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Abstract

This work considers the problem of selective-sampling for best-arm identification.
Given a set of potential options Z C R, a learner aims to compute with probability
greater than 1 — §, argmax.cz 2 ' 6, where 6, is unknown. At each time step,
a potential measurement z; € X C R is drawn IID and the learner can either
choose to take the measurement, in which case they observe a noisy measurement
of 7@, or to abstain from taking the measurement and wait for a potentially more
informative point to arrive in the stream. Hence the learner faces a fundamental
trade-off between the number of labeled samples they take and when they have
collected enough evidence to declare the best arm and stop sampling. The main
results of this work precisely characterize this trade-off between labeled samples
and stopping time and provide an algorithm that nearly-optimally achieves the
minimal label complexity given a desired stopping time. In addition, we show that
the optimal decision rule has a simple geometric form based on deciding whether a
point is in an ellipse or not. Finally, our framework is general enough to capture
binary classification improving upon previous works.

1 Introduction

In this work we consider selective sampling for online best-arm identification. In this setting, at every
time step t = 1,2,. .., Nature reveals a potential measurement z; € X C R¢ to the learner. The
learner can choose to either query x; (§; = 1) or abstain (§; = 0) and immediately move on to the next
time. If the learner chooses to take a query (§; = 1), then Nature reveals a noisy linear measurement
of an unknown 6, € RY, i.e. yr = (x4, 0.) + € where ¢; is mean zero sub-Gaussian noise. Before
the start of the game, the learner has knowledge of a set Z C R?. The objective of the learner is to
identify z, := argmax,cz(z, 0,) with probability at least 1 — ¢ at a learner specified stopping time
U. Tt is desirable to minimize both the stopping time ¢/ which counts the total number of unlabeled or
labeled queries and the number of labeled queries requested £ := Z?Zl 1{¢& = 1}. In this setting, at
each time ¢ the learner must make the decision of whether to accept the available measurement x4, or
abstain and wait for an even more informative measurement. While abstention may result in a smaller
total labeled sample complexity £, the stopping time I/ may be very large. This paper characterizes
the set of feasible pairs ({4, £) that are necessary and sufficient to identify z, with probability at
least 1 — § when z; are drawn IID at each time ¢ from a distribution . Moreover, we propose an
algorithm that nearly obtains the minimal information theoretic label sample complexity £ for any
desired unlabeled sample complexity /.

While characterizing the sample complexity of selective sampling for online best arm identification is
the primary theoretical goal of this work, the study was initially motivated by fundamental questions
about how to optimally trade-off the value of information versus time. Even for this idealized linear
setting, it is far from obvious a priori what an optimal decision rule &; looks like and if it can even be
succinctly described, or if it is simply the solution to an opaque optimization problem. Remarkably,
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we show that for every feasible, optimal operating pair (I, £) there exists a matrix A € R?*¢ such
that the optimal decision rule takes on the form & = 1{z " Az > 1} when z; ~ v iid. The fact that
for any smooth distribution v the decision rule is a hard decision equivalent to x; falling outside a
fixed ellipse or not, and not a stochastic rule that varies complementarily with the density of v over
space is perhaps unexpected.

To motivate the problem description, suppose on each day t = 1,2, ... a food blogger posts the
Cocktail of the Day with a recipe described by a feature vector z; € R%. You have the ingredients
(and skills) to make any possible cocktail in the space of all cocktails Z, but you don’t know which
one you’d like the most, i.e., z, := arg max.cz(z, 0.), where 6, captures your preferences over
cocktail recipes. You decide to use the Cocktail of the Day to inform your search. That is, each day
you are presented with the cocktail recipe x; € R¢, and if you choose to make it (£, = 1) you observe
your preference for the cocktail y; with E[y;] = (x4, 6.). Of course, making cocktails can get costly,
so you don’t want to make each day’s cocktail, but rather you will only make the cocktail if x; is
informative about 0, (e.g., uses a new combination of ingredients). At the same time, waiting too
many days before making the next cocktail of the day may mean that you never get to learn (and
hence drink) the cocktail z, you like best. The setting above is not limited to cocktails, but rather
naturally generalizes to discovering the efficacy of drugs and other therapeutics where blood and
tissue samples come to the clinic in a stream and the researcher has to choose whether to take a
potentially costly measurement.

Our results hold for arbitrary 6, € RY, sets ¥ € R? and Z C RY, and measures v € A XE] for which
we assume x; ~ v is drawn IID. The assumption that each z; is IID allows us to make very strong
statements about optimality. To summarize, our contributions are as follows:

* We present fundamental limits on the trade-off between the amount of unlabelled data and labelled
data in the form of (the first) information theoretic lower bounds for selective sampling problems
that we are aware of. Naturally, they say that there is an absolute minimum amount of unlabelled
data that is necessary to solve the problem, but then for any amount of unlabelled data beyond this
critical value, the bounds say that the amount of labelled data must exceed some value as a function
of the unlabelled data used.

¢ We propose an algorithm that nearly matches the lower bound at all feasible trade-off points in the
sense that given any unlabelled data budget that exceeds the critical threshold, the algorithm takes
no more labels than the lower bound suggests. Thus, the upper and lower bounds sketch out a curve
of all possible operating points, and the algorithm achieves any point on this curve.

* We characterize the optimal decision rule of whether to take a sample or not, based on any critical
point is a simple test: Accept z; € R? if 2,7 Ax; > 1 for some matrix A that depends on the desired
operating point and geometry of the task. Geometrically, this is equivalent to z; falling inside or
outside an ellipsoid.

* Our framework is also general enough to capture binary classification, and consequently, we prove
results there that improve upon state of the art.

1.1 Related Work

Selective Sampling in the Streaming Setting: Online prediction, the setting in which the selective
sampling framework was introduced, is a closely related problem to the one studied in this paper
and enjoys a much more developed literature [6, 19, [1,[7]. In the linear online prediction setting, for
t =1,2,... Nature reveals z; € RY, the learner predicts 7J; and incurs a loss £(%;, y;), and then the
learner decides whether to observe y; (i.e., & = 1) or not (§; = 0), where y; is a label generated by a
composition of a known link function with a linear function of x;. For example, in the classification
setting [[I} [6} O], one setting assumes y; € {—1,1} with E[y:|z:] = (24, 6.) for some unknown
0. € R, and (s, y:) = 1{y; # y:}. In the regression setting [7], one observes y; € [—1, 1] with
Ely:|x:] = (x1,0.) again, and £(g;,y:) = (Y — y1)?. After any amount of time U, the learner is

incentivized to minimize both the amount of requested labels Z?ﬂ 1{& = 1} and the cumulative

loss Zzt’{:l £(yt, i) (or some measure of regret which compares to predictions using the unknown
0.). If every label y, is requested then £ = U/ and this is just the classical online learning setting.

"'We denote the set of probability measures over X as A x.



These works give a guarantee on the regret and labeled points taken in terms of the hardness of the
stream relative to a learner which would see the label at every time. Most do not give the learner the
ability to select an operating point that provides a trade-off between the amount of unlabeled versus
labeled data taken. Those few works that propose algorithms that do provide this functionality do not
provide lower bounds that match their given upper bounds, leaving it unclear whether their algorithm
optimally negotiates this trade-off. In contrast, our work fully characterizes the trade-off between the
amount of unlabeled and labeled data through an information-theoretic lower bound and a matching
upper bound. Speci cally, our algorithm includes a tuning parameter, calltthat controls the
trade-off between the evaluation metric of interest (for us, the quality of the recommei2d&d,

the label complexityL, and the amount of unlabelled dadtathat is necessary before the metric

of interest can be non-trivial. We prove that each possible settingpaframetrizesll possible
trade-offs between unlabeled and labeled data.

Our work is perhaps closest to the streaming setting for agnostic active classi @itith) \vhere
eachxs is drawn i.i.d. from an underlying distribution on X, and indeed our results can be
specialized to this setting as we discuss in Segtion 3. These papers also evaluate themselves at
a single point on the tradeoff curve, namely the number of samples needed in passive supervised
learning to obtain a learner with excess risk at mosthey provide minimax guarantees on the
amount of labeled data needed in terms of the disagreement coef |@@nth contrast, again, our
results characterize the full trade-off between the amount of unlabeled data seen, and the amount of
labeled data needed to achieve the target excess.risk note that using online-to-batch conversion
methods,[9, 1, [6] also provide results on the amount of labeled data needed but they assume a very
speci ¢ parametric form to their label distribution unlike our setting which is agnostic. Other works
have characterized selective sampling for classi cation in the realizable setting that assumes there
exists a classifer among the set under consideration that perfectly labelsyey&8y-our work
addresses the agnostic setting where no such assumption is made. Finally, our results apply under the
more general setting afomain adaptation under covariate shithere we are observing data drawn
from the stream , but we will evaluate the excess risk of our resulting classi er on a different stream
[22,123]26].

Best-Arm Identi cation and Online Experimental Design. Our techniques are based on experi-
mental design methods for best-arm identi cation in linear bandits,[2¢&1, 5]. In the setting of

these works, there exists a pool of exampfeand at each time any 2 X can be selected with
replacement. The goal is to identify the best arm using as few total selections (labels) as possible.
Their algorithms are based on arm-elimination. Speci cally, they select examples with probability
proportional to an approximatg-optimal design with respect to the current remaining arms. Then,
during each round after taking measurements, those arms with high probability of being suboptimal
will be eliminated. Remarkably, near-optimal sample complexity has been achieved under this setting.
While we apply these techniques of arm-elimination and sampling thr@agptimal design, the

major difference is that we are facing a stream instead of a pool of examples. Fibdllgppsiders a
different online experiment design setup where (adversarially chosen) experiments arrive sequentially
and a primal-dual algorithm decides whether to choose each, subject to a total bliflgetidies

the competitive ratio of such algorithms (in the manner of online packing algorithms) for problems
such ad -optimal experiment design.

2 Selective Sampling for Best Arm Identi cation

Consider the following game: Given knowf; Z RY and unknown 2 RY at each time
t=1;2::::

1. Nature reveals; " with supporf )= X

2. Player choose®; 2 f 0; 1g. If Q; = 1 then nature revealg with E[y;] = hx; i

3. Player optionally decides to stop at titnand output somié 2 Z

P

If the player stops at tim& after observing. = tU:1 Q: labels, the objective is to identify
z =argmax,yz hz; i with probability at least while minimizing a trade-off otJ; L.

This paper studies the relationship betwéémandL in the context of necessary and suf cient
conditions to identifyz with probability at leasfi. . ClearlyU must be “large enough” far to



be identi able even if all labels are requested (ile+ U). Butif U is very large, the player can start

to become more picky with their decision to observe the label or not. Indeed, one can easily imagine
scenarios in which it is advantageous for a player to forgo requesting the label of the current example
in favor of waiting for a more informative example to arrive later if they wished to minirhizédone.
Intuitively, L should decrease &sincreases, but how?

Any selective sampling algorithm for the above protocol at tirreede ned by 1) a selection rule
P : X! [0;1]whereQ; Bernoulli(P;(xt)), 2) a stopping ruléJ, and 3) a recommendation rule
b2 Z . The algorithm's behavior at timecan use all information collected up to tirhe
De nition 1. Forany 2 (0; 1) we say a selective sampling algorithm #AC for 2 4 y if for all

2 R the algorithm terminates at timg which is nite almost surely and outputsg max,,z he; i
with probability at leastl

2.1 Optimal design

Before introduging our own algorithm, let us consider a seemingly optimal procedure. For any
24 x =fp: o Px=1;pc 08x2Xgdene

kz zkZ
— x XX =] 1,
= - 1
( ) zZann?Xz g h VZ Zi2 ( )
Intuitively, ( ) captures the number of labeled examples drawn from distributioridentify z .
Speci cally, for any () log(jzj=), if xg;:::;x andy; = hxj; i+ ; where;is
iid 1 sub-Gaussian noise, then there exists an estinbaterb(f (Xi;Vi)gi=; ) such thatPz i >
MmaX;ozn 7 Wz i with probability at leasf. [1]]. In particular, ( )log(jZj =) samples

suf ce to guarantee thatrg max; 2z ht?zi —argmaxzyz h ;zi = z.

Thus, if our samples are coming from, we would expect any reasonable algorithm to require
at least ( )log(jZzj=) examples and labels. However, since we only want to take informative
examples, we instead choose to selectthexamplex; = x according to a probabiliti (x) so that

our nal labeled samples are coming from the distributiowhere (x) / P(x) (x). In particular,

P (x) should be chosen according to the following optimization problem

2
kz  zkg, [P (X)XX >] 1

P = i E P(X bject t . 1 (2
Fig(g!m[lor?l] x [P(X)] subjec 0, max ez 12 (2)
for =log(jZj=) where the objective captures the number of samples we selectRisjrand the

constraint captures the fact that we have solved the problem. Remarkably, we can reparametrize this
result in terms of an optimization problem oveR x insteadofP :X ! [0;1]as

Ex [P (X)]= |”r21j1n () subject to k = ki ()
X
wherek = k; =maxyox (X)= (x), as shown in Proposition 2. Note thatak1l the constraint

becomes inconsequential. Also notice th@t) appears to be a necessary amount of labels to solve
the problem even iP(x) 1 (albeit, by arguing about minimizing the upperbound of above).

2.2 Main results

In this section we formally justify the sketched argument of the previous section, showing nearly
matching upper and lower bounds.

Theorem 1(Lower bound) Fixany 2 (0;1),X;Z RY and 2 RY. Any selective sampling
algorithm that is -PAC for 2 4 x and terminates after drawing unlabelled examples from
and requests the labels of justof them satis es

* E[U] ( )log(1=), and
* E[L] rzrlin ( )log(l=) subjectto E[U] k = k; ( )log(1l=).

The rst part of the theorem quanti es the number of rounds or unlabelled diattsitanyalgorithm
must observe before it could hope to stop and outputorrectly. The second part describes a



trade-off betweety andL. One extreme is IE[U]! 1 , which effectively removes the constraint
so that the number of observed labels must scalerfike 54 , ( )log(1=). Note that this is
precisely the number of labels required in the pool-based setting where the agent canaciyoose
x 2 X that she desires at each timée.g. [L1]). In the other extreme;[U] = ( )log(1=) so that
the constraint in the label complexiBfL ] is equivalentto ( ) k = ki ( ). Thisimplies that
the minimizing must either stay very close tqQ or must obtain a substantially smaller value of

( ) relative to () to account for the in ation factok = kj . In some sense, this latter extreme is
the most interesting point on the trade-off curve because its asking the algorithm to stop as quickly
as the algorithm that observes all labels, but after requesting a minimal number of labels. Note that
this lower bound holds even for algorithms that knowexactly. The proof of Theorem 1 relies on
standard techniques from best arm identi cation lower bounds (see e.g. [17, 11]).

Remarkably, every point on the trade-off suggested by the lower bound is nearly achievable.

Theorem 2 (Upper bound) Fix any 2 (0;1), X;Z RY, and 2 RY. Let =
Mingozn 2 gtz 2z, iand / log(log(+)jZj = ) where the precise constant is given in the
appendix. For any () there exists a-PAC selective sampling algorithm that obserikes
unlabeled examples and requests judabels that satis es with probability at leagt

U log,(%) ,and

L 3log,(%) r£14in () subject to k = ki ()

Aside from thelog() factor and thdog(jZj ) that appears in the term, this nearly matches the
lower bound. Note that the parameteparameterizes the algorithm and makes the trade-off between
U andL explicit. The next section describes the algorithm that achieves this theorem.

2.3 Selective Sampling Algorithm

Algorithm 1 contains the pseudo-code of our selective sampling algorithm for best-arm identi cation.
Note that it takes a con dence level2 (0; 1) and a parameter that controls the unlabeled-labeled
budget trade-off as input. The algorithm is effectively an elimination style algorithm and closely
mirrors the RAGE algorithm for the pool-based setting of best-arm identi cation prodémThe

key difference, of course, is that instead of being able to plan over the pool of measurements, this
algorithm must plan over the's that the algorithm mapotentiallysee and account for the case that

it might not see tha's it wants.

Algorithm 1 Selective Sampling for Best-arm Identi cation

1: Input Z RY, 2 (0;1);

2: whilejZ-j 1do

3 Let®;by  OpTiMmizEDESIGNZ ;2 '; )/l by approximates Ex [B(X)XX ]

4. fort=(" 1) +1;:::;° do
5: Nature reveals, drawn iid from (with supportR?)
6: SampleQ; (Xt) Bernoulli(Fh(xt)). If Q: =1 thenobservg: /I E[yijxi]=h ;xqi
7: end for
8. Leth RIPSf b[b‘lQS(xS)xSysg‘S:(\ y 2 Z) /1B approximates
9 Zg=2zZnfz2Z :maxke® zRi 2 g
2027 -
10: end while

In round”, the algorithm maintains an active set Z with the guarantee that each remaining
z2Z7Z- satises,lg z; i 8 2 . Ineachround, on Line 3 of the algorithm, it calls out
to a sub-routin®©OPTIMIZEDESIGN(Z ; ; ) thatis trying to approximate the ideal optimal design
of (2). In particular, the ideal response @PTIMIZEDESIGN(Z ; ; ) would return aP and

p = Ex [P (X)XX >]whereP is the solution to Equation 2 with the one exception that the
denominator of the constraint is replaced witaxf 2;h ;z  zi?g. Of course, is unknown
so we cannot solve Equation 2 (as well as other outstanding issues that we will address shortly).
Consequently, our implementation will aimapproximatethe optimization problem of Equation 2.



But assuming our sample complexity is not too far off from this ideal, each round should not request
more labels than the number of labels requested by the ideal program with Thus, the total
number of samples should be bounded by the ideal sample complexity times the number of rounds,
which isO(log(  1)). We will return to implementation issues in the next section.

Assuming we are returne(tﬂi ; b,b\) that approximate their ideals as just described, the algorithm
then proceeds to process the incoming stream of . As described above, the decision to request
the label ofx; is determined by a coin ip coming up heads with probabim)(xt)—otherwise we
do not request the label. Given the collected datbiat, y;; Qt; . (Xt)) g, line 8 then computes an
estimate? of using the RIPS estimator of [5] which will satisfy

jz  z:b j O kz = zKg, [ poxyxx 7 1092 2jZj2=) 2
for all z 2 Z - simultaneously with probability at least . Thus, the nal line of the algorithm

eliminates any 2 Z - such that there exists anotte¥r2 Z - (thinkz ) that satis esi® ;20 zi > 2 .
The process continues unfit = fz g.

2.4 Implementation of OPTIMIZE DESIGN

For the subroutin®©pPTIMIZEDESIGN passedZ-; ; ) the next best thing to computing Equation 2
with the denominator of the constraint replaced witaxf 2;h ;z  zi?g, is to compute
kz z%2 .
P = argmin Ex [P(X)] subjectto max Ex [2P (X)xx 7] * 1 (3
PX! [0;1] z2%2Z -

and p = Ex [P (X)XX >]for an appropriate choice of = (log( jZj=)). To see this,
rstly, any z 2 Z withgaph ;z  zi that we could accurately estimate would not be included in
Z-, thus we don't need it in theax of the denominator. Secondly, to get ridofin the numerator
(which is unknown, of course), we note that for any nomax,.,okz  z% max,2kz z k
max,.;o 2kz  z%. Assuming we could solve this directly and compuie = Ex [P (X)XX ~],

we can obtain the result of Theorem 2 (proven in the Appendix).

However, even if we knew exactly, the optimization problem of Equation 3 is quite daunting as
it is a potentially in nite dimensional optimization problem ovEr. Fortunately, after forming
the Lagrangian with dual variables for eazh z°2 Z Z , optimizing the dual amounts to

a nite dimensional optimization problem over the nite number of dual variables. Moreover,
this optimization problem is maximizing a simple expectation with respectand thus we can
apply standard stochastic gradient ascent and results from stochastic approxi@@ti@ien the
connection to stochastic approximation, instead of sampling agesh each iteration, it suf ces to
“replay” a sequence aé's from historical data. Summing up, this construction allows us to compute a
satisfactoryP and avoid both an in nite-dimensional optimization problem and requiring knowledge
of (aslong as historical data is available).

Meanwhile, with historical data, we can also empirically comgtte [P (X )XX . Historical

data could mean of ine samples fromor just samples from previous rounds. In this setting, Theorem

2 still holds albeit with larger constants. Theorem 7 in the appendix characterizes the necessary
amount of historical data needed. Unfortunately (in full disclosure) the theoretical guarantees on the
amount of historical data needed is absurdly large, though we suspect this arises from a looseness in
our analysis. Similar assumptions and approaches to historical or of ine data have been used in other
works in the streaming setting e.g. [15].

3 Selective Sampling for Binary Classi cation

We now review streaming Binary Classi cation in the agnostic setting [8, 12, 15] and show that our
approach can be adapted to this setting. Consider a binary classi cation problemXvieetle
example space ard = f 1; 1gis the label space. Fix a hypothesis classuch that each 2 H is
aclassierh: X 'Y . Assume there exists a xed regression functionX ! [0; 1] such that the
label ofx is Bernoulli with probability (x) = P(Y =1jX = x). Being in the agnostic setting, we
make no assumption on the relationship betwdeand . Finally, xany 24 x and 24 x.
Given knownX ; H and unknown regression functionat each time¢ =1;2;::::



1. Nature reveals;
2. Player choose®; 2 f 0; 1g. If Q¢ =1 then nature reveals  Bernoulli( (x;)) 2f 1;1g

3. Player optionally decides to stop at titnand output somB2H.

De ne theriskof anyh 2 H asR (h) := Px v (x)(Y 6 h(X)). If the player stops at time

U after observind. = tuzl Q: labels, the objective is to identity = argminzy R (h) with
probability atleast. ~ while minimizing a trade-off ofJ; L. Note thath is the true risk minimizer
with respect to distribution but we observe samples ; Is not necessarily equal ta While

we have posed the problem as identifying the potentially unigueur setting naturally generalizes
to identifying an -goodh suchthaR (h) R (h)

We will now reduce selective sampling for binary classi cation problem to selective sampling for
best arm identi cation, and thus immediately obtain a result on the sample complexity. For simplicity,
assume thaX andH are nite. Enumeraté&X and for eacth 2 H de ne a vectorz(™ 2 [0; 1}XI

such thaz!™ = (x)1fh(x) = 1gfor z™ =[z{]ox . Moreover, de ne :=[ ,lxzx Where
« =2 (x) 1. Then
X
R (h)=Ex v (x)[fY 6 h(X)g]= () (x)1fh(x) 8 1g+(1  (x))1fh(x) 6 09)
X X x2X
= (x) (x)+ )@ 2 X)1fh(x)=1g=c hzM; |
x2X x2X

P
wherec = =,y (X) (x) does not depend om. Thus, ifZ := fz(" gy, then identifying
h =argminyoy R (h) is equivalent to identifying = argmax,,z hz; i. We can now apply
Theorem 2 to obtain a result describing the sample complexity trade-off. First de ne,
h

i
Ex  1fh(X) 6 h9(X)g-&)

2
(;"):= max k2 zke pocyr max X)
" 77 zozniz gmaxfth ;z zi?;"2g hzHnf h g maxf(R (h) R (h))2;"2g
An important case of the above setting is whén and = ,i.e. we are evaluating the

performance of a classi er relative to the same distribution our samples are drawn from. This is
the setting of §, 15, 12]. The following theorem shows that the sample complexity obtained by our
algorithm is at least as good as the results they present.

Theorem 3. Fix any 2 (0; 1), domainX with distribution , nite hypothesis clas#l, regression
function :X ! [0;1]. Set Oand =2048log(4log(4=)jHj=). Then for ;)
there exists a selective sampling algorithm that returr#sH satisfyingR (h) R (h) by
observingU unlabeled examples and requesting judabels such that

* U log,(4=)
L 3log, (%) min - (5") s.t. k =k (")

with probability at leastl . Furthermore when =  and if 16 (; ) we have that
L 36logd=) R0 +4 sup (2R (h)+ ; )

where (u; ) is the disagreement coef cient, de ned in Appendix E.

Note that if is suf ciently large then the labeled sample complexity we obtain » , (; )
could be signi cantly smaller than previous results in the streaming setting, e.gL&eéfie proof
of Theorem 3 can be found in Appendix E.

4 Solving the Optimization Problem

Recall that in Algorithm 1, during round we need to solve optimization problg®). Solving this
optimization problem is not trivial because the number of variables can potentially be in ptésif



an in nite set. In this section, we will demonstrate how to reduce it to a nite-dimensional problem
by considering its dual problem. To simplify the notation,Yet= fz 2z°:z;2°27-;z6 2%,
and rewrite the problem as follows, whare> 0 is a constant that may depend on round

minp Ex [P(X)]

subjectto yY"Ex  P(X)XX > 1y 2, 8y2Y-; 4)
0 P(x) 1, 8x2X:
Using the Schur complement technique, we show in Lemma 13 (Appendix C) the following equiva-
lence:y” Ex P(X)XX ~ ly () Ex P(X)XX > C%yy>. This transforms
a constraint involving matrix inversion into one with ordering between PSD matrices. Then,
we remove the bound constraifls P(x) 1, 8x 2 X by introducing the barrier function

log(l x) log(x). Thatis, instead of working with the objectisx [P (X)] directly, we
consider the following problem.

minp  Ex [P(X)  p(log(l P(X))+log(P(X)))]
subjectto Ex  P(X)XX >  Lyy™; 8y2Y:: ®)

Here, , 2 (0;1) is some small constant that controls how strong the barrier is. Intuitively, a smaller
b Will make problem(5) closer to the original problem. We now show that unlike the primal, the
dual problem is indeed nite-dirpensional. For each constraint 2fY -, let the matrix y 0 be
its dual variable. Further, let= yavy. v and =( y)yZY‘ . The corresponding Lagrangian is
1 X
L( ;P)=Ex P(X) p(ogl P(X))+log(P(X)) P(X)X~ X + =z Yoy
" y2y-
The dual problem isnax , o:gy2y. minp L ( ;P). Notice that minimization oveP : X 7! [0; 1]
can be done via minimizing (x) point-wise for eaclx 2 X . To do this, we take the gradient with
respect to eacR (x) and set it to zero to get
b b >
1+ =0: 6
1 Px) Px) % ©

Solving this equation and de ning (x) = x> x 1, we get
q

1, 26 q)’+4 bq ()
P35 qw” 29 (%) ' @)

Note that if , = 0 (no barrier), the above reduces to the “threshold” decision Pulgx) =

1+ quq ((XX))' , which givesDwhenq (x) < 0and1whenq (x) > 0.2 This is exactly the hard elliptical
threshold rule mentioned before, in which whether to query the label flmpends on whether it
falls inside &> x < 1) or outside x> x> 1) of the ellipsoid de ned by the positive semide nite

matrix . A visualization of the decision rul@ is given in Figure 2 in the Appendix.

Now, by plugging inP (x), our dual problem becomesax , .y D( ):= L( ;P ). Thisisa
nite-dimensional optimization problem, and can be solved by projected gradient ascent (or projected
stochastic gradient ascent when we have only samples fjoithe gradient oD ( ) is

— b b > > yy”
r ,D( )= Ex I+ 0 PO X7 Xor P (X) P XOXXT +75
= y():/: Ex P (X)XX~ : (SinceP (X) solves Eq. (6))

The algorithm to solve the problem has been summarized in Algorithm 2, in which the gradient during
kth iteration is replaced by its unbiased estimezlfg(;L P~ (Xk)XkXg . The adaptive learning rate

is chosen by following the discussion in chapter 421|[ Optimizing the assignment (ﬁy to eachy

in line 10 ensures that the re-scaling step in line 11 increases the function value in an optimized way.
Finally, the re-scaling step is used to ensure that the output primal objectiveBsaluelP(X)] is
bounded well, which will be explained in more details in Appendix C.

2Whenq (x) =0, P (x) is undetermined from the dual.



Algorithm 2 Projected Stochastic Gradient Ascent to SohreriZEDESIGN

1: Input: Number of iteration& ; number of samples; barrier weight , 2 (0; 1)

2: Initialize *{” = 0 foreachy 2 Y-
3:fork=0;1;2:::;K 1do
4:  Samplexy
5. Setgyy = - Pag, (Xk)XkXy , whereP is de ned in Eq. (7)
6: Set"{"™V "M+ g foreachy 2 Y-, where \ = q e ol e
s=1 yav . KOsy K3
7. Update™{*" s ("Y' for eachy 2 Y-, a projection to the setaf  d PSD matrices
8: end for =) =)
o Let"y = L K " for eaghy 2 Y- and™= 'F\>y
10: Update("y)yoy.  argmax . y> yy,subjectto . y="; , 0;8y2Y::

11: Finds argmgxsz[o;l] De(s "), whereDg empirically evaluate® usingu i.i.d. samples
12:retun &= s o "y

Let  be an optimal solution fab ( ). Intuitively, as long as we run this algorithm with suf ciently

large number of iteration& and number of samplas we can guarantee thBt(€) andD( ) are
close enough with high probability, which in turn guarantees that the primal constraints are violated
by only a tiny amount anéx Pe(X) is close enough to the optimal value. Speci cally, we can
prove the following theorem.
Theorem 4. Supposé&xk, M foranyx 2 supp( ) and = Ex XX > isinvertible. Let
2 argmax  g.g,v. D( ) and (f*? = % be its condition number. Assurke k. > 0
anddene! =min ;g k=1 Ex x> X ? , whereS" isthe setofl  d symmetric matrices.
P
Thepn, = yav. y,iS uUnique. Further, for any > Oand > O, if it holds that
O k ke (OM @a+ )= ar}d |
Y% () 2%k KEMBlog(d=) 1+ 2 () 2k KEMBlog(l=) 1+ 2
iz ¢ ;u O 120 ;

K O

then, with probability at least  , Algorithm 2 will output€ that satis es

« VEx PsOXOXX> 'y 1+ ) 8y2Y-.
h o

* Ex Pe(X) Ex B(X) +4 P b, WhereP is the optimal solution to problei#)
with barrier constraintrepaced b P(x) 1 ,;8x2X.

The proof is in Appendix C. Althoug® is not exactly the same as the optimal solution of the original
problem(4), when 4, is suf ciently small, they will be very close. Meanwhile, it should be noted that
Theorem 4 mainly reveals that with suf ciently large number of iterations and number of samples,
Algorithm 2 can output suf ciently good solution. In future work, we plan to examine how much this
bound can be improved via a tighter analysis.

Finally, notice that Algorithm 2 needs to maintgit j d?> = O(jZ‘j2 d?) variables, which can be
large when we have a large ¢&t. Therefore, as an alternative, we also propose Algorithm 3 that
only needs to maintaid? variables but requires more computational power in each iteration. The
details are given in Appendix C.

5 Empirical results

In this section we present a benchmark experiment validating the fundamental trade-offs that are
theoretically characterized in Theorem 1 and Theorem 2. We take inspiration2vno [de ne our
experimental protocol:



e d =2, atwo-dimensional problem.
e Z =[ey;ez;(cos( );sin(! ))] for! =0:3, wheree;; e, are canonical vectors.
e =2eandy=x> + ,where N (0;1).

iri:d:

The distribution for streaming measurements; is such thatx; =
(cos(2A¢ =N );sin(2l; =N )) wherel; 2f0;:::;N 1g,P(l; = i)/ cos(d =N )2, andN = 30.

In this problem, the angle is small enough that the itefoos( );sin(! )) is hard to discriminate
from the best itene;. As argued in24], an ef cient sampling strategy for this problem instance
would be to pull arms in the direction ofe; in order to reduce the uncertainty in the direction of
interest,e;  (cos( );sin(! )). However, the distribution is de ned such that it is more likely
to receive a vectox; in the direction of e; rather than e,. Thus, if one seeks a small label
complexity, therP should be taken to reject measurements in the directiorepf

In the benchmark experiment, we compare the following three algorithms which all use Algorithm 1
as a meta-algorithm and just swap out the de nitiorff Naive Algorithm uses no selective
sampling so thai® (x) = 1 for all x; theOracle Algorithm uses® = P whereP is the ideal

solution to(2), andOur Algorithm uses the solution t¢b) for B where we take, =2 10 5.
We swept over the values ofand plotted on the y-axis the amount of labeled data needed before
termination, as shown in Figure 1.

Figure 1: (left) For each value of, we plot the average label complexity over 50 repeated
trials. (middle) Visualization ofP (x) and (x) v.s. X, wherex is indexed byl such that

X; = (cos(2l =N );sin(2l =N )). Here,P is solved with = 4  10° and distribution is

not normalized. (right) A heat map &f (x) along with the setting of experimental protocol.

We observe in Figure 1 that the algorithms using non-naive selection rules require far less label
complexity than the naive algorithm for all This re ects the intuition that selection strategies that
focus on requesting the more informative streaming measurements are much more ef cient than
naively observing every streaming measurement. Meanwhile, the trade-off between label complexity
L and sample complexity characterized in Theorem 1 and Theorem 2 is precisely illustrated in
Figure 1. Indeed, we see the number of labels queried by the two selective sampling algorithms
decrease as the number of unlabeled data seen in each round increases.

6 Conclusion

In this paper, we proposed a new approach for the important problesiadtive sampling for best

arm identi cation. We provide a lower bound that quanti es the trade-off between labeled samples
and stopping time and also presented an algorithm that nearly achieves the minimal label complexity
given a desired stopping time.

One of the main limitations of this work is that our approach depends on a well-speci ed model
following stationary stochastic assumptions. In practice, dependencies over time and model mis-
match are common. Utilizing the proposed algorithm outside of our assumptions may lead to poor
performance and unexpected behavior with adverse consequences. While negative results justify
some of the most critical assumptions we make (e.qg., allowing the sitetmbe arbitrary, rather

than iid, can lead to trivial algorithms, see Theorem 7@, [exploring what theoretical guarantees

are possible under relaxed assumptions is an important topic of future work.
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A Selective Sampling Lower Bound

First, we review the standard argument for best-arm identi cation lower bounds applied to linear
bandits. Fix 2 RY andletz = argmax,y; fz; i. DenethesetC=f 2 RY:9z 2
Zsth;z zi 0Ogasthose in whichz is note the best arm under We now recall the
transportation lemma ofl[7]. Under a -PAC strategy for nding the best arm for the bandit instance
(X;Z; ), letTx denote the random variable which is the number of times»aimpulled. In
addition letN ., denote the reward distribution of the axof X, i.e.N ., = N (x* ; 1). Then for

any -PAC algorithm

X
log(1=24 ) min E[TXIKL(N ;N )
2C )%X
= min E[T«] 3k k2.
x2X

=min 1 2p
min 7k K® (o ETalc>)

H 1 2
ZZr?rlwnz ik Z( )k(P x2x E[Tx]xx>)

where

P
(z 27 + D0 xox E[Tx]xx7) Yz 2y
(z  2)7( yox E[XIxx>) Yz 2)

(") =

for some small. This is a valid choice since foral2Zn z wehave(z z)” ,(")= "< O
and thus ,(") 2 C. A straightforward calculation shows that
(e z; i+")?
k OKP e e =
( yox ElTxIxx>) kz Zk(ZP o ElTalxc>) 1

so that after rearranging and lettering 0 we have that any-PAC algorithm satis es

2p
- 2kz zk( e ETeIxx) 1

z2Zn z 74 Z, i2

log(1=2.4 ) L (8)
This series of steps will be applied for each bullet point of the theorem.

A.1 Proof of Theorem 1, part |

We use the consequence of Lemma 19101 [ Consider a -PAC algorithm that set® (x) = 1 for all
x 2 X for all time until it exits at timel after this many unlabelled examples have been observed. If
Ty denotes the number of timgs2 X was observed before stopping titdethen by Wald's identity
we have that . "
X
E[Tk]= E 1fxy = xg = (X)E[U]:
t=1

Plugging this into Equation 8 and rearranging we conclude that

2kz  zk%

( wox ()xx>) 1t

E[U max -
[ ] z27Zn z 374 Z, i2

log(1=2:4 )=: ( )log(1=2:4)
which concludes the proof of the rst bullet.
A.2 Proof of Theorem 1, part Il

By de nition, the (random) number of times we measuris

X
Lx =  1fxs=xQs(x)=19g
s=1

14



h i
P
and we want to show th&[Lx] = (X)E 9:1 P-(x) . To do so, we de ne

X
Mi= (Ifxs = x;Qs(Xx)=1g  (X)Ps(x))
s=1

It is easy to check thd®+; 2 F = f(Xs;Ys; Qs)di-; and that

E[M41jFi]= My + E[1fxs = X;Qs(X) =19 (X)Ps(X)jF¢] = My

Applying Doob's equalitye[M y] = E[M(] = 0. Consequence:
" #

X X #
E[lLy]=E Ifxs = x;Qs(x)=1g = (V)E Ps(x)
s=1 s=1
e[ L Pu()]

Dene (x) := E107 and note that eachy 2 [0;1]. ThenE[Ly] = E[U] (X) (X) so
applying equation (18) of [17] again,xwe have
log(1=2:4 ) min E[Lx]JKL(N ;N )
2C ng
; 2
m2|g E[L«]k k

XX >
x2X

=2

= min h ;z zi?
" 2znz 2kz z k(ZP

wox ElbxIxx>) 1
h ;z zi2

ZrZTZ"r?z 2kz z k(2P BV

wox (X)) (x)xx>) 1

P
Rearranging, and applying the identlBx [ (X)XX>] = ., (X) (x)xx”, the above
implies that

2kz  z KkZ

Ex [ (X)Xx*>]!? o f -

E[U - log(1=2:4 ):
[Vl zgz]naé h ;z zi2 og( )

Noting that the total expc;(cted numbe;(of labels is equal to

E[L]= E[Lx]= E[U] (x) (x)= E[UJEx [ (X)]
x2X x2X

we conclude that
E[L] :Xrlnlr[lo;l] E[UIEx [ (X)]

2kz z k2 .
subjectto E[U] _,max . H E.XZ [ (in;xx 1 log(1=2:4 ):

The second bullet point result follows by denotingsP and applying Proposition 2.

B Selective Sampling Algorithm for Known Distribution
B.1 Proof of Theorem 2, upper bound

At each round we assume an implementation such uhatb,b\ OPTIMIZEDESIGN(Z;2 ;)
returns the solution of Equation 3 with= 2, essentially. More explicitly, let :=2 ,B< 1
such thamaxyox jhx; ij B,and < 1 suchthaE€[(ys h ;xsi)?jxs] 2. If

~ :=16(B%+ 2?)log(2°?jZj%=)

then® = P- where

kz z%2 N
P- := argmin Ex [P(X)] subjectto max Ex [2P (X)xx 7] * -1
Z,Z N ~

P:X! [0:1]
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andPy = Ex [P (X)XX >]
We rst provide an intermediate lemma on the correctness of Algorithm 1 that relies on the feasibility
of P- which we will show shortly.

Lemma 1. With probability at least. we have for all stages2 N such thatP- is feasible, that
z 2Z-andmaxyz . e z; i 4-.

Proof. De ne the event as
YR n 0]
E:= jz z%h i
‘=1 2;292Z -

By Lemma 2, we know tha®(E) 1 . Then, the rest of the proof is the same as the on&1h [
but we include it here for completeness. Assume Ehlablds. Then for any®2 Z -

e’ z:Bi=m® z:b i+h® z; i
=n® z:b i

so thatz would survive to round-.; . And for anyz 2 Z - such thatz zZ; i>2-,we have

maxtz® z:Bi hz zBbj
2027 -

=tz z;b i+ he Z, i
4+ 2

\

which implies thisz would be kicked out. Note that this implies thatx,,; .., Iz A

2 ~ = 4 41 - D
We can now prove Theorem 2. After:= dog,(%)eroundsZ- = I:Z g bg the above lemma. Thus,
the total number of labels requested afterounds is equal th := \Lzl =" 1) +1 Q- (x¢). By
Freedman's inequality (c.f., Theorem 1 of [4]) we have that

X X

x
QM) 2 Ex [P(X)jiZ-]+log(1=)
=l 1) 41 =1

We can now bound the expected sample complexity of this algorithm.

Ex [P-(X)iZ']
=1
" 4
X kz z%2 .
- min  Ex [P(X)] subjectto max Ex [P OOXX 7] S
P:X! [0;1] 22927 - € ’
Using Lemma 3, we have
2 2
max kz 2% 1 x)xx *1 1 X L max kz 2% (b xyxx > 2
2;2027 - 2 ’ 22007 - 2
kz z k2
Ex [P(X)XX >] 1
64 .. max -
L o7n 7 e z; i?
2
- max kz z kg [ppoxx> s
" 22Zn 2z e z; i2

Note that the last line also describes a condition for whi€h & feasible. Indeed, at round a
suf cient condition for a feasibl®- (i.e.,the RHS 1)isif exceeds( ) with :=1024(B2+
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2)log(2L?jZj?=) and ( )= max k2 2 ke, xx >1 * which holds by assumption in the
g 1£) z2Zn z hz z; i2 ) y p

theorem.
Plugging this constraint back into above we have

Ex [P (X)jZ']

S kz z K2 a1
min E P(X subjectto  max Ex [P (XXX 7] 1
P:X! [0:1] x [P ) 22Zn z e z; i2

T=1
L rzrlin () subjectto k= k; ()

where the last line follows by applying the reparameterization of Proposition 2.

B.1.1 High-probability Events
Lemma 2. We haveP(E) 1

Proof. ForanyV Z andz;z°2V de ne
B0 (V)= flnz 2%B(v) i g

whereb (V) is the estimator that would be constructed by the algorithm at Stagid Z- = V. For
xed V. Z and 2 N we apply Proposition 1 so that with probability at ledst 77z We have

that for anyz; z°2 v
iz z%0(v) i k 2z z%e, [P )xx > 1p 16(B2+ 2)log(2'2jZj2=)

_ T, T
Noting thatE == *_; , 07 . Ez0: (Z+) we have

0 1 0 1

E R [
P@ fES 0 (Z)gA p@ fES 0 (Z)gA

‘=1 z;2027 - T=1 22927 -
0

% X [

= P@ " fEf,.(V)giZ = VA

‘=1 VZ 0 z;202V

1

1

X X [
= P@ fES,0- (V)OA P(Z- = V)
‘=1 VZ z;202V
Vi
T, PEEV)
‘=1 VvVZ
X X
>zP(Z- = V)
‘=1 VZ
O
B.2 Technical Lemmas
The following de nition characterizes the RIPS estimator we used in Algorithm 1.
De nition 2. LetXq;:::; X, bei.i.d. random variables with meanand variance 2. Let 2 (0;1).
We say thab(X 1;:::;Xp) isa -robust estimatoif there exist universal constants; ¢, > 0 such
thatifn ¢ log(1= ), then with probability at least
r—
. . 2log(1=
jb(fXigls;) Xi @ %:
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Examples of -robust estimators include the median-of-means estimator and CQ}oni's estir@tor [

This work employs the use of the Catoni estimator which satig€sXgl-; ) Xj nzzz',%g%

forn > 2log(1= ) which leads to an optimal leading constanhasl . See p] or [18] for more
details.

Proposition 1. Letxy;:::; X, be drawn IID from a distribution . Assume thath ; x sij B
andE[jh;xsi  ysj?] 2. LetP : X ! [0;1] be arbitrary. LetQ(xs)  Bernoulli(P (xs))
independently for alé 2 [n]. For a given nite setv  RY de ne for anyv 2 V

wy = Catoni( fhv;Ex  [P(X)XX 7] *Q(xs)XsYsigl-; ):
jwy h v ij
P(x)xx >7 1

If D= argmin max, Rk,
1 , it holds that
) § p _
viP ik ke, meooxxcpr 16B2+ 2)log(2jVi=)

andn  4log(2Vj=), then with probability at least

Proof. Inspired by [5], we note that

jhlvi h ;vij jBvi  w, +w, ho;vi
max = max
v2v kaEx [P (X)XX >] 1 v2Vv kaEX [P (X)XX >] 1
iBvi  wyj jwy h ;vij
j I |1 j
v2v kaEx [P (X)XX >] 1 v2Vv kaEX NP (X)XX >] 1
. jhsvio wyj jwy h ;vij
= min max ) ) + max [y J
vav kaEx [P (X)XX >] 1 v2Vv kaEx [P (X)XX >] 1
jhovi wyj

2 max
v2v kaEX [P (X)XX >] 1
So it suf ces to show that eagh;vi w,j is small. We begin by xing some 2 V and bounding
the variance of” Ex  [P(X)XX >] 1Q(xs)Xsys for anys n which is necessary to use the
robust estimator. For readability purposes, we shdign . (x.) p(x.) @8SEx,;q in the rest of this
proof. Note that

Var, o (x) Pxe)(V Ex [P(X)XX ] *Q(Xs)XsYs)
=Ex.ol(V' Ex [P(X)XX ] 1Q(xs)XsYs)?]

ExcoV Ex  [P(X)XX ] *Q(xs)xsYs]?
which means we can drop the second term to bound the variance by
Exool (VW Ex  [P(X)XX *] *Q(Xs)XsYs ']
Excol V Ex  [POOXX ] 'Q(xs)xs(xs + s) 7]
= Exgol VI Ex  [POOXX 7] "Qxs)xs(x3 ) ]

+ Bl VVEx  [POOXX ] 1QXe)xs ~ 7]
BZExol VV Ex  [POXO)XX ”] 1Q(xs)Xs ']

+ 2E ol VEx  [POOXX ] 1Q(Xs)Xs ]
Ex. —(B*+ ?Equ.) PV Ex [P(X)XX ] *Q(xs)Xsxs Q(xs)Ex  [P(X)XX 7] V]
Ex. (B?+ HEqm.) PV Ex [P(X)XX ] 'Q(Xs)XsXZ Ex  [P(X)XX >] V]

Ex (B2+ %)WV Ex [P(X)XX 7] P(xs)xsxZEx  [P(X)XX ] v ;
where we used th@(xs)% = Q(xs) in equality (i) above. Thus, we have

Var(v’ Ex  [P(X)XX 7] *Q(xs)XsYs)

(BZ+ V7 (Ex [P(X)XX 7] 'Ex, [P(Xs)xsXgI(Ex [P(X)XX ] Y)v

— 2 2 2
=(B7+ Okvkig, prxyxx > 1

1S

S

18



By using the property of Catoni estimator stated in De nition 2, we hgyve P 2and
jhosvi wyj
=J'Cast0ni(fhv; Ex [POX)XX 7] 'Q(xs)xsysige-1) E[V;Ex  [P(X)XX ] *Q(xs)xsysi]i

2
pi (Var(hv;Ex  [P(X)XX >] 1Q(Xs)XsYsi)) |or?:(2)

(with probability at least. ifn 4log(2=))

S

482+ ?)log(2)
n

K Vkee  pooxx >

p
=kvkg, mpx)xx >1 1 4(B%+ 2)log(2=):

Finally, the proof is complete by taking union bounding overa? V. O
Lemma 3. Holds
kz z%2 s kz z K2 N
max Ex [2P (X)XXx >] 64 max Ex [P (X_)XX 1*
2;292Z - § z22Zn z e z; i2
Proof. LetS = fz2Z :he  z; i 4-g. Wehave
kz z%2 Ry kz z%?2 s
max Ex [2P (X)Xx >] 1 max Ex [2P (X)XxX >1 1
2;292Z - € z;202S - <
2
=16 max Kz ZOKEX [P OX)xXx 7] *
2;292S - 4 )2
2
samax 2 2 Ke 1P ooxx -y s
z2S- 4 )2
2
=64 max 2z, [P OX)Xx 7] *

z2s'nz maxf(4-)3;he z; i2g

kz z k2
Ex [P (X)OXX>] 1,
64 max - :
z27Zn z 74 Z , i2

B.2.1 Reparameterization

Proposition 2. Fix 24 x andany 24 x.Denek= k; =sup,,x (X)= (x)and ()=

2
kz z kE><

Maxze 2 TR T “1% Foranyt; 2 R. the following optimization problems achieve the
same value
e min tE [P (X)] subject tomax: kz 2 ke, (POOXx >] 1 t
PXl 0] 26z bz z; 12

. r;lin () subjectto k= k; () t

Let us rst prove a simple lemma.

Lemma 4. LetP denote the set of all functios: X ! [0; 1]. And forany 2 4 x with support
XletP®=f ,=,: 24%; 0: s=42][01]g ThenP = P°

Proof. FixanyP 2P . If =Py y=kP kyand = kP kithen = 2P%andisequalto
P. ThisimpliesP P ©

For the other direction, xany 2 4 x and Osuchthat 4= 4 2 [0;1]forallx. IfP = =
thenP 2 P which impliesP® P and concludes the proof. O
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Proof of Proposition 2.Using the above lemma we have that

min tEx [P(X)] subjectto max k2 2 kéx [POOXX 7] * t
P:X! [0:1] X 262 e z; i2
is equivalent to
kz z k2
. _ . E [ (X)=(X)XXx~>]1*
min tE X)= (X subjectto ma - . t
0; ' M [ ()= (X1 subj o e z; i2

xX)=(x) 1 8x2X

which is equal to, after simplifying,

kz z k2 N
min t subjectto max Bx [XX7)°
0; 24 26z e z; i2

xX)=(x) 1 8x2X

which is equal to

min U subjectto () u
u 0; 24

k= k]_ 5:

Note, there exists a feasible u ) precisely when there exists a2 4 x suchthak= k; () t,
in which case the optimization problem is equal to

rzrlin () subjectto k= ki () t

C Analysis of the Optimization Problem

C.1 Proof of Theorem 4

For simplicity, we will use instead of ,, to denote the number that controls the intensity of barrier
function.

The proof relies on analyzing another function: R Od 7! R. For simplicity, rst, we de ne
h (xX)=P (x) (logd P (x))+log(P (x))) P (x)x> x: 9)
P
Recall that our dual objective B( ) = IIZE’X [h (X)]+ & yav - y> yy. Since the rstterm

c?
in Ex [h (X)] only depends on = yav. y» Wecan consider the following optimization
problem. p
fO)=max | pnv. Y yy
subjectto oy y = (10)
y 0, 8y2Y::

Then, the alternative dual objecti@®() isdenedasD() = Ex [h (X)]+ &f() . We

can immediately see that maximiziy( ) is equivalent to maximizind (). In particular, let
2 argmax ,D() and ~ be the set of PSD matrices that solve probl@) and

Yy y2y
evaluatef (). We canseethat |, . = also maximize® (). Conversely, for = yoy- 2
argmax , o.gy D( ), wealsohave ,,, 2 argmax oD() .
Further, we also de ne their empirical versi@: andDg with extra i.i.d. sampleg;:::;x, as

De( )= Ea (xi) + 1% y” yy and De()= L5 )+ 510 ()
- Uiz | C‘zyzyx ’ ) Uiog | c? .
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Recall that the problem Algorithm 2 tries to solve is
minp Ex [P(X)  (log(1 P(X))+log(P(X)))] 12
subjectto Ex  P(X)XX >  Lyy*; 8y2Y-: 12)

We will restate a more precise version of Theorem 4 and then prove it.
Theorem 5. Supposéxk, M foranyx 2 supp( ) and = Ex XX Z isinvertible. Let

2 argmax o8, D( )and F]) = % be condition number. Assurke k. > 0and
dene! =min g k=1 Ex X> X 2 , whereS? is the set ofi  d symmetric matrices.
Letjy-jC2= %,/ kyk;.

P
Then, = yavy - y Is unique. Further, forany> Oand > 0, suppose it holds that
tr 3() k keM2 1 4 1 :
+
min F Tk KEM*p—
| 8 g FM P37
< 2880 2jy- i’k KEM4M4+C?) 2k k.M2+1 *loge=) 1+ 2
126

576 () 2k k2M® 2k k.M2+1 ‘log6=) 1+ 2
126 :

Then, with probability atleast  , Algorithm 2 will output® that satis es

1

* v Ex Pe(X)XX> "y (1+ )% 8y2Y-.

h i
» Ex Pe(X)  Ex B(X) +4 P ~, where® is the optimal solution to problef20).

Proof. First Bullet Point. Fix some > 0. Let " and corresponding = P yov. |y be the
parameters obtained by Algorithm 2 just before the re-scaling step, which means that at line 10 of
Algorithm 2, the assignment 6’fy to eachy 2 Y- has been optimized by solving probld&D). That

is, we haveD (") = D(J andDe (") = De () . Let © and® be the ones after the re-scaling step.
Then, by Theorem 3.13 of [21], with probability at ledst 5, it holds that

Reg(K)+2p 2K log(6=)
K L
whereReg(K) is the regret of running projected stochastic gradient ascenk fateps with
K spacihed in Algorithm 2. Meanwhile, by Theorem 4.14 1] also, we haveReg(K) =

B0 2 | nd K | nd 2 _ p oy _
2B k=1 y2v. KOy Ky, whereB = = jY:-jk kg bound the norm of =

D( ) b= b( ) DY)

y ya2vy.°
- P

Since gy = - Prgo(Xk)XkXg, we can easily get y,y. Kgky K 2jiY-jM* +

Z yav - kyk‘z1 =2jY-jM*+2jY:jC?. Thus, we have

q p_ p_
Reg(K) 2jY:jk k2 jY-jM4+jY:jC? " K := Crey K (13)
P
— — Creg t2_ 2log(6=

5 B( ) D) Rt 2l0E), (14)

K

We now consider the effect of usingi.i.d. samples in the re-scaling step. First, since re-scaling
always increases the function value, we must Hagé ") Dg (€). Meanwhile, sincd®e (") =
De () , by Lemma 10, we havBe (") = De (9 , which together implieDe (§  De(§ .
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By Lemma 5, we know that is unique and as long as ?Lé D() is G-strongly concave with

respect to, norm overS = f 0:k ke 2k Kkgg, whereGisde nedin Eq.(21). Thus, by
Lemma 11, ifK is large enough such that

P
_ — Creg t 2 2log(6= Gk k
D( ) D() et 20E) £,
K 2
then " _ k ke, which implies " 2k ke. That is," 2 S. Then, under this
condition, by using Lemma 8, when $k k. M*and
0 . p 1>
6 () Kk keM* 2+ 2log(6=) 1+
u @ 5z A (15)

for € after re-scaling, with probability at least =, it holds simultaneously that
G? G ?

be() DO gy 1+ @9d De® DO g - @O
=) D( ) D(§ D( ) b+ D() D@3
D( ) D()+ D() De()+ De(§ D(§ o
. (SinceDe()  De(§)
Creg * 2, K2 log(6=) , . '\jf (2) T (ByEq. (14)and (16))
Since® is a smaller re-scaling df, we have® 2 S, which implies$ e D( ) D(§

by property of strongly concave functio8][ Therefore, by Lemma 12, to guarantee an at most
multiplicative constraint violation, it is suf cient to choosé such that

> e D() DG
Creg +2£ 2log(6=) . _26 2
K M2 () 1+
min 4G ? Gk ke
3M2 () 1+ ' 2
_ 42 (I qs()k YRR
3M2 () 1+ 8
An algebraic rearrangement gives us
12
@3 () M2 CReg+2p 2log(6=) 1+ A an

2G 2

Second Bullet Point. We then prove the upper bound for primal objective vatite P (X) ,
which explains the reason why an extra re-scaling step is needed. Qéshe= De(s ©).
By construction, we know thaj(s) is maximized ats = 1 because® = s ", wheres =
argmaxs, 0.) De (s ™). Therefore, we havg¥1) 0, which in turn gives us

0 1 X X S
g(1)= 2 y” €yy U Pe (X)X €x; O

y2y - i=1

By the concentration inequality in Lemma 8, we know that when

0 12
2k ke M? k ke M?Z+ p2log(6=)

@ A

3=2 !

(18)
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with probability at leaslL 5, it holds that
. X § p_
Ex P (X)X~ X m P (Xi)X{ X
L X h i=1 i
=)z YOy Ex Pe(X)X7eX «
" y2y-

P— o (19)

Now, let® be the optimal solution of proble(@0)andP be the optimal solution of the same problem
with bound constraint P (x) 1

minp  Ex  [P(X)]
subjectto Y Ex  P(X)XX> 'y & 8y2Y; (20)
0 P(x) 1 ; 8x2X:
Then, we can notice that
Ex Pe(X)
Ex  Pe(X)  (log(l Pe(X))+log( Pe (X))
Ex  Pe(X) (log(l Pe(X)) +h|09( Pe (X)) :

1 X
t g y €y Ex Pe(X)X”EX +
" y2y-

P- (By Eq. (19))

= irgc L(P;€)+ P— (By de nition of Lagrangian function and how we solve fBr )

max infL (P; )+p*
y 0:8y2Y- P

=Ex [P (X) (og@ P (X)+log(P (X)]+ "~
Ex BX) logl PX))  log BX) +P—
(SinceP is feasible to problem (12))

h p
afora2 (0;1))

i

Ex PX) +3°7 (Since alog(a)
i

Ex B(X) +4 P (SinceP (x) can have at most more contribution tha®)

Therefore, in %Jmmary, Suppoke andu satisfy conditions speci ed in Eq(17), (15) and(18)
M L kﬁ M 4: ?&—5 , whereCreq andG are de ned in Eq.
(13) and (21), respectively. Then. by applying a simple union bound, with probability at least
1 ,the output of Algo'tlithm 2|9 satis esy” Ex P(X)XX > ly (L+ )% 8y2Y- and

Ex Po(X) Ex RB(X) +4P— 0

and min

C.2 Relevant Lemmas
C.2.1 Strong Concavity ofD ()

Lemma5. As long as ?J—é D() isG-strongly concave with respect tg-norm on the bounded

regionS = f 0:k ke 2k kg gwith coef cient h _
[
Ex X> X °: 1)

G= 5 min
2(2k ke M2+1) 25k ke =1
Because of this, as a corollary, will be unique.

Proof. By Lemma 6, sincd () is concave in , it is suf cient to prove thattx [h (X)] is
G-strongly concave o8, whereh (x) is de ned in Eq. (9). Then, we have

r 2Ex [h (X)]= Ex ?j%(x)vec XX > vec XX > ~
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Sincekxk, M, forany 2S,wehaveq (x)= x> x 1 2k k:M?+1.BylLemma, 14,
we know thatifl2 2 2k k. M2+1 2, which can be done by choosing 57, we have

dP
W(X) 2 oMLY foranyx 2 X and 2hS. Therefore, we have i

r 2Ex [h (X)] Ex vec XX > vec XX > ~

Now, letS be the set of ald  d symmetric matrices. It is obvious th&tis a subspace of the

vector space of all d matrices andd S. Thus, by applying Lemma 7, we can conclude that

Ex [h (X)]is G-strongly concave o with respect tdﬁ norm and i

G= 5 min  vec() >Ex  vec XX > vec XX > ~ vec()
2(2k ke M2+1) 25tk ke =1 H i

Ex X> X %

= 5 min
2(2k ke M2+1) 25k kg =1
Thus the proof is complete. O

Lemma6. f () denedin Eq.(10)is concave in .

Proof. To show its concavity, consider® 0, @  0andsome 2 (0;1). Let( {’),oy. be
the optimal solution obtained by evaluatihg () fori 2 f 1;2g. Then, we can notice that

f(®+@ H( @)= y Wy+@ )y @y
2Y - y2yY -
— > 1 2
= y( P+ra ) Py
y2Y -
f( @ + 1 ) (2)):
p - |
The last inequality above holds because,,, . = O fori 2 f1;29 and thus
v 9@ )P = @e@ ) @ whichmeansthat P+ ) {?)yav.
is a feasible solution for proble@0)with parameter M +(1 ) @ . Therefore, we can conclude
thatf () is concavein . O

Lemma 7. Letf : RY 7! R be a convex and twice differentiable functiorRf. If for some subspace
S RY we haveminwzs:kwkzzl w”r 2f (x)w > 0,8x 2 S, thenf is -strongly convex with
respect to ,-norm onS.

Then, for eackx 2 S, there exists unique 2 R™ such thak = V z, whereV =[v; ! vyl

That is, there is one-to-one correspondence bet@eamdR™ .

Now, we de neg : R™ 7! Rasg(z) = f (V2. Itis easy to compute 2g(z) = V>r ?f (V2)V.

fhen, notice that for any® 2 R™ such thatkw%, = 1, we haveVw® 2 S andkVwk, =
wo>V>Vwo= " wo>w0=1. Thus, we have

min wor 2g(z)w°= min woVZr 2 (V2)VwW
wOo2 R™M :kwOk,=1 wOo2 R™M :kwOk,=1

= mn wr?(Vow
w2 S:kwk,=1

Thereforegis -strongly convex with respect to norm. Then, for anxy;x, 2 S, there exists
uniquezi; z; 2 R™ such thak; = V z; andx; = V 2. Notice thatkz; 2ok, = kxy X2k, since
V preserves the norm. Further, by de nition of strong convexity, for ar® [0; 1], we have

o(z1+@ )+ 5 (1 ka 2k g@)+(@ )9z)
=) f(Vzir(@ WVt 5 (1 )k xkg  f(Vz)+(L )f(Vz)
=) F(xa+@ )x)+ 5 @ Dka Xk f (xa)+@ ) (x):

Thus,f is also -strongly convex with respect {@ norm onS. O

N |
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C.2.2 Concentration Inequalities

Lemmas8. Letxy;:::; Xy bei.i.d. samples. If" . 2k kg, kxk, M foranyx 2 X and
n o}

A

2k k2 M*, thenwith probability atleast %, itholdsforany 2 = s ™ s2[0;1]
simultaneously that

1 2k k. M2 2+ Zioge=)
Ex [h (X)] m h (xi) P=

. u
i=1
s 2k ke M? k ke M2+ p2Iog(6=)
Ex P (X)X> X 5 P (X)X Xi P= :
i=1
Proof. To prove the rst inequality, rst, notice that we have (x) = P (xX)q (x)

(log( P (x))+log( P (x))), whereq (x) = x> x 1. SinceP (x), de ned in Eq. (7),
explicitly only depends o (x) instead ofx directly, we can treat as a function ofj and de ne

afunctionclas§ = x 7! x>(s ) x:s2[0:1] . Itis well-known that ifh is L1-Lipschitz

ing andjh (x)] Rpforany 2 andx , then, with probability at least 5, it holds
simultaneously forall 2  that[2, 19]

r—
1 X 2log(6=
Ex Ol 0 h () 2 Ry(F)+ Ry 29D, (22)
i=1
whereR , (F) is the Rademacher complexity Bf.
To nd L,, we can compute
dh dpP dpP
dg dq dg 1 P P
= ddiqq P + (;% (SinceP satis es Eq. (6))
= P
Therefore, we hav%*(‘]— 2 1, 3 bylLemma 14. Therefore, we can ¢gt=1.
Let hg be the value oh whenq = 1, which meanx® x =0. To nd Ry, notice that since
% 2 1 5 ,wemusthave g + hp h 30 + ho. By Lemma 14, we know that
ho 2 O; P = Therefore, we have x> x  h (x) 3X7 X+ 3P~ for anyx 2 X and

AN

2 . Sincek kg 2k kg, we havgh (x)] 2k kg M2 := Ry, which holds

when gk k,2: M 4. Then, by Lemma 9, we know th&, (F) &pkg—'vlz Thus, plugging in

values ofL 1, R; andR  (F) into Eqg. (22) gives our rst concentration inequality.

We can basically follow exactly the same strategy to prove the second concentration inequality. In
particular, de nefi (x) = P (x)x> x = P (x)q (x) + P (x). Then, with probability at least
1 5, itholds simultaneously forany 2 that
h i xu P
Ex MO o B(x) 2 RyF)+ R, 209D,
i=1

(23)

where i (x) Rpforanyx2X, 2 andh isL,-Lipschitzing .

To nd L,, we can compute



h i
By Lemma 14, we know tha%Z— 2 0;¢ . Thus, we have% 1+ kiiFMz = L,. Itis

obvious thati (x) 2k ke M?2:= Ry. Thus, by plugging the values bb, R, andR(F) into
Eqg. (23), we can obtain the second concentration inequality.

Finally, both concentration inequalities hold simultaneously with probability at Ibas% by a
simple union bound. O

q = [/v> A"~Avi2l
Lemma9. If " . 2k kg, then, we have,(F) B [(ﬁ a2 pkui'v'z,where
n o
F= x7'x>(s Yx:s2[01] .
Proof. Let q;:::; y bei.i.d. Rademacher random variables, which are uniform pvés +1g.
Letxq;:ii; Xy be i.i.d. samples. Then, by de nition of Rademacher complexity, we have
" #
(RS
Ru(F)=E sup-— iq(xi)
ar U
" #
X iy
=E sup = X (s xi (By de nition of F)
s2io; YU
n X1 ) X1 #
1
O q x> "xi 0 i "X
u " o i=1 # i=1
1
“E i X
u i=1
Yy —2 —3
u xu T2
1 g4 ix>"xj 5 (By Jensen's inequalit
J iXp X y quality)
i=1
V _u “
u i
g _ X A, 2 : .
=34 E X7 X (Since j'sarei.i.d. ancE[ ;]=0)
=1
\lﬂ |
i E x> X
X
_t 2k ke M2,
u u

P
Here, the equality (i) holds because whel‘i?:l iX7 “xi < 0, the supremum oves 2 [0; 1] will be
obtained by taking = O; otherwise, it will be obtained by takirng= 1. O

C.2.3 Other Lemmas

The following lemma basically shows thia) is linear in scalar multiplication.

_ P
Lemma 10. If De (") = DE(Si,with "= ",y "y, then, forany 0, it holds thatDe (s
)= De(s ) ,whereDg andDe are de ned in Eq.(11).

P > N — P > N —
Proof. It suf ces to show that if yav Y yY = f () ,then yav . Y (s “y)y="1(s 5 for
anys > 0. By de nition, we have

P
f(s Y=max | Py2Y\y> yY
subjectto .y y=s
y 0, 8y2Y::

AN
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For the above optimization problem, we can do a change of variable by se@ting% y =)
y =s 9. Then, we have

P
f(s Y=max | PVZY‘y>(S Dy
subjectto  ,,y.S 9=S
s U 0; 8y2Y::

AN

y

A P
=) f(s ’)=max y B y2Y~y> Sy
subjectto = . §="
Y0, 8y2Y::
X X

=) f(s Y= sf()=s vy y=  ¥y(s

y2yY - y2Y -
Thus, the proof is complete. O

AN

y)Y:

Lemma 11. Letf : RY 7! R be a concave function with maximizer over the convex set.
Further, assume that is G-strongly concave with respect @ norm in regionS \ C, where
S=fx:kx xk, AglIff(x) f(x) % andc?2 C,thenx 2 S.

Proof. By property of strong concavity, we know thdt(x ) f (x) % kx x k, for any

x 2 S\C . Now, suppose’satis esf (x ) f(x9 A2, x°2Candx®°2S. Then, we must have

kx° x k,>A.

Let 2 (0;1) be some numbersuchtiat x %+(1  )x lies onthe boundary &. By convexity,
we also have 2 C. Then, sincd is concave, we havie(z) f (x9+ (@1  )f(x ) >f (x9,
where the second inequality is strict becafige strongly concave in a region arourd. Since
f(x) f(x9 %, f is G-strongly concave 06 andz lies on the boundary &, we have

AG G AG
7—§kz xk, f(x) f(z)<f(x) f (x9 -
This is a contradiction and thus we must ha¥e S. O

The following lemma quantitatively describes how clésand  needs to be to ensure an at most
multiplicative constraint violation.

Lemma 12. Assumekxk, M foranyx 2 X. Let = Ex XX = 0 and =
argmax D() . Then, for any > 0, if we have
e 8 2 min()

F 3M2 () 1+ °

thenitholdsthay” Ex  Pe(X)XX > 'y (1+ )Pforanyy2Y-.

Proof. Fix some > 0. First, notice that if we regar@ as a function ofj (x) = x> x 1,itthen
holds that

2
kr P (X)k, = (;%r q (x) (;% xx> Z%Mz l\g—;
2

where we obtain the last inequality by using Lemma 14. Therefore, foxahy< and€® 0,

we have P¢(x) P (X) '\g—z € . by mean value theorem and Cauchy-Schwartz.
inequality.
Therefore, if we have € . , then
M 2 2
Pe(x) P (x) g =) Pe(x) P (¥
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MZ

=) Ex Pe(X)XX ” Ex P (X)XX~* 3 Ex XX
By Lemma 13, we know that
1 vy
> > > .
Y Ex  Pe(X)XX y 1+ )0 Ex  Pe(X)XX s (24)
Let = Ex P (X)XX > . Therefore, to guarantee the condition in E24), it is suf cient
to guarantee that M’ u{yﬁ which is equivalent to
2 > 2
woow MS—W> w C(Zv(vlz)) 8unit vectorw 2 RY
1 > yy M? : qa.
0 v w w 1+ )2 w g 8unit vectorw 2 R":
Therefore, it is suf cient to choosesuch that
M2 1 yy” , ) yy .

8 max () mn 1+ ) W:kl:/rv]!(r;:l w>w W 1+ )c? W
SinceP  satis es the constraint de ned in problefd2), we have %f Meanwhile, by
Lemma 14, we know tha® (x) 5 foranyx 2 X, which means that 3 . Thatis, for
any unit vectow 2 RY, we have

w”y 2
woow z and ww w 3 min () 5
> 2
which together impliesw” w  max 5 min() (W*C# . Therefore, it holds that
>, 2 ( > 2) S 2
wow oY max - -()'Wy vy
1+ )c? 3 ™Yoo 1+ )&
> 2 > 2)
=max = in () wy . Wy
N 3 m 1+ )R 1+ )&
3(1+ ) min ()
9w 24 n () :
min C2(1+ ) 3(1+ ) min .
Therefore, to guarantee the condition in Eq. (24), it is suf cient to have
M2 - min() :) - 82 min() .
8 31+ ) max() M2 max() 1+
Thus, the proof is complete. O

The following lemma is a result of standard Schur complement technique.
Lemma 13. If Ex P(X)XX > isinvertible andc > 0, then

VEx POOXX> 'y 20 Ex PX)XXZ yé/z:

Proof. For simplicity, letA = Ex P(X)XX > 0. Then, we consider the block matrix

yA> ZZ 2 RE) (@) jetu a]” 2 R™! with u 2 RY be some vector.
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Now, for one direction, suppos€ A 1y ¢ holds. Consider

[u a f; Zz : = U Au+2au’y+2ca? = r(u;a):

If we minimizer (u; a) overu, which means to treatas xed, we can get (by taking gradient and
setting it to zero)

u= aA ly =) ru;a=a y A ly:
Sincey” A ly ¢, weknowthar(u ;a) O, whichmeans(u;a) Oforany[u a]” 2 RY*L.

Then, if we minimizer (u; a) overa, we can get
> u> 2
a = ucgy =) r(u;a)= u’Au ng

S \2
Sincer(u;a) Oforany[u a]” 2 RY! we know that” Au (LCZQ 0 for anyu 2 RY.
Thatis, we haveé %%~

The other direction simply takes the above calculation in a reversed way and thus the proof is
complete. O

C.2.4 Properties ofP

A visualization ofP is given in Figure 2.

Figure 2: (left) A heatmap of sonfe  when problem dimension = 2, which shows thalP is
approximately an 0-1 threshold rule characterized by an ellipsoid. (right) A pPt @fs a function
ofg (x) = x> x 1, which shows that the change®f near the boundary of ellipsoid is sharper
when the barrier weight is smaller.

Lemma 14. The functiorP (x) de nedin(7), if regarding as afunctionaj (x) = x> x 1 1,
satis es

e limg, oP = Zforany 2 (0;1)
p

« Whenqg = 1P =1+ # 5 andP (log(1 P )+log(P )) P -
forany 2 (0;1).
P _ Pz o 2 S

‘4 " ﬁgm decreases ag” increases. Further,dq 2 [0; &]. Thus,P
increases monotonically @ increases an® (x) 5 foranyx 2 X and 0.

. ‘é%jq -1 Eand(é% s Wheng? 12 2,

29



	Introduction
	Related Work

	Selective Sampling for Best Arm Identification
	Optimal design
	Main results
	Selective Sampling Algorithm
	Implementation of OptimizeDesign

	Selective Sampling for Binary Classification
	Solving the Optimization Problem
	Empirical results
	Conclusion
	Selective Sampling Lower Bound
	Proof of Theorem 1, part I
	Proof of Theorem 1, part II

	Selective Sampling Algorithm for Known Distribution 
	Proof of Theorem 2, upper bound
	High-probability Events

	Technical Lemmas
	Reparameterization


	Analysis of the Optimization Problem
	Proof of Theorem 4
	Relevant Lemmas
	Strong Concavity of D()
	Concentration Inequalities
	Other Lemmas
	Properties of P

	An Alternative Approach to OptimizeDesign
	Technical Lemmas


	Selective Sampling Algorithm for Unknown Distribution 
	Statement and proof of Theorem 7
	Lemmas for the correctness

	Classification

