeU after this many unlabelled examples have been observed. If
Tx denotes the number of timesx 2 X was observed before stopping timeU, then by Wald's identity
we have that

E[Tx ] = E

"
UX

t =1

1f x t = xg

#

= � (x)E[U]:

Plugging this into Equation 8 and rearranging we conclude that

E[U] � max
z2Zn z�

2kz� � zk2
(
P

x 2X � (x ) xx > ) � 1

hz� � z; � � i 2 log(1=2:4� ) =: � (� ) log(1=2:4� )

which concludes the proof of the �rst bullet.

A.2 Proof of Theorem 1, part II

By de�nition, the (random) number of times we measurex is

L x =
UX

s=1

1f xs = x; Qs(x) = 1 g
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and we want to show thatE[L x ] = � (x)E
hP U

` =1 P` (x)
i
. To do so, we de�ne

M t =
tX

s=1

(1f xs = x; Qs(x) = 1 g � � (x)Ps(x))

It is easy to check thatPt +1 2 F t := f (xs; ys; Qs)gt
s=1 and that

E[M t +1 jF t ] = M t + E[1f xs = x; Qs(x) = 1 g � � (x)Ps(x)jF t ] = M t

Applying Doob's equalityE[M U ] = E[M 0] = 0 . Consequence:

E[L x ] = E

"
UX

s=1

1f xs = x; Qs(x) = 1 g

#

= � (v)E

"
UX

s=1

Ps(x)

#

De�ne � (x) :=
E[

P U
s =1 Ps (x )]
E[U] and note that each� x 2 [0; 1]. ThenE[L x ] = E[U]� (x)� (x) so

applying equation (18) of [17] again, we have

log(1=2:4� ) � min
� 2C

X

x 2X

E[L x ]KL(N � � ;x ; N �;x )

= min
� 2C

X

x 2X

E[L x ] k� � � � k2
xx > =2

= min
z2Zn z�

h� � ; z� � zi 2

2kz � z� k2
(
P

x 2X E[L x ]xx > ) � 1

= min
z2Zn z�

h� � ; z� � zi 2

2kz � z� k2
(
P

x 2X � (x ) � (x )xx > ) � 1

E[U]:

Rearranging, and applying the identityEX � � [� (X )XX > ] =
P

x 2X � (x)� (x)xx > , the above
implies that

E[U] � max
z2Zn z�

2kz � z� k2
EX � � [� (X )XX > ]� 1

h� � ; z� � zi 2 log(1=2:4� ):

Noting that the total expected number of labels is equal to

E[L ] =
X

x 2X

E[L x ] =
X

x 2X

E[U]� (x)� (x) = E[U] EX � � [� (X )]

we conclude that

E[L ] � min
� :X ! [0;1]

E[U] EX � � [� (X )]

subject to E[U] � max
z2Znf z� g

2kz � z� k2
EX � � [� (X )XX > ]� 1

h� � ; z� � zi 2 log(1=2:4� ):

The second bullet point result follows by denoting� asP and applying Proposition 2.

B Selective Sampling Algorithm for Known Distribution �

B.1 Proof of Theorem 2, upper bound

At each round̀ we assume an implementation such thatbP` ; b� bP`
 OPTIMIZEDESIGN(Z ` ; 2� ` ; � )

returns the solution of Equation 3 with� = 2 � ` , essentially. More explicitly, let� ` := 2 � ` , B < 1
such thatmaxx 2X jhx; � � ij � B , and� < 1 such thatE[(ys � h � � ; xs i )2jxs] � � 2. If

� �;` := 16(B 2 + � 2) log(2`2jZj 2=� )

then bP` = P` where

P` := argmin
P :X ! [0;1]

EX � � [P(X )] subject to max
z;z 02Z `

kz � z0k2
EX � � [�P (X )XX > ]� 1

� 2
`

� �;` � 1
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andb� bP`
:= EX � � [P` (X )XX > ]

We �rst provide an intermediate lemma on the correctness of Algorithm 1 that relies on the feasibility
of P` which we will show shortly.

Lemma 1. With probability at least1 � � we have for all stages̀2 N such thatP` is feasible, that
z� 2 Z ` andmaxz2Z ` hz� � z; � � i � 4� ` .

Proof. De�ne the eventE as

E :=
1\

` =1

\

z;z 02Z `

n
jhz � z0; b� ` � � � ij � � `

o

By Lemma 2, we know thatP(E) � 1 � � . Then, the rest of the proof is the same as the one in [11],
but we include it here for completeness. Assume thatE holds. Then for anyz0 2 Z `

hz0 � z� ; b� ` i = hz0 � z� ; b� ` � � � i + hz0 � z� ; � � i

= hz0 � z� ; b� ` � � � i
� � `

so thatz� would survive to roundZ ` +1 . And for anyz 2 Z ` such thathz� � z; � � i > 2� ` , we have

max
z02Z `

hz0 � z; b� ` i � h z� � z; b� ` i

= hz� � z; b� ` � � � i + hz� � z; � � i
> � � ` + 2 � `

= � `

which implies thisz would be kicked out. Note that this implies thatmaxz2Z ` +1 hz� � z; � � i �
2� ` = 4 � ` +1 .

We can now prove Theorem 2. AfterL := dlog2( 4
� )e roundsZ ` = f z� g by the above lemma. Thus,

the total number of labels requested afterL rounds is equal toL :=
P L

` =1

P `�
t =( ` � 1) � +1 Q` (x t ). By

Freedman's inequality (c.f., Theorem 1 of [4]) we have that

LX

` =1

`�X

t =( ` � 1) � +1

Q` (x t ) � 2
LX

` =1

� EX � � [P` (X )jZ ` ] + log(1=� )

We can now bound the expected sample complexity of this algorithm.

LX

` =1

� EX � � [P` (X )jZ ` ]

=
LX

` =1

"

min
P :X ! [0;1]

� EX � � [P(X )] subject to max
z;z 02Z `

kz � z0k2
EX � � [�P (X )XX > ]� 1

� 2
`

� �;` � 1

#

:

Using Lemma 3, we have

max
z;z 02Z `

kz � z0k2
EX � � [�P (X )XX > ]� 1

� 2
`

� �;` � � �;L max
z;z 02Z `

kz � z0k2
EX � � [�P (X )XX > ]� 1

� 2
`

� 64� �;L max
z2Zn z�

kz � z� k2
EX � � [�P (X )XX > ]� 1

hz � z� ; � � i 2

=: max
z2Zn z�

kz � z� k2
EX � � [�P (X )XX > ]� 1

hz � z� ; � � i 2 � �

Note that the last line also describes a condition for which aP` is feasible. Indeed, at round`, a
suf�cient condition for a feasibleP` (i.e., the RHS� 1) is if � exceeds� (� )� � with � � := 1024(B 2 +
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� 2) log(2L 2jZj 2=� ) and� (� ) = max z2Zn z�

kz� z� k2
EX � � [XX > ] � 1

hz� z� ;� � i 2 , which holds by assumption in the
theorem.

Plugging this constraint back into above we have
LX

` =1

� EX � � [P` (X )jZ ` ]

�
LX

` =1

"

min
P :X ! [0;1]

� EX � � [P(X )] subject to max
z2Zn z�

kz � z� k2
EX � � [�P (X )XX > ]� 1

hz � z� ; � � i 2 � � � 1

#

� L min
� 24 X

� (� )� � subject to k�=� k1 � (� )� � � �

where the last line follows by applying the reparameterization of Proposition 2.

B.1.1 High-probability Events

Lemma 2. We haveP(E) � 1 � � .

Proof. For anyV � Z andz; z0 2 V de�ne

Ez;z 0;` (V) = fjhz � z0; b� ` (V) � � � ij � � ` g

whereb� ` (V) is the estimator that would be constructed by the algorithm at stage` with Z ` = V. For
�xed V � Z and` 2 N we apply Proposition 1 so that with probability at least1 � �

` 2 jZj 2 we have
that for anyz; z0 2 V

jhz � z0; b� ` (V) � � � ij � k z � z0kEX � � [�P ` (X )XX > ]� 1

p
16(B 2 + � 2) log(2`2jZj 2=� )

� � `

Noting thatE :=
T 1

` =1

T
z;z 02Z `

Ez;z 0;` (Z ` ) we have

P

0

@
1[

` =1

[

z;z 02Z `

fE c
z;z 0;` (Z ` )g

1

A �
1X

` =1

P

0

@
[

z;z 02Z `

fE c
z;z 0;` (Z ` )g

1

A

=
1X

` =1

X

V�Z

P

0

@
[

z;z 02V

fE c
z;z 0;` (V)g; Z ` = V

1

A

=
1X

` =1

X

V�Z

P

0

@
[

z;z 02V

fE c
z;z 0;` (V)g

1

A P(Z ` = V)

�
1X

` =1

X

V�Z

�
` 2 jZj 2

�
jVj
2

�
P(Z ` = V)

�
1X

` =1

X

V�Z

�
2` 2 P(Z ` = V) � �

B.2 Technical Lemmas

The following de�nition characterizes the RIPS estimator we used in Algorithm 1.
De�nition 2. LetX 1; : : : ; X n be i.i.d. random variables with mean�x and variance� 2. Let� 2 (0; 1).
We say thatb� (X 1; : : : ; X n ) is a � -robust estimatorif there exist universal constantsc1; c0 > 0 such
that if n � c1 log(1=� ), then with probability at least1 � �

jb� (f X t gn
t =1 ) � �xj � c0

r
� 2 log(1=� )

n
:
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Examples of� -robust estimators include the median-of-means estimator and Catoni's estimator [18].

This work employs the use of the Catoni estimator which satis�esjb� (f X t gn
t =1 ) � �xj �

q
2� 2 log(1 =� )
n � 2 log(1 =� )

for n > 2 log(1=� ) which leads to an optimal leading constant asn ! 1 . See [5] or [18] for more
details.
Proposition 1. Let x1; : : : ; xn be drawn IID from a distribution� . Assume thatjh�; x s ij � B
and E[jh�; x s i � ys j2] � � 2. Let P : X ! [0; 1] be arbitrary. LetQ(xs) � Bernoulli(P(xs))
independently for alls 2 [n]. For a given �nite setV � Rd de�ne for anyv 2 V

wv = Catoni( fhv; EX � � [P(X )XX > ]� 1Q(xs)xsys ign
s=1 ):

If b� = arg min � maxv
jwv �h �;v ij

kvkEX � � [P ( X ) XX > ] � 1
andn � 4 log(2jVj=� ), then with probability at least

1 � � , it holds that

jhv; b� � � ij � k vkEX � � [nP (X )XX > ]� 1

p
16(B 2 + � 2) log(2jVj=� )

Proof. Inspired by [5], we note that

max
v2V

jhb�; v i � h �; v ij
kvkEX � � [nP (X )XX > ]� 1

= max
v2V

jhb�; v i � wv + wv � h �; v ij
kvkEX � � [nP (X )XX > ]� 1

� max
v2V

jhb�; v i � wv j
kvkEX � � [nP (X )XX > ]� 1

+ max
v2V

jwv � h �; v ij
kvkEX � � [nP (X )XX > ]� 1

= min
�

max
v2V

jh�; v i � wv j
kvkEX � � [nP (X )XX > ]� 1

+ max
v2V

jwv � h �; v ij
kvkEX � � [nP (X )XX > ]� 1

� 2 max
v2V

jh�; v i � wv j
kvkEX � � [nP (X )XX > ]� 1

So it suf�ces to show that eachjh�; v i � wv j is small. We begin by �xing somev 2 V and bounding
the variance ofv> EX � � [P(X )XX > ]� 1Q(xs)xsys for anys � n which is necessary to use the
robust estimator. For readability purposes, we shortenEx s � �;Q (x s ) � P (x s ) asEx s ;Q in the rest of this
proof. Note that

Varx s � �;Q (x s ) � P (x s ) (v
> EX � � [P(X )XX > ]� 1Q(xs)xsys)

= Ex s ;Q [(v> EX � � [P(X )XX > ]� 1Q(xs)xsys)2]

� Ex s ;Q [v> EX � � [P(X )XX > ]� 1Q(xs)xsys]2

which means we can drop the second term to bound the variance by

Ex s ;Q [
�
(v> EX � � [P(X )XX > ]� 1Q(xs)xsys

� 2
]

= Ex s ;Q [
�
v> EX � � [P(X )XX > ]� 1Q(xs)xs(x>

s � + � s)
� 2

]

= Ex s ;Q [
�
v> EX � � [P(X )XX > ]� 1Q(xs)xs(x>

s � )
� 2

]

+ Ex s ;Q [
�
v> EX � � [P(X )XX > ]� 1Q(xs)xs

� 2
� 2

t ]

� B 2Ex s ;Q [
�
v> EX � � [P(X )XX > ]� 1Q(xs)xs

� 2
]

+ � 2Ex s ;Q [
�
v> EX � � [P(X )XX > ]� 1Q(xs)xs

� 2
]

= Ex s � �
�
(B 2 + � 2)EQ(x s ) � P (x s ) [v

> EX � � [P(X )XX > ]� 1Q(xs)xsx>
s Q(xs)EX � � [P(X )XX > ]� 1v]

�

(i)
= Ex s � �

�
(B 2 + � 2)EQ(x s ) � P (x s ) [v

> EX � � [P(X )XX > ]� 1Q(xs)xsx>
s EX � � [P(X )XX > ]� 1v]

�

� Ex s � �
�
(B 2 + � 2)v> EX � � [P(X )XX > ]� 1P(xs)xsx>

s EX � � [P(X )XX > ]� 1v]
�

;

where we used thatQ(xs)2 = Q(xs) in equality (i) above. Thus, we have

Var(v> EX � � [P(X )XX > ]� 1Q(xs)xsys)

� (B 2 + � 2)v> (EX � � [P(X )XX > ]� 1Ex s � � [P(xs)xsx>
s ](EX � � [P(X )XX > ]� 1)v

=( B 2 + � 2)kvk2
(EX � � [P (X )XX > ]� 1
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By using the property of Catoni estimator stated in De�nition 2, we havec0 =
p

2 and

jh� � ; vi � wv j

= jCatoni( fhv; EX � � [P(X )XX > ]� 1Q(xs)xsys ign
s=1 ) � E[hv; EX � � [P(X )XX > ]� 1Q(xs)xsys i ]j

�
p

2

s

(Var(hv; EX � � [P(X )XX > ]� 1Q(xs)xsys i ))
log( 2

� )
n=2

(with probability at least1 � � if n � 4 log(2=� ))

�k vk(EX � � [P (X )XX > ]� 1

s
4(B 2 + � 2) log( 2

� )
n

= kvkEX � � [nP (X )XX > ]� 1

p
4(B 2 + � 2) log(2=� ):

Finally, the proof is complete by taking union bounding over allv 2 V .

Lemma 3. Holds

max
z;z 02Z `

kz � z0k2
EX � � [�P (X )XX > ]� 1

� 2
`

� 64 max
z2Zn z�

kz � z� k2
EX � � [�P (X )XX > ]� 1

hz � z� ; � � i 2

Proof. Let S` = f z 2 Z : hz� � z; � � i � 4� ` g. We have

max
z;z 02Z `

kz � z0k2
EX � � [�P (X )XX > ]� 1

� 2
`

� max
z;z 02S `

kz � z0k2
EX � � [�P (X )XX > ]� 1

� 2
`

= 16 max
z;z 02S `

kz � z0k2
EX � � [�P (X )XX > ]� 1

(4� ` )2

� 64 max
z2S `

kz � z� k2
EX � � [�P (X )XX > ]� 1

(4� ` )2

= 64 max
z2S ` nz�

kz � z� k2
EX � � [�P (X )XX > ]� 1

maxf (4� ` )2; hz � z� ; � � i 2g

� 64 max
z2Zn z�

kz � z� k2
EX � � [�P (X )XX > ]� 1

hz � z� ; � � i 2 :

B.2.1 Reparameterization

Proposition 2. Fix � 2 4 X and any� 2 4 X . De�ne k�=� k1 = supx 2X � (x)=� (x) and� (� ) =

maxz6= z�

kz� z� k2
EX � � [XX > ] � 1

hz� � z;� � i 2 . For anyt; � 2 R+ the following optimization problems achieve the
same value

• min
P :X ! [0;1]

t EX � � [P(X )] subject tomaxz6= z�

kz� z� k2
EX � � [P ( X ) XX > ] � 1

hz� � z;� � i 2 � � t

• min
� 24 X

� (� )� subject to k�=� k1 � (� )� � t

Let us �rst prove a simple lemma.

Lemma 4. LetP denote the set of all functionsP : X ! [0; 1]. And for any� 2 4 X with support
X let P0 = f �� x =� x : � 2 4 X ; � � 0 : �� x =� x 2 [0; 1]g. ThenP = P0.

Proof. Fix anyP 2 P . If � x = Px � x =kP � � k1 and� = kP � � k1 then��=� 2 P 0 and is equal to
P. This impliesP � P 0.

For the other direction, �x any� 2 4 X and� � 0 such that�� x =� x 2 [0; 1] for all x. If P = ��=�
thenP 2 P which impliesP0 � P and concludes the proof.
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Proof of Proposition 2.Using the above lemma we have that

min
P :X ! [0;1]

t EX � � [P(X )] subject to max
z6= z�

kz � z� k2
EX � � [P (X )XX > ]� 1

hz� � z; � � i 2 � � t

is equivalent to

min
� � 0;� 24 X

t EX � � [�� (X )=� (X )] subject to max
z6= z�

kz � z� k2
EX � � [�� (X )=� (X )XX > ]� 1

hz� � z; � � i 2 � � t

�� (x)=� (x) � 1 8x 2 X

which is equal to, after simplifying,

min
� � 0;� 24 X

t � subject to max
z6= z�

kz � z� k2
EX � � [XX > ]� 1

hz� � z; � � i 2 � � t�

�� (x)=� (x) � 1 8x 2 X

which is equal to

min
u� 0;� 24 X

u subject to � (� )� � u

k�=� k1 �
t
u

:

Note, there exists a feasible(�; u ) precisely when there exists a� 2 4 X such thatk�=� k1 � (� ) � t ,
in which case the optimization problem is equal to

min
� 24 X

� (� )� subject to k�=� k1 � (� )� � t

C Analysis of the Optimization Problem

C.1 Proof of Theorem 4

For simplicity, we will use� instead of� b to denote the number that controls the intensity of barrier
function.

The proof relies on analyzing another functionD : Rd� d
� 0 7! R. For simplicity, �rst, we de�ne

h� (x) = P� (x) � � (log(1 � P� (x)) + log( P� (x))) � P� (x)x> � x: (9)

Recall that our dual objective isD(� ) = EX � � [h� (X )] + 1
c2

`

P
y2Y `

y> � y y. Since the �rst term

in EX � � [h� (X )] only depends on� =
P

y2Y `
� y , we can consider the following optimization

problem.
f (�) = max � y

P
y2Y `

y> � y y
subject to

P
y2Y `

� y = �
� y � 0; 8y 2 Y ` :

(10)

Then, the alternative dual objectiveD(�) is de�ned asD(�) = EX � � [h� (X )] + 1
c2

`
f (�) . We

can immediately see that maximizingD(�) is equivalent to maximizingD(�). In particular, let
� � 2 argmax� � 0 D(�) and

�
� �

y

�
y2Y `

be the set of PSD matrices that solve problem(10) and

evaluatef (� � ). We can see that
�
� �

y

�
y2Y `

also maximizesD(�). Conversely, for� � =
�
� �

y

�
y2Y `

2

argmax� y � 0;8y D(� ), we also have
P

y2Y `
� �

y 2 argmax� � 0 D(�) .

Further, we also de�ne their empirical versionDE andD E with extra i.i.d. samplesx1; : : : ; xu as

DE (� ) =
1
u

uX

i =1

h� (x i ) +
1
c2

`

X

y2Y `

y> � y y and D E (�) =
1
u

uX

i =1

h� (x i ) +
1
c2

`
f (�) : (11)
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Recall that the problem Algorithm 2 tries to solve is

minP EX � � [P(X ) � � (log(1 � P(X )) + log( P(X )))]
subject to EX � �

�
P(X )XX >

�
� 1

c2
`
yy> ; 8y 2 Y ` : (12)

We will restate a more precise version of Theorem 4 and then prove it.

Theorem 5. Supposekxk2 � M for anyx 2 supp(� ) and� = EX � �
�
XX >

�
is invertible. Let

� � 2 argmax� y � 0;8y D(� ) and� (�) = � max (�)
� min (�) be condition number. Assumek� � kF > 0 and

de�ne ! = min � 2 Sd :k� kF =1 EX � �

h�
X > � X

� 2
i
, whereSd is the set ofd � d symmetric matrices.

Let jY` j C2
` = 1

c2
`

P
y2Y `

kyk4
2.

Then,� � =
P

y2Y `
� �

y is unique. Further, for any� > 0 and� > 0, suppose it holds that

� � min

( r
3� (�) k� � kF M 2

8
�

1 + �
�

;
4
9

k� � k2
F M 4;

1

2
p

3

)

K �
288� (�) 2 jY` j

3 k� � k4
F M 4(M 4 + C2

` ) �
�
2k� � kF M 2 + 1

� 4
log(6=� )

! 2� 6 �
�

1 + �
�

� 2

u �
576� (�) 2 k� � k2

F M 8 �
�
2k� � kF M 2 + 1

� 4
log(6=� )

! 2� 6 �
�

1 + �
�

� 2

:

Then, with probability at least1 � � , Algorithm 2 will outpute� that satis�es

• y> EX � �
�
Pe� (X )XX >

� � 1
y � (1 + � )c2

` ; 8y 2 Y ` .

• EX � �
�
Pe� (X )

�
� EX � �

h
eP(X )

i
+ 4

p
� , whereeP is the optimal solution to problem(20).

Proof. First Bullet Point. Fix some� > 0. Let �̂ and correspondinĝ� =
P

y2Y `
�̂ y be the

parameters obtained by Algorithm 2 just before the re-scaling step, which means that at line 10 of
Algorithm 2, the assignment of̂� y to eachy 2 Y ` has been optimized by solving problem(10). That
is, we haveD(�̂ ) = D(�̂) andDE (�̂ ) = D E (�̂) . Let e� ande� be the ones after the re-scaling step.
Then, by Theorem 3.13 of [21], with probability at least1 � �

3 , it holds that

D(� � ) � D (�̂) = D(� � ) � D (�̂ ) �
Reg(K ) + 2

p
2K log(6=� )

K
;

whereReg(K ) is the regret of running projected stochastic gradient ascent forK steps with
� k speci�ed in Algorithm 2. Meanwhile, by Theorem 4.14 of [21] also, we haveReg(K ) =
p

2B 2
q P K

k=1

P
y2Y `

kgk;y k2
2, whereB =

p
jY` j k� � kF bound the norm of� � =

�
� �

y

�
y2Y `

.

Since gk;y = yy >

c2
`

� P�̂ ( k ) (xk )xk x>
k , we can easily get

P
y2Y `

kgk;y k2
2 � 2 jY` j M 4 +

2
c2

`

P
y2Y `

kyk4
2 = 2 jY` j M 4 + 2 jY` j C2

` . Thus, we have

Reg(K ) � 2 jY` j k� � k2
F

q
jY` j M 4 + jY` j C2

` �
p

K := CReg

p
K (13)

=) D(� � ) � D (�̂) �
CReg + 2

p
2 log(6=� )

p
K

; (14)

We now consider the effect of usingu i.i.d. samples in the re-scaling step. First, since re-scaling
always increases the function value, we must haveDE (�̂ ) � DE ( e� ). Meanwhile, sinceDE (�̂ ) =
D E (�̂) , by Lemma 10, we haveDE (�̂ ) = D E (�̂) , which together impliesD E (�̂) � D E (e�) .
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By Lemma 5, we know that� � is unique and as long as� � 1
2

p
3
, D (�) is G-strongly concave with

respect tò 2 norm overS = f � � 0 : k� kF � 2k� � kF g, whereG is de�ned in Eq.(21). Thus, by
Lemma 11, ifK is large enough such that

D(� � ) � D (�̂) �
CReg + 2

p
2 log(6=� )

p
K

�
G k� � kF

2
;

then





 �̂ � � �








F
� k � � kF , which implies






 �̂








F
� 2k� � kF . That is,�̂ 2 S . Then, under this

condition, by using Lemma 8, when� � 4
9 k� � kF M 4 and

u �

0

@
6� (�) k� � kF M 4

�
2 +

p
2 log(6=� )

�

G� 2 �
1 + �

�

1

A

2

; (15)

for e� after re-scaling, with probability at least1 � �
3 , it holds simultaneously that

�
�
�D E (�̂) � D (�̂)

�
�
� �

G� 2

3M 2� (�)
�

�
1 + �

and
�
�
�D E (e�) � D (e�)

�
�
� �

G� 2

3M 2� (�)
�

�
1 + �

(16)

=) D(� � ) � D (e�) � D (� � ) � D (�̂) + D(�̂) � D (e�)

� D (� � ) � D (�̂) + D(�̂) � D E (�̂) + D E (e�) � D (e�)
(SinceD E (�̂) � D E (e�) )

�
CReg + 2

p
2 log(6=� )

p
K

+
2G� 2

3M 2� (�)
�

�
1 + �

: (By Eq. (14) and (16))

Sincee� is a smaller re-scaling of̂� , we havee� 2 S, which impliesG
2






 � � � e�








F
� D (� � ) � D (e�)

by property of strongly concave function [3]. Therefore, by Lemma 12, to guarantee an at most�
multiplicative constraint violation, it is suf�cient to chooseK such that

G
2






 � � � e�








F
� D (� � ) � D (e�)

�
CReg + 2

p
2 log(6=� )

p
K

+
2G� 2

3M 2� (�)
�

�
1 + �

� min
�

4G� 2

3M 2� (�)
�

�
1 + �

;
G k� � kF

2

�

=
4G� 2

3M 2� (�)
�

�
1 + �

: (If � �
q

3� (�) k� � kF M 2

8 � 1+ �
� )

An algebraic rearrangement gives us

K �

0

@
3� (�) M 2

�
CReg + 2

p
2 log(6=� )

�

2G� 2 �
1 + �

�

1

A

2

: (17)

Second Bullet Point.We then prove the upper bound for primal objective valueEX � �
�
Pe� (X )

�
,

which explains the reason why an extra re-scaling step is needed. De�neg(s) = DE (s � e� ).
By construction, we know thatg(s) is maximized ats = 1 becausee� = s� � �̂ , wheres� =
argmaxs2 [0;1] DE (s � �̂ ). Therefore, we haveg0(1) � 0, which in turn gives us

g0(1) =
1
c2

`

X

y2Y `

y> e� y y �
1
u

uX

i =1

Pe� (x i )x>
i

e� x i � 0:

By the concentration inequality in Lemma 8, we know that when

u �

0

@
2k� � kF M 2

�
k� � kF M 2 + �

p
2 log(6=� )

�

� 3=2

1

A

2

; (18)
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with probability at least1 � �
3 , it holds that

�
�
�
�
�
EX � �

�
P� (X )X > � X

�
�

1
u

uX

i =1

P� (x i )x>
i � x i

�
�
�
�
�

�
p

�

=)
1
c2

`

X

y2Y `

y> e� y y � EX � �

h
Pe� (X )X > e� X

i
+

p
� � 0: (19)

Now, let eP be the optimal solution of problem(20)andP̂ be the optimal solution of the same problem
with bound constraint� � P(x) � 1 � � .

minP EX � � [P(X )]
subject to y> EX � �

�
P(X )XX >

� � 1
y � c2

` ; 8y 2 Y ` ;
0 � P(x) � 1 � �; 8x 2 X :

(20)

Then, we can notice that
EX � �

�
Pe� (X )

�

� EX � �
�
Pe� (X ) � � (log(1 � Pe� (X )) + log( Pe� (X )))

�

� EX � �
�
Pe� (X ) � � (log(1 � Pe� (X )) + log( Pe� (X )))

�

+
1
c2

`

X

y2Y `

y> e� y y � EX � �

h
Pe� (X )X > e� X

i
+

p
� (By Eq. (19))

= inf
P

L (P; e� ) +
p

� (By de�nition of Lagrangian function and how we solve forP� )

� max
� y � 0;8y2Y `

inf
P

L (P; � ) +
p

�

= EX � � [P� � (X ) � � (log(1 � P� � (X )) + log( P� � (X )))] +
p

�

� EX � �

h
P̂(X ) � � log(1 � P̂ (X ))

i
� � log

�
P̂ (X )

�
+

p
�

(SinceP̂ is feasible to problem (12))

� EX � �

h
P̂(X )

i
+ 3

p
�; (Since� a log(a) �

p
a for a 2 (0; 1))

� EX � �

h
eP(X )

i
+ 4

p
�: (SinceP̂ (x) can have at most� more contribution thaneP)

Therefore, in summary, SupposeK andu satisfy conditions speci�ed in Eq.(17), (15) and(18)

and� � min
� q

3� (�) k� � kF M 2

8 � 1+ �
� ; 4

9 k� � k2
F M 4; 1

2
p

3

�
, whereCReg andG are de�ned in Eq.

(13) and(21), respectively. Then. by applying a simple union bound, with probability at least
1 � � , the output of Algorithm 2e� satis�esy> EX � �

�
P(X )XX >

� � 1
y � (1 + � )c2

` ; 8y 2 Y ` and

EX � �
�
Pe� (X )

�
� EX � �

h
eP(X )

i
+ 4

p
� .

C.2 Relevant Lemmas

C.2.1 Strong Concavity ofD (�)

Lemma 5. As long as� � 1
2

p
3
, D (�) is G-strongly concave with respect to`2-norm on the bounded

regionS = f � � 0 : k� kF � 2k� � kF g with coef�cient

G =
�

2 (2k� � kF M 2 + 1) 2 � min
� 2 Sd :k� kF =1

EX � �

h�
X > � X

� 2
i

: (21)

Because of this, as a corollary,� � will be unique.

Proof. By Lemma 6, sincef (�) is concave in� , it is suf�cient to prove thatEX � � [h� (X )] is
G-strongly concave onS, whereh� (x) is de�ned in Eq. (9). Then, we have

�r 2
� EX � � [h� (X )] = EX � �

�
dP�

dq�
(X )vec

�
XX > �

vec
�
XX > � >

�
:
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Sincekxk2 � M , for any� 2 S, we haveq� (x) = x> � x � 1 � 2k� � kF M 2 + 1 . By Lemma, 14,

we know that if12� 2 �
�
2k� � kF M 2 + 1

� 2
, which can be done by choosing� � 1

2
p

3
, we have

dP �
dq�

(x) � �
2(2k� � kF M 2 +1 )2 for anyx 2 X and� 2 S. Therefore, we have

�r 2
� EX � � [h� (X )] � 
 � EX � �

h
vec

�
XX > �

vec
�
XX > � >

i

Now, let S be the set of alld � d symmetric matrices. It is obvious thatS is a subspace of the
vector space of alld � d matrices andS � S. Thus, by applying Lemma 7, we can conclude that
EX � � [h� (X )] is G-strongly concave onS with respect tò 2 norm and

G =
�

2 (2k� � kF M 2 + 1) 2 � min
� 2 Sd :k� kF =1

vec(�) > EX � �

h
vec

�
XX > �

vec
�
XX > � >

i
vec(�)

=
�

2 (2k� � kF M 2 + 1) 2 � min
� 2 Sd :k� kF =1

EX � �

h�
X > � X

� 2
i

:

Thus the proof is complete.

Lemma 6. f (�) de�ned in Eq.(10) is concave in� .

Proof. To show its concavity, consider� (1) � 0, � (2) � 0 and some
 2 (0; 1). Let (� ( i )
y )y2Y ` be

the optimal solution obtained by evaluatingf (� ( i ) ) for i 2 f 1; 2g. Then, we can notice that


f (� (1) ) + (1 � 
 )f (� (2) ) = 

X

y2Y `

y> � (1)
y y + (1 � 
 )

X

y2Y `

y> � (2)
y y

=
X

y2Y `

y> (
 � (1)
y + (1 � 
 )� (2)

y )y

� f (
 � (1) + (1 � 
 )� (2) ):

The last inequality above holds because
P

y2Y `
� ( i )

y = � ( i ) for i 2 f 1; 2g and thus
P

y2Y `

�

 � (1)

y + (1 � 
 )� (2)
y

�
= 
 � (1) +(1 � 
 )� (2) , which means that(
 � (1)

y +(1 � 
 )� (2)
y )y2Y `

is a feasible solution for problem(10)with parameter
 � (1) +(1 � 
 )� (2) . Therefore, we can conclude
thatf (�) is concave in� .

Lemma 7. Let f : Rd 7! R be a convex and twice differentiable function inRd. If for some subspace
S � Rd, we haveminw2 S:kwk2 =1 w> r 2f (x)w � � > 0, 8x 2 S, thenf is � -strongly convex with
respect tò 2-norm onS.

Proof. SupposeS has dimensionm and letv1; : : : ; vm be a set of orthonormal basis that spanS.
Then, for eachx 2 S, there exists uniquez 2 Rm such thatx = V z, whereV = [ v1 : : : vm ].
That is, there is one-to-one correspondence betweenS andRm .

Now, we de�neg : Rm 7! R asg(z) = f (V z). It is easy to computer 2g(z) = V > r 2f (V z)V .
Then, notice that for anyw0 2 Rm such thatkw0k2 = 1 , we haveV w0 2 S and kV w0k2 =p

w0>V > V w0 =
p

w0>w0 = 1 . Thus, we have
min

w 02 Rm :kw 0k2 =1
w0> r 2g(z)w0 = min

w 02 Rm :kw 0k2 =1
w0>V > r 2f (V z)V w0

= min
w2 S:kwk2 =1

w> r 2f (V z)w � �:

Therefore,g is � -strongly convex with respect tò2 norm. Then, for anyx1; x2 2 S, there exists
uniquez1; z2 2 Rm such thatx1 = V z1 andx2 = V z2. Notice thatkz1 � z2k2 = kx1 � x2k2 since
V preserves the norm. Further, by de�nition of strong convexity, for any� 2 [0; 1], we have

g(�z 1 + (1 � � )z2) +
�
2

� (1 � � ) kz1 � z2k2
2 � �g (z1) + (1 � � )g(z2)

=) f (�V z 1 + (1 � � )V z2) +
�
2

� (1 � � ) kx1 � x2k2
2 � �f (V z1) + (1 � � )f (V z2)

=) f (�x 1 + (1 � � )x2) +
�
2

� (1 � � ) kx1 � x2k2
2 � �f (x1) + (1 � � )f (x2):

Thus,f is also� -strongly convex with respect tò2 norm onS.
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C.2.2 Concentration Inequalities

Lemma 8. Letx1; : : : ; xu � � be i.i.d. samples. If





 �̂








F
� 2k� � kF , kxk2 � M for anyx 2 X and

� � 4
9 k� � k2

F M 4, then with probability at least1� 2�
3 , it holds for any� 2 � =

n
s � �̂ : s 2 [0; 1]

o

simultaneously that

�
�
�
�
�
EX � � [h� (X )] �

1
u

uX

i =1

h� (x i )

�
�
�
�
�

�
2k� � kF M 2

�
2 +

p
2 log(6=� )

�

p
u

�
�
�
�
�
EX � �

�
P� (X )X > � X

�
�

1
u

uX

i =1

P� (x i )x>
i � x i

�
�
�
�
�

�
2k� � kF M 2

�
k� � kF M 2 + �

p
2 log(6=� )

�

�
p

u
:

Proof. To prove the �rst inequality, �rst, notice that we haveh� (x) = � P� (x)q� (x) �
� (log(1 � P� (x)) + log( P� (x))) , whereq� (x) = x> � x � 1. SinceP� (x), de�ned in Eq. (7),
explicitly only depends onq� (x) instead ofx directly, we can treath� as a function ofq� and de�ne

a function classF =
n

x 7! x> (s � �̂) x : s 2 [0; 1]
o

. It is well-known that ifh� is L 1-Lipschitz

in q� andjh� (x)j � R1 for any� 2 � andx � � , then, with probability at least1 � �
3 , it holds

simultaneously for all� 2 � that [2, 19]
�
�
�
�
�
EX � � [h� (X )] �

1
u

uX

i =1

h� (x i )

�
�
�
�
�

� 2L 1 � R u (F ) + R1

r
2 log(6=� )

u
; (22)

whereR u (F ) is the Rademacher complexity ofF .

To �nd L 1, we can compute

dh�

dq�
= �

dP�

dq�
q� � P� +

dP�

dq�

�
�

1 � P�
�

�
P�

�

= �
dP�

d � q�
q� � P� +

dP�

dq�
� q� (SinceP� satis�es Eq. (6))

= � P�

Therefore, we havedh �
dq�

2
�
� 1; � �

3

�
by Lemma 14. Therefore, we can setL 1 = 1 .

Let h0 be the value ofh� whenq� = � 1, which meansx> � x = 0 . To �nd R1, notice that since
dh �
dq�

2
�
� 1; � �

3

�
, we must have� q� + h0 � h� � � �

3 q� + h0. By Lemma 14, we know that
h0 2

�
0; 2

p
�

�
. Therefore, we have� x> � x � h� (x) � � �

3 x> � x + 3
p

� for any x 2 X and

� 2 � . Sincek� kF �





 �̂








F
� 2k� � kF , we havejh� (x)j � 2k� � kF M 2 := R1, which holds

when� � 4
9 k� � k2

F M 4. Then, by Lemma 9, we know thatR u (F ) � 2k� � kF M 2
p

u . Thus, plugging in
values ofL 1, R1 andR u (F ) into Eq. (22) gives our �rst concentration inequality.

We can basically follow exactly the same strategy to prove the second concentration inequality. In
particular, de�ne~h� (x) = P� (x)x> � x = P� (x)q� (x) + P� (x). Then, with probability at least
1 � �

3 , it holds simultaneously for any� 2 � that
�
�
�
�
�
EX � �

h
~h� (X )

i
�

1
u

uX

i =1

~h� (x i )

�
�
�
�
�

� 2L 2 � R u (F ) + R2

r
2 log(6=� )

u
; (23)

where
�
�
�~h� (x)

�
�
� � R2 for anyx 2 X , � 2 � and~h� is L 2-Lipschitz inq� .

To �nd L 2, we can compute
d~h�

dq�
= P� +

dP�

dq�
� x> � x:
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By Lemma 14, we know thatdP �
dq�

2
h
0; 1

8�

i
. Thus, we have

�
�
� d~h �

dq�

�
�
� � 1 + k� � kF M 2

4� := L 2. It is

obvious that~h� (x) � 2k� � kF M 2 := R2. Thus, by plugging the values ofL 2, R2 andR u (F ) into
Eq. (23), we can obtain the second concentration inequality.

Finally, both concentration inequalities hold simultaneously with probability at least1 � 2�
3 by a

simple union bound.

Lemma 9. If





 �̂








F
� 2k� � kF , then, we haveR u (F ) �

q
EX � � [(X > �̂ X )2 ]

u � 2k� � kF M 2
p

u , where

F =
n

x 7! x> (s � �̂) x : s 2 [0; 1]
o

.

Proof. Let � 1; : : : ; � u be i.i.d. Rademacher random variables, which are uniform overf� 1; +1g.
Let x1; : : : ; xu � � be i.i.d. samples. Then, by de�nition of Rademacher complexity, we have

R u (F ) = E

"

sup
q2F

1
u

uX

i =1

� i q(x i )

#

= E

"

sup
s2 [0;1]

1
u

uX

i =1

� i x>
i (s�̂) x i

#

(By de�nition of F )

(i)
=

1
u

E

"

1

(
nX

i =1

� i x>
i �̂ x i � 0

)
nX

i =1

� i x>
i �̂ x i

#

:

�
1
u

E

" �
�
�
�
�

uX

i =1

� i x>
i �̂ x i

�
�
�
�
�

#

�
1
u

vu
u
u
t E

2

4

 
uX

i =1

� i x>
i �̂ x i

! 2
3

5 (By Jensen's inequality)

=
1
u

vu
u
t E

"
uX

i =1

�
x>

i �̂ x i

� 2
#

(Since� i 's are i.i.d. andE [� i ] = 0 )

=

vu
u
u
t EX � �

� �
X > �̂ X

� 2
�

u
�

2k� � kF M 2

p
u

:

Here, the equality (i) holds because when
P n

i =1 � i x>
i �̂ x i < 0, the supremum overs 2 [0; 1] will be

obtained by takings = 0 ; otherwise, it will be obtained by takings = 1 .

C.2.3 Other Lemmas

The following lemma basically shows thatf (�) is linear in scalar multiplication.

Lemma 10. If DE (�̂ ) = D E (�̂) , with �̂ =
P

y2Y `
�̂ y , then, for anys � 0, it holds thatDE (s �

�̂ ) = D E (s � �̂) , whereDE andD E are de�ned in Eq.(11).

Proof. It suf�ces to show that if
P

y2Y `
y> �̂ y y = f (�̂) , then

P
y2Y `

y> (s � �̂ y )y = f (s � �̂) for
anys > 0. By de�nition, we have

f (s � �̂) = max � y

P
y2Y `

y> � y y
subject to

P
y2Y `

� y = s � �̂
� y � 0; 8y 2 Y ` :
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For the above optimization problem, we can do a change of variable by setting� 0
y = 1

s � � y =)
� y = s � � 0

y . Then, we have

f (s � �̂) = max � y

P
y2Y `

y> (s � � 0
y )y

subject to
P

y2Y `
s � � 0

y = s � �̂
s � � 0

y � 0; 8y 2 Y ` :

=) f (s � �̂) = max � y s
P

y2Y `
y> � 0

y y
subject to

P
y2Y `

� 0
y = �̂

� 0
y � 0; 8y 2 Y ` :

=) f (s � �̂) = s � f (�̂) = s �
X

y2Y `

y> � y y =
X

y2Y `

y> (s � �̂ y )y:

Thus, the proof is complete.

Lemma 11. Let f : Rd 7! R be a concave function with maximizerx � over the convex setC.
Further, assume thatf is G-strongly concave with respect to`2 norm in regionS \ C , where
S = f x : kx � x � k2 � Ag. If f (x � ) � f (x) � AG

2 andc 2 C, thenx 2 S.

Proof. By property of strong concavity, we know that,f (x � ) � f (x) � G
2 kx � x � k2 for any

x 2 S \ C . Now, supposex0 satis�esf (x � ) � f (x0) � AG
2 , x0 2 C andx0 =2 S. Then, we must have

kx0 � x � k2 > A .

Let 
 2 (0; 1) be some number such thatz = 
x 0+(1 � 
 )x � lies on the boundary ofS. By convexity,
we also havez 2 C. Then, sincef is concave, we havef (z) � 
f (x0) + (1 � 
 )f (x � ) > f (x0),
where the second inequality is strict becausef is strongly concave in a region aroundx � . Since
f (x � ) � f (x0) � AG

2 , f is G-strongly concave onS andz lies on the boundary ofS, we have

AG
2

=
G
2

kz � x � k2 � f (x � ) � f (z) < f (x � ) � f (x0) �
AG
2

:

This is a contradiction and thus we must havex0 2 S.

The following lemma quantitatively describes how closee� and� � needs to be to ensure an at most�
multiplicative constraint violation.

Lemma 12. Assumekxk2 � M for any x 2 X . Let � = EX � �
�
XX >

�
� 0 and � � =

argmax� � 0 D(�) . Then, for any� > 0, if we have






 e� � � �








F
�

8� 2� min (�)
3M 2� max (�)

�
�

1 + �
;

then it holds thaty> EX � �
�
Pe� (X )XX >

� � 1
y � (1 + � )c2

` for anyy 2 Y ` .

Proof. Fix some� > 0. First, notice that if we regardP� as a function ofq� (x) = x> � x � 1, it then
holds that

kr � P� (x)k2 =










dP�

dq�
r � q� (x)










2
�

�
�
�
�
dP�

dq�

�
�
�
�



 xx >






2 �

�
�
�
�
dP�

dq�

�
�
�
� M 2 �

M 2

8�
;

where we obtain the last inequality by using Lemma 14. Therefore, for anyx 2 X and e� � 0,

we have
�
�Pe� (x) � P� � (x)

�
� � M 2

8� �





 e� � � �








F
by mean value theorem and Cauchy-Schwartz.

inequality.

Therefore, if we have





 e� � � �








F
� � , then

�
�Pe� (x) � P� � (x)

�
� �

M 2�
8�

=) Pe� (x) � P� � (x) �
M 2�
8�
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=) EX � �
�
Pe� (X )XX > �

� EX � �
�
P� � (X )XX > �

�
M 2�
8�

EX � �
�
XX > �

:

By Lemma 13, we know that

y> EX � �
�
Pe� (X )XX > � � 1

y � c2
` (1 + � ) () EX � �

�
Pe� (X )XX > �

�
yy>

(1 + � )c2
`

: (24)

Let � � = EX � �
�
P� � (X )XX >

�
. Therefore, to guarantee the condition in Eq.(24), it is suf�cient

to guarantee that� � � M 2 �
8� � � yy >

(1+ � )c2
`
, which is equivalent to

w> � � w �
M 2�
8�

w> � w �
(w> y)2

c2
` (1 + � )

; 8unit vectorw 2 Rd

()
1

w> � w
� w>

�
� � �

yy>

(1 + � )c2
`

�
w �

M 2�
8�

; 8unit vectorw 2 Rd:

Therefore, it is suf�cient to choose� such that

M 2�
8�

�
1

� max (�)
� � min

�
� � �

yy>

c2
` (1 + � )

�
� min

w:kwk2 =1

1
w> � w

� w>
�

� � �
yy>

(1 + � )c2
`

�
w:

SinceP� � satis�es the constraint de�ned in problem(12), we have� � � yy >

c2
`

. Meanwhile, by

Lemma 14, we know thatP� � (x) � �
3 for anyx 2 X , which means that� � � �

3 � � . That is, for
any unit vectorw 2 Rd, we have

w> � � w �

�
w> y

� 2

c2
`

and w> � � w �
�
3

� min (�) ;

which together impliesw> � � w � max
�

�
3 � � min (�) ; (w > y)2

c2
`

�
. Therefore, it holds that

w> � w �

�
w> y

� 2

(1 + � )c2
`

� max

(
�
3

� � min (�) ;

�
w> y

� 2

c2
`

)

�

�
w> y

� 2

(1 + � )c2
`

= max

(
�
3

� � min (�) �

�
w> y

� 2

(1 + � )c2
`

;
�

�
w> y

� 2

(1 + � )c2
`

)

�
��

3(1 + � )
� � min (�)

=) � min

�
� � �

yy>

c2
` (1 + � )

�
�

��
3(1 + � )

� � min (�) :

Therefore, to guarantee the condition in Eq. (24), it is suf�cient to have

M 2�
8�

=
��� min (�)

3(1 + � )� max (�)
=) � =

8� 2� min (�)
3M 2� max (�)

�
�

1 + �
;

Thus, the proof is complete.

The following lemma is a result of standard Schur complement technique.

Lemma 13. If EX � �
�
P(X )XX >

�
is invertible andc` > 0, then

y> EX � �
�
P(X )XX > � � 1

y � c2
` () EX � �

�
P(X )XX > �

�
yy>

c2
`

:

Proof. For simplicity, letA = EX � �
�
P(X )XX >

�
� 0. Then, we consider the block matrix�

A y
y> c2

`

�
2 R(d+1) � (d+1) . Let [u a]> 2 Rd+1 with u 2 Rd be some vector.
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Now, for one direction, supposey> A � 1y � c2
` holds. Consider

[u a]
�

A y
y> c2

`

� �
u
a

�
= u> Au + 2au> y + 2c2

` a2 := r (u; a):

If we minimizer (u; a) overu, which means to treata as �xed, we can get (by taking gradient and
setting it to zero)

u� = � aA � 1y =) r (u� ; a) = a2(c2
` � y> A � 1y):

Sincey> A � 1y � c2
` , we know thatr (u� ; a) � 0, which meansr (u; a) � 0 for any[u a]> 2 Rd+1 .

Then, if we minimizer (u; a) overa, we can get

a� = �
u> y
c2

`
=) r (u; a� ) = u> Au �

�
u> y

� 2

c2
`

:

Sincer (u; a) � 0 for any [u a]> 2 Rd+1 , we know thatu> Au � (u > y)2

c2
`

� 0 for anyu 2 Rd.

That is, we haveA � yy >

c2
`

.

The other direction simply takes the above calculation in a reversed way and thus the proof is
complete.

C.2.4 Properties ofP�

A visualization ofP� is given in Figure 2.

Figure 2: (left) A heatmap of someP� when problem dimension isd = 2 , which shows thatP� is
approximately an 0-1 threshold rule characterized by an ellipsoid. (right) A plot ofP� as a function
of q� (x) = x> � x � 1, which shows that the change ofP� near the boundary of ellipsoid is sharper
when the barrier weight� is smaller.

Lemma 14. The functionP� (x) de�ned in(7), if regarding as a function ofq� (x) = x> � x � 1 � � 1,
satis�es

• limq� ! 0 P� = 1
2 for any� 2 (0; 1)

• Whenq� = � 1, P� = 1
2 + � �

p
1+4 � 2

2 � �
3 andP� � � (log(1 � P� ) + log( P� )) � 2

p
�

for any� 2 (0; 1).

• dP �
dq�

=
�
p

q2
� +4 � 2 � 2� 2

q2
�

p
q2

� +4 � 2
decreases asq2

� increases. Further,dP �
dq�

2 [0; 1
8� ]. Thus,P�

increases monotonically asq� increases andP� (x) � �
3 for anyx 2 X and� � 0.

• dP �
dq�

jq� = � 1 � �
10 and dP �

dq�
� �

2q2
�

whenq2
� � 12� 2.
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