
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See the

Conclusion section.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See AppendixA.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Appendix
C.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix C.2.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A] We did try different random sends, but we chose the
worst case scenario.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix C.2.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes] The license issue is discussed in Appendix C.1.
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] We are not aware of any personally identifiable
information or offensive content in the datasets we use. See Appendix C.1.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

15

A Proofs

In this appendix, we present proofs of our theoretical results in the main paper.
Proposition 4. For Γ ⊆ H and domains S, T we have: TΓ(S, T) ≤ 2TrΓ(S, T).

Proof. We first note that:

TΓ(S, T) = sup
h∈Γ
|(εS(h)− εT (h)− (ε∗S − ε∗T))| ≤ sup

h∈Γ
|εS(h)− εT (h)|+ |ε∗S − ε∗T |

= TrΓ(S, T) + |ε∗S − ε∗T |. (A.1)

It suffices to prove that |ε∗S − ε∗T | ≤ TrΓ(S, T). Suppose TrΓ(S, T) ≤ δ, and h∗S ∈ argminh∈Γ εS .
Then εS(h∗S) = infh∈Γ εS = ε∗S and we have:

ε∗T − δ ≤ εT (h∗S)− δ ≤ εS(h∗S) = ε∗S , (A.2)

where in the first inequality, we used ε∗T = infh∈Γ εT (h), and in the second inequality, we used that
for any h ∈ Γ, we have:

εT (h)− εS(h) ≤ sup
h∈Γ
|εT (h)− εS(h)| = TrΓ(S, T) ≤ δ. (A.3)

Hence, we have ε∗T − ε∗S ≤ TrΓ(S, T). Since TrΓ(S, T) is symmetric in T and S, we also have
ε∗S − ε∗T ≤ TrΓ(S, T). Hence we have proved |ε∗S − ε∗T | ≤ TrΓ(S, T).

Proposition 5 (equivalence between transferability and transfer measures). Let δS > 0 and
Γ = argmin(εS , δS) and suppose infh∈Γ εT (h) = infh∈H εT (h). If TΓ(S‖T) ≤ δ or TΓ(S, T) ≤ δ,
then S is (δS , δ + δS)-transferable to T . If S is (δS , δT)-transferable to T , then TΓ(S‖T) ≤ δT
and TΓ(S, T) ≤ max{δS , δT }.

Proof. If TΓ(S‖T) = suph∈Γ εT (h)−ε∗T −(εS(h)−ε∗S) ≤ δ, then for any h ∈ Γ = argmin(εS , δS)
we have εS(h) ≤ ε∗S + δS and

εT (h)− ε∗T ≤ εS(h)− ε∗S + δ ≤ δS + δ. (A.4)

Since we assume ε∗T = infh∈Γ εT (h) = infh∈H εT (h), we obtain that S is (δS , δS + δ)-transferable
to T . If TΓ(S, T) ≤ δ, then TΓ(S‖T) ≤ δ, and S is (δS , δS + δ)-transferable to T .

If S is (δS , δT)-transferable to T , then for any h ∈ argmin(εS , δS), we have:

εT (h)− ε∗T − (εS(h)− ε∗S) ≤ εT (h)− ε∗T ≤ δT . (A.5)

We also have TΓ(S‖T) ≤ δT from (A.5). Moreover, we can derive that:

TΓ(T ‖S) = sup
h∈Γ

(εS(h)− ε∗S)− (εT (h)− ε∗T) ≤ sup
h∈Γ

(εS(h)− ε∗S) ≤ δS , (A.6)

and thus TΓ(S, T) ≤ max{δS , δT } from the definition.

Proposition 6 (pseudo-metric). For a general loss εD as in (1), TrΓ(S, T) is a pseudo-metric, i.e.,
for any distributions S, T ,P on the same underlying space, we have TrΓ(S,S) = 0, TrΓ(S, T) =
T r

Γ (T ,S) (symmetry), and TrΓ(S, T) ≤ TrΓ(S,P) + TrΓ(P, T) (triangle inequality).

Proof. TΓ(S,S) = 0 and TΓ(S, T) = TΓ(T ,S) follow from the definition. Denote the excess risk
excS(h) = εS(h)− ε∗S (we could change the letter S here). The triangle inequality can be derived as:

TΓ(S, T) = sup
h∈Γ
|excS(h)− excT (h)|

= sup
h∈Γ
|excS(h)− excP(h) + excP(h)− excT (h)|

≤ sup
h∈Γ
|excS(h)− excP(h)|+ sup

h∈Γ
|excP(h)− excT (h)|

= TΓ(S,P) + TΓ(P, T). (A.7)

Similarly, we can derive TΓ(S‖T) ≤ TΓ(S‖P) + TΓ(P‖T).

16

Proposition 7 (equivalence with total variation). For binary classification with labels {−1, 1},
given the 0-1 loss εD = ε0−1

D , we have TrΓ(S, T) ≤ dTV(S, T) for domains S, T and any Γ ⊆ H.
DenoteHt to be the set of all binary classifiers. Then we have dTV(S, T) ≤ 4TrHt

(S, T).

Proof. Let us first recall the definition of IPMs:

dF (S, T) = sup
f∈F

∣∣∣∣∣∑
y

∫
f(x, y)(pS(x, y)− pT (x, y))dx

∣∣∣∣∣ . (A.8)

The symmetric transfer measure TrΓ(S, T) and the total variation can be represented as:

TrΓ(S, T) = dFΓ
(S, T), dTV(S, T) = dFTV

(S, T), (A.9)

with FΓ := {(x, y) 7→ 1(h(x) 6= y), h ∈ Γ}, FTV = {f : ‖f‖∞ ≤ 1} (see also Appendix B.2).
The first sentence follows from FΓ ⊆ FTV, and the definition of IPM.

Now let us prove the case when Γ = Ht is unconstrained. Suppose TrHt
(S, T) ≤ δ, then for any

binary classifier h, we have |εS(h)− εT (h)| ≤ δ. For simplicity, denote the difference of the two
distributions as:

d(x, y) := pS(x, y)− pT (x, y). (A.10)

Take h+ to be the following (note that we allow the classifier to take a garbage value 0):

h+(x) =

0 if x ∈ B>> := {x ∈ X : d(x, 1) ≥ 0 and d(x,−1) ≥ 0}
−1 if x ∈ B>< := {x ∈ X : d(x, 1) ≥ 0, d(x,−1) < 0}
1 if x ∈ B<> := {x ∈ X : d(x, 1) < 0, d(x,−1) ≥ 0}
1 if x ∈ B−<< := {x ∈ X : d(x, 1) < d(x,−1) < 0}
−1 if x ∈ B+

<< := {x ∈ X : 0 > d(x, 1) ≥ d(x,−1)}

, (A.11)

and denote B<< := B−<< ∪ B+
<<. Then we have from the definition:

εS(h+)− εT (h+) =
∑
y

∫
(pS(x, y)− pT (x, y))1(h+(x) 6= y)dx

=

∫
d(x, 1)1(h+(x) 6= 1) + d(x,−1)1(h+(x) 6= −1)dx

=

∫
B>>

d(x, 1) + d(x,−1)dx+

∫
B><

d(x, 1)dx+

∫
B<>

d(x,−1)dx

−
∫
B<<

min{−d(x, 1),−d(x,−1)}dx. (A.12)

Moreover, one can verify that εS(h+)− εT (h+) = suph∈Ht
εS(h)− εT (h). Similarly, let us define

h− to be:

h−(x) =

0 if x ∈ B<< := {x ∈ X : d(x, 1) < 0 and d(x,−1) < 0}
−1 if x ∈ B<> := {x ∈ X : d(x, 1) < 0, d(x,−1) ≥ 0}
1 if x ∈ B>< := {x ∈ X : d(x, 1) ≥ 0, d(x,−1) < 0}
−1 if x ∈ B−>> := {x ∈ X : 0 ≤ d(x, 1) < d(x,−1)}
1 if x ∈ B+

>> := {x ∈ X : d(x, 1) ≥ d(x,−1) ≥ 0}

. (A.13)

Then we have from the definition:

εT (h−)− εS(h−) = −
∑
y

∫
(pS(x, y)− pT (x, y))1(h−(x) 6= y)dx

=

∫
−d(x, 1)1(h−(x) 6= 1)− d(x,−1)1(h−(x) 6= −1)dx

=

∫
B<<

−d(x, 1)− d(x,−1)dx+

∫
B><

−d(x,−1)dx+

∫
B<>

−d(x, 1)dx

−
∫
B>>

min{d(x, 1), d(x,−1)}dx. (A.14)

17

Moreover, εT (h−)− εS(h−) = suph∈Ht
εT (h)− εS(h). Summing over (A.12) and (A.14) we have:

2 sup
h∈Ht

|εS(h)− εT (h)| ≥ |εS(h+)− εT (h+)|+ |εT (h−)− εS(h−)|

≥ εS(h+)− εT (h+) + εT (h−)− εS(h−)

=

∫
B>>

max{d(x, 1), d(x,−1)}dx+

∫
B><

d(x, 1)− d(x,−1)dx

+

∫
B<>

−d(x, 1) + d(x,−1)dx+

∫
B<<

max{−d(x, 1),−d(x,−1)}dx.

(A.15)

On the other hand, we can compute the total variation between S and T :

dTV(S, T) =
∑
y

∫
|pS(x, y)− pT (x, y)|dx

=

∫
|d(x, 1)|+ |d(x,−1)|dx

=

∫
B>>

d(x, 1) + d(x,−1)dx+

∫
B><

d(x, 1)− d(x,−1)dx

+

∫
B<>

−d(x, 1) + d(x,−1)dx+

∫
B<<

−d(x, 1)− d(x,−1)dx

≤ 2

∫
B>>

max{d(x, 1), d(x,−1)}dx+ 2

∫
B><

d(x, 1)− d(x,−1)dx

+ 2

∫
B<>

−d(x, 1) + d(x,−1)dx+

∫
B<<

2 max{−d(x, 1),−d(x,−1)}dx

≤ 4 sup
h∈Ht

|εS(h)− εT (h)| = 4TrHt
(S, T), (A.16)

where in the last line we used (A.15).

In the proof above, we assumed a classifier h ∈ Γ is allowed to take a garbage value 0 if it is not sure
which label to choose. This is a mild assumption that can hold in practice.

Lemma 9’ (reduction of estimation error). Suppose Ŝ and T̂ are i.i.d. sample distributions drawn
from distributions of S and T , then for any Γ ⊆ H we have:

TΓ(S‖T) ≤ TΓ(Ŝ‖T̂) + 2estΓ(S) + 2estΓ(T), (A.17)

TΓ(S, T) ≤ TΓ(Ŝ, T̂) + 2estΓ(S) + 2estΓ(T), (A.18)

TrΓ(S, T) ≤ TrΓ(Ŝ, T̂) + estΓ(S) + estΓ(T), (A.19)

where we define

estΓ(S) = sup
h∈Γ
|εS(h)− εŜ(h)|, estΓ(T) = sup

h∈Γ
|εT (h)− εT̂ (h)|. (A.20)

Proof. We prove the first inequality for example and others follow similarly. Note that:

εT (h)− ε∗T − εS(h) + ε∗S = εT (h)− εT̂ (h) + εT̂ (h)− ε∗T − ε∗T̂ + ε∗T̂ − εS(h)− εŜ(h) + εŜ(h)+

+ ε∗S − ε∗Ŝ + ε∗Ŝ
= (εT̂ (h)− ε∗T̂ − εŜ(h) + ε∗Ŝ) + (εT (h)− εT̂ (h)) + (ε∗T̂ − ε

∗
T)+

+ (εŜ(h)− εS(h)) + (ε∗S − ε∗Ŝ). (A.21)

Taking the supremum on both sides we have:

TΓ(S‖T) ≤ TΓ(Ŝ‖T̂) + sup
h∈Γ
|εT (h)− εT̂ (h)|+ ε∗T̂ − ε

∗
T + sup

h∈Γ
|εŜ(h)− εS(h)|+ ε∗S − ε∗Ŝ .

(A.22)

18

Take h∗T ∈ argminh∈Γ εT (h) to be an optimal classifier. We can derive:

ε∗T̂ ≤ εT̂ (h∗T) ≤ ε∗T (h∗T) + estΓ(T) = ε∗T + estΓ(T). (A.23)

Therefore, ε∗
T̂
− ε∗T ≤ estΓ(T). Similarly, ε∗S − ε∗Ŝ ≤ estΓ(S). Combining all those above we obtain

(A.17).

Theorem 10’ (estimation error with Rademacher complexity). Given 0-1 loss εD = ε0−1
D , sup-

pose Ŝ and T̂ are sample sets with m and k samples drawn i.i.d. from distributions S and T ,
respectively. For any Γ ⊆ H any of the following holds w.p. 1− δ:

TΓ(S‖T) ≤ TΓ(Ŝ‖T̂) + 4Rm(FΓ) + 4Rk(FΓ) + 2

√
log(4/δ)

2m
+ 2

√
log(4/δ)

2k
, (A.24)

TΓ(S, T) ≤ TΓ(Ŝ, T̂) + 4Rm(FΓ) + 4Rk(FΓ) + 2

√
log(4/δ)

2m
+ 2

√
log(4/δ)

2k
, (A.25)

TrΓ(S, T) ≤ TrΓ(Ŝ, T̂) + 2Rm(FΓ) + 2Rk(FΓ) +

√
log(4/δ)

2m
+

√
log(4/δ)

2k
, (A.26)

where FΓ := {(z, y) 7→ 1(h(z) 6= y), h ∈ Γ}. If furthermore, Γ is a set of binary classifiers with
labels {−1, 1}, then 2Rm(FΓ) = Rm(Γ), 2Rk(FΓ) = Rk(Γ).

Proof. We use the following lemma, which a slight adaptation of Mohri et al. [34], Theorem 3.3:

Lemma 11. Let F be a family of functions from X ×Y to [0, 1]. Then for any δ > 0, with probability
at least 1 − δ over the draw from a distribution S of an i.i.d. samples S of size m, {wi}mi=1, the
following holds for all f ∈ F ,∣∣∣∣∣E[f(w)]− 1

m

m∑
i=1

f(wi)

∣∣∣∣∣ ≤ 2Rm(F) +

√
log(2/δ)

2m
. (A.27)

Proof. From Mohri et al. [34], Theorem 3.3, we know with probability at least 1− δ/2, the following
holds

E[f(w)]− 1

m

m∑
i=1

f(wi) ≤ 2Rm(F) +

√
log(2/δ)

2m
. (A.28)

This result relies on applying McDiarmid’s inequality on Φ(S) = supf∈F E[f]− 1
m

∑m
i=1 f(wi). By

repeating the same proof and applying McDiarmid’s inequality on Φ′(S) = supf∈F
1
m

∑m
i=1 f(wi)−

E[f], we conclude that with probability at least 1− δ/2, the following holds

1

m

m∑
i=1

f(wi)− E[f(w)] ≤ 2Rm(F) +

√
log(2/δ)

2m
. (A.29)

Therefore, with union bound we obtain that with probability (w.p.) at least 1− δ, we have (A.27).

Let us now go back to the proof of Theorem 10’. Taking FΓ = {(z, y) 7→ 1(h(z) 6= y), h ∈ Γ}, we
can derive from the theorem above that w.p. at least 1− δ:

estΓ(S) = sup
h∈Γ
|εS(h)− εŜ(h)| ≤ 2Rm(FΓ) +

√
log(2/δ)

2m
. (A.30)

With (A.30) we know that with probability at least 1− δ/2:

estΓ(S) = sup
h∈Γ
|εS(h)− εŜ(h)| ≤ 2Rm(FΓ) +

√
log(4/δ)

2m
, (A.31)

19

and w.p. at least 1− δ/2:

estΓ(T) = sup
h∈Γ
|εT (h)− εT̂ (h)| ≤ 2Rk(FΓ) +

√
log(4/δ)

2k
, (A.32)

therefore from union bound w.p. at least 1− δ we have:

estΓ(S) + estΓ(T) ≤ 2Rm(FΓ) + 2Rk(FΓ) +

√
log(4/δ)

2m
+

√
log(4/δ)

2k
. (A.33)

Moreover, from Lemma 3.4 of Mohri et al. [34] we have
2Rm(FΓ) = Rm(Γ), 2Rk(FΓ) = Rk(Γ), (A.34)

for binary classification. The rest follows from Lemma 9’.

Proposition 11 (transfer measure with a surrogate loss). Given surrogate loss εD ≥ ε0−1
D on a gen-

eral domain D. Suppose Γ = argmin(εS , δS) and denote ε∗T = infh∈Γ εT (h), ε∗S = infh∈Γ εS(h),
(ε0−1
T)∗ = infh∈H ε

0−1
T (h). If the following holds:
TΓ(S‖T) = sup

h∈Γ
εT (h)− ε∗T − (εS(h)− ε∗S) ≤ δ, (8)

then we have argmin(εS , δS) ⊆ argmin(ε0−1
T , δ + δS + ε∗T − (ε0−1

T)∗).

Proof. Suppose (8) holds and thus for any h ∈ argmin(εS , δS) we have:

ε0−1
T (h) ≤ εT (h) ≤ (εS(h)− ε∗S) + δ + ε∗T ≤ δS + δ + ε∗T . (A.35)

The rest follows from definitions.

Proposition 12 (domain generalization guarantee). Suppose we have n distributions Sg1 , . . . ,Sgn
which satisfy

sup
h∈Γ

max
i
εSg

i
(h)−min

j
εSg

j
(h) ≤ δ. (A.36)

Then for any two distributions T g1 , T
g

2 in conv(Sg1 , . . . ,Sgn), we have TrΓ(T g1 , T
g

2) ≤ δ.

Proof. For the ease of notation we omit the superscript g in the proof. We treat distributions as
probabilistic measures and thus for any h ∈ H, εD(h) is a linear function of D, if we treat D as a
probability measure. It suffices to prove for a linear function f , we have:

|f(
∑
i

πiSi)− f(
∑
j

π′jSj)| ≤ max
i
f(Si)−min

j
f(Sj), (A.37)

where πi, π′j ≥ 0 and
∑
i πi =

∑
j π
′
j = 1. This is because

|f(
∑
i

πiSi)− f(
∑
j

π′jSj)| = |f(
∑
i,j

πiπ
′
jSi)− f(

∑
i,j

πiπ
′
jSj))|

= |f(
∑
i,j

πiπ
′
j(Si − Sj))|

= |
∑
i,j

πiπ
′
jf(Si − Sj)|

≤
∑
i,j

πiπ
′
j |f(Si − Sj)|

≤ max
i,j
|f(Si)− f(Sj)|

= max
i
f(Si)−min

j
f(Sj). (A.38)

The second and the third lines follow from the linearity of f and the fourth line follows from triangle
inequality. Therefore, taking f : D 7→ εD(h) for any h ∈ Γ, and T1 =

∑
i πiSi, T2 =

∑
j π
′
jSj , we

can derive from (A.38) that:
|εT1

(h)− εT2
(h)| ≤ max

i
εSi(h)−min

j
εSj (h), (A.39)

for any h ∈ Γ. Taking the supremum over h on both sides we finish the proof.

20

Theorem 12 (optimization guarantee). Assume that the function q(·, x) is Lθ Lipschitz continuous
for any x. Suppose we have learned a feature embedding g and a classifier h such that the loss
functional εSg

i
: H → R is L` Lipschitz continuous w.r.t. distribution Sgi for i ∈ [n] and

max
‖θ′−θ‖≤δ

1

n

n∑
i=1

εSi(h ◦ g) +
(
maxiεSi(h

′ ◦ g)−miniεSi(h
′ ◦ g)

)
≤ η, (15)

where θ, θ′ are parameters of h and h′. Then for any h′ ∈ Γ = {q(θ′, ·) : ‖θ − θ′‖ ≤ δ}, we have:

TrΓ(T g1 , T
g

2) ≤ η, εSi(h
′ ◦ g) ≤ η + L`Lθδ, εT (h′ ◦ g) ≤ 2η + L`Lθδ, (16)

for any T g1 , T
g

2 , T g ∈ conv(Sg1 , . . . ,Sgn) and any i ∈ [n].

Proof. From (15) we know that:

maxiεSi(h
′ ◦ g)−miniεSi(h

′ ◦ g) ≤ η, (A.40)

for any h′ = q(θ′, ·) and ‖θ′ − θ‖2 ≤ δ. Taking h′ = h, we obtain that:

max
i
εSi(h ◦ g) = min

i
εSi(h ◦ g) + max

i
εSi(h ◦ g)−min

i
εSi(h ◦ g)

≤ 1

n

n∑
i=1

εSi(h ◦ g) + max
i
εSi(h ◦ g)−min

i
εSi(h ◦ g)

≤ η. (A.41)

In other words, for any i ∈ [n] = {1, . . . , n}, εSi(h ◦ g) ≤ η holds. We have from Theorem 25
‖h− h′‖1,D ≤ Lθδ for any probability measure D. Using Definition 19 we know that |εSi(h

′ ◦ g)−
εSi(h ◦ g)| ≤ L`Lθδ. Therefore, for any h′ ∈ Γ, we have:

εSi(h
′ ◦ g) ≤ εSi(h ◦ g) + L`Lθδ ≤ η + L`Lθδ. (A.42)

From (A.40) and Prop. 12, for any T ∈ conv(S1, . . . ,Sn) and any Si, TrΓ(T ,Si) ≤ η holds, and
thus from the definition of TrΓ we have the third inequality of (16). The first inequality of (16) follows
from Proposition 12.

B Additional theoretical results

In this appendix we present additional theoretical results as supplementary material.

B.1 Necessity of excess risks

We give an example where the realizable transfer measure is large but the source domain is transferable
to the target domain.
Example 13. Consider two distributions:

pS(X,Y) =

{
0.5 Y = 1, −1 ≤ X < 0,

0.5 Y = −1, 0 ≤ X < 1
, pT (X,Y) =

0.2 Y = 1, −1 ≤ X < 0,

0.2 Y = −1, 0 ≤ X < 1

0.3 Y = 1, −1 ≤ X < 1

0.3 Y = −1, −1 ≤ X < 1

, (B.1)

and the hypothesis class H to be the same as Example 8. Then S is (0.5δ, 0.2δ)-transferable
(Definition 1) for small δ. However, for any Γ that includes the optimal (source and target) classifier
h0 we have

TrΓ(S, T) = sup
h∈Γ
|εS(h)− εT (h)| ≥ |εS(h0)− εT (h0)| = 0.3. (B.2)

The example above shows that when the optimal errors of two domains are dissimilar, simply
measuring the difference of errors cannot fully describe the transferability. Instead, we should
consider the difference of the excess risks as in Definition 1.

21

B.2 Other IPMs

Different choices the the function class in (6) could lead to various definitions [46]:

• maximum mean discrepancy (MMD): FMMD = {f : ‖f‖Hilbert ≤ 1} where the norm
‖f‖Hilbert is defined on a reproducing kernel Hilbert space (RKHS).

• Wasserstein distance: FWasserstein = {f : ‖f‖L ≤ 1} where ‖f‖L = 1 is the Lipschitz
semi-norm of a real valued function f . It is also known as the Kantorovich metric.

• total variation metric: FTV = {‖f‖∞ ≤ 1} where ‖f‖∞ = supx{|f(x)|} is the bound of
f . This measures the total difference of the probability density functions (PDFs).

• Dudley metric: FDudley = {‖f‖∞ + ‖f‖L ≤ 1}.

• Kolmogorov distance: FKolmogorov = {x 7→ 1(x ≤ t), t ∈ Rd} where we have x ∈ Rd and
x ≤ t means that for all components we have xi ≤ ti. This measures the total difference of
the cumulative density functions (CDFs).

B.3 Estimation of transfer measures with VC dimension and Natarajan dimension

In this section, we review Rademacher complexity and show that it can be upper bounded by VC
dimension [e.g. 44]. We use VCdim(·) to represent the VC dimension of a function class. We also
show that the estimation error in Lemma 9’ can be upper bounded with Natarajan dimension.

Definition 14 (Rademacher complexity). The Rademacher complexity of an i.i.d. drawn sample
set S = {wi}mi=1, over F is defined as:

Rm(F) = ES

[
Eσi

sup
f∈F

1

m

m∑
i=1

σif(wi)

]
, where

{σi}mi=1 are independently drawn such that Pr(σi = 1) = Pr(σi = −1) =
1

2
.

Lemma 15. Denote d = VCdim(Γ) where Γ is a set of functions taking values {−1,+1}. For any
m ∈ N+, we have:

Rm(Γ) ≤

√√√√ 2

m
log

d∑
i=0

(
m

i

)
, (B.3)

if m ≥ d, then

Rm(Γ) ≤
√

2d

m
log

em

d
. (B.4)

Proof. This lemma follows from Corollary 3.8, Theorem 3.17 and Corollary 3.18 of Mohri et al.
[34].

Combining Theorem 10’ and Lemma 15, we obtain the following corollary:

Corollary 16. Suppose Ŝ and T̂ are sample distributions of S and T , with samples drawn i.i.d.
Denote the sample numbers of Ŝ and T̂ are separately m and k. If H is a set of binary classifiers

22

with labels {−1, 1}, then for any Γ ⊆ H with d = VCdim(Γ), any of the following holds w.p. 1− δ:

TΓ(S‖T) ≤ TΓ(Ŝ‖T̂) + 2

√√√√ 2

m
log

d∑
i=0

(
m

i

)
+ 2

√√√√2

k
log

d∑
i=0

(
k

i

)
+ 2

√
log(4/δ)

2m
+ 2

√
log(4/δ)

2k
,

(B.5)

TΓ(S, T) ≤ TΓ(Ŝ, T̂) + 2

√√√√ 2

m
log

d∑
i=0

(
m

i

)
+ 2

√√√√2

k
log

d∑
i=0

(
k

i

)
+ 2

√
log(4/δ)

2m
+ 2

√
log(4/δ)

2k
,

(B.6)

TrΓ(S, T) ≤ TrΓ(Ŝ, T̂) +

√√√√ 2

m
log

d∑
i=0

(
m

i

)
+

√√√√2

k
log

d∑
i=0

(
k

i

)
+

√
log(4/δ)

2m
+

√
log(4/δ)

2k
.

(B.7)

If m ≥ d and k ≥ d, then any of the following holds w.p. 1− δ:

TΓ(S‖T) ≤ TΓ(Ŝ‖T̂) + 2

√
2d

m
log

em

d
+ 2

√
2d

k
log

ek

d
+ 2

√
log(4/δ)

2m
+ 2

√
log(4/δ)

2k
, (B.8)

TΓ(S, T) ≤ TΓ(Ŝ, T̂) + 2

√
2d

m
log

em

d
+ 2

√
2d

k
log

ek

d
+ 2

√
log(4/δ)

2m
+ 2

√
log(4/δ)

2k
, (B.9)

TrΓ(S, T) ≤ TrΓ(Ŝ, T̂) +

√
2d

m
log

em

d
+

√
2d

k
log

ek

d
+

√
log(4/δ)

2m
+

√
log(4/δ)

2k
. (B.10)

Moreover, if the hypothesis classH is the set of all possible functions that can be constructed through
a fixed structure ReLU/LeakyReLU network, with W the number of parameters and L the number of
layers, then there exists an absolute constant C such that d ≤ CWL logW [7].

A generalization of VC dimension is called Natarajan dimension [38], which coincides with VC
dimension when the classification task is binary. We have the following result [44, Theorem 29.3]:

Lemma 17. Suppose the Natarajan dimension of Γ is d and the number of classes isK for multiclass
classification. There exists absolute constant C such that for any domain D, with probability 1− δ
the following holds:

estΓ(D) = sup
h∈Γ
|εD(h)− εD̂(h)| ≤ C

√
d logK + log(1/δ)

m
. (B.11)

With this lemma we have the corollary:

Corollary 18. Suppose the Natarajan dimension of Γ is d and the number of classes is K for
multiclass classification. Suppose Ŝ and T̂ are i.i.d. sample distributions drawn from distributions of
S and T , with sample number m and k, then w.p. at least 1− δ we have:

TΓ(S‖T) ≤ TΓ(Ŝ‖T̂) + 2C

√
d logK + log(2/δ)

m
+ 2C

√
d logK + log(2/δ)

k
, (B.12)

TΓ(S, T) ≤ TΓ(Ŝ, T̂) + 2C

√
d logK + log(2/δ)

m
+ 2C

√
d logK + log(2/δ)

k
, (B.13)

TrΓ(S, T) ≤ TrΓ(Ŝ, T̂) + C

√
d logK + log(2/δ)

m
+ C

√
d logK + log(2/δ)

k
. (B.14)

Proof. This proof is similar to the proof of Theorem 10’, using union bound as in (A.33).

Estimation of Natarajan dimension can be found in Natarajan [38], Shalev-Shwartz and Ben-David
[44].

23

B.4 Functional point of view of surrogate loss

In this appendix we study the Lipschitzness and strong convexity of the surrogate loss, especially
cross entropy. We use the terms distribution and measure interchangeably, since distributions can be
treated as probability measures.

B.4.1 Lipschitz continuity of loss

Let define the Lp distance (p ≥ 1) (e.g. Rudin [42]) between two functions:

‖h− h′‖p,µ =

(∫
‖h(x)− h′(x)‖p2dµ

)1/p

, (B.15)

where µ is a measure. We consider the following definition of Lipschitz functional:

Definition 19 (Lipschitz continuity). A functional h 7→ f(h) that maps a function to a real number
is f is Lipschitz continuous onH w.r.t. measure µ if there exists an absolute constant L such that:

|f(h)− f(h′)| ≤ L‖h− h′‖1,µ (B.16)

for all function h, h′ ∈ H.

One can show that the cross entropy loss is a Lipschitz continuous functional with mild assumptions:

Proposition 20. For binary classification with labels {−1,+1}, suppose H is a hypothesis class
whose elements satisfy h : X → (−1 + δ, 1 − δ) with 0 < δ < 1, then εCE

D is (log 2)−1δ−1

Lipschitz continuous w.r.t. any distribution D. Furthermore, for multi-class classification, suppose
Y = {1, 2, . . . ,K} and the prediction h(x) is a K-dimensional probability vector on the simplex.
If H is a hypothesis class whose elements satisfy hi(x) ≥ δ for all i ∈ Y and x ∈ X , then εCE

D is
(log 2)−1δ−1 Lipschitz continuous w.r.t. any distribution D.

Note that a simplex is defined as: {π ∈ Rd : 1>π = 1, πi ≥ 0}, where π is called a probability
vector. Before we move on to the proof, we can show that the assumption of h is often satisfied in
practice. For binary classification, the widely used tanh/sigmoid function can guarantee that the value
of h is never exactly −1 or 1. For multiclass classification, the softmax function guarantees that
hi(x) > 0 for all i and x ∈ X . If the input space is bounded and h is continuous, then hi(x) ≥ δ for
all i and x ∈ X .

Proof. For binary classification we have:

εCE
D (h) =

∫
pD(x, 1)`CE(h(x), 1) + pD(x,−1)`CE(h(x),−1)dx

=

∫
−pD(x, 1) log2

1 + h(x)

2
− pD(x,−1) log2

1− h(x)

2
dx. (B.17)

Therefore, with the mean value theorem we have:

|εCE
D (h)− εCE

D (h′)| = (log 2)−1

∣∣∣∣∫ (h(x)− h′(x))

(
−pD(x, 1)

1 + hξ(x)
+
pD(x,−1)

1− hξ(x)

)
dx

∣∣∣∣ ,
≤ (log 2)−1

∫
|h(x)− h′(x)|

∣∣∣∣−pD(x, 1)

1 + hξ(x)
+
pD(x,−1)

1− hξ(x)

∣∣∣∣ dx
≤ (log 2)−1

∫
|h(x)− h′(x)|

(∣∣∣∣−pD(x, 1)

1 + hξ(x)

∣∣∣∣+

∣∣∣∣pD(x,−1)

1− hξ(x)

∣∣∣∣) dx
≤ (log 2)−1

∫
|h(x)− h′(x)|δ−1(pD(x, 1) + pD(x,−1))dx

= (log 2)−1δ−1‖h− h′‖1,D. (B.18)

where in the first line hξ(x) = (1− ξ(x))h(x) + ξ(x)h′(x) is a (pointwise) convex combination of
h(x) and h′(x) with 0 ≤ ξ(x) ≤ 1; in the third line we used triangle inequality; in the fourth line we
use the condition that the values of h, h′ are in the region (−1 + δ, 1− δ).

24

Similarly, for multiclass classification with K classes, the ground truth y is a one-hot K-dimensional
vector, and the prediction h(x) is a K-dimensional vector on a simplex. The cross entropy loss is:

εCE
D (h) =

∑
y

∫
`CE(h(x), y)p(x, y)dx =

∑
y

∫
−y · log2 h(x)p(x, y)dx. (B.19)

Similarly, we have:

|εCE
D (h)− εCE

D (h′)| = (log 2)−1

∣∣∣∣∣∑
y

∫
−y · h(x)− h′(x)

hξ(x)
pD(x, y)dx

∣∣∣∣∣
≤ (log 2)−1

∑
y

∫ ∣∣∣∣−y · h(x)− h′(x)

hξ(x)

∣∣∣∣ pD(x, y)dx

≤ (log 2)−1δ−1
∑
y

∫
‖y‖2 · ‖h(x)− h′(x)‖2pD(x, y)dx

= (log 2)−1δ−1‖h− h′‖1,D, (B.20)

where in the first line we use the mean value theorem and hξ(x) = (1− ξ(x))h(x) + ξ(x)h′(x) is a
(pointwise) convex combination of h(x) and h′(x) with 0 ≤ ξ(x) ≤ 1; also in the first line we define
(h(x)− h′(x))/hξ(x) to be a vector with each component to be (hi(x)− h′i(x))/hξ(x)i; in the third
line we use Cauchy–Schwarz inequality and that hi(x) ≥ δ, h′i(x) ≥ δ for any i and any x ∈ X .

B.4.2 Strongly convex functional

So far, we have seen that for Lipschitz continuous loss, if the change of h is small, then the change
of loss εD(h) is also small. Now we ask if the converse is true. This is important to characterize
the δ-minimal set (the set of approximately optimal classifiers). We first define strongly convex
functional:
Definition 21. A functional f : H → R is λ-strongly convex on a convex set H w.r.t. measure µ if
for any h, h′ ∈ H and α ∈ [0, 1], we have:

f(αh+ (1− α)h′) ≤ αf(h) + (1− α)f(h′)− λ

2
α(1− α)‖h− h′‖22,µ, (B.21)

where we defined the L2 norm of a function:

‖h− h′‖2,µ :=

(∫
‖h− h′‖22dµ

)1/2

. (B.22)

We use L2 norm because it can translate the strong convexity of the loss functional to the strong
convexity of the loss function `(·, y) easily:
Lemma 22. Given a convex hypothesis class H, suppose that ` is λ-strongly convex in the first
argument, i.e. for any y ∈ Y , ŷ1, ŷ2 and α ∈ [0, 1] we have:

`(αŷ1 + (1− α)ŷ2, y) ≤ α`(ŷ1, y) + (1− α)`(ŷ2, y)− λ

2
α(1− α)‖ŷ1 − ŷ2‖22, (B.23)

then the loss functional

εD(h) =
∑
y

∫
pD(x, y)`(h(x), y)dx (B.24)

is also λ-strongly convex w.r.t. measure D.

Proof. Straightforward by plugging in Definition 21.

For cross entropy loss, we have the following:
Corollary 23. For binary classification, cross entropy risk functional εCE

D is (4 log 2)−1-strongly
convex on D and (log 2)−1-strongly convex on D for multiclass classification.

25

Proof. For binary classification, we have:

`CE(ŷ, 1) = − log2

1 + ŷ

2
, `CE(ŷ,−1) = − log2

1− ŷ
2

, (B.25)

which are both (4 log 2)−1-strongly convex on ŷ ∈ (−1, 1). For multiclass classification, we have:

`CE(ŷ, y) = − log2 ŷi, (B.26)

for any unit one-hot vector y = ei (ei is the ith element of standard basis in RK). This is (log 2)−1-
strongly convex for ŷi ∈ (0, 1). The rest follows from Lemma 22.

From the strongly convexity we can derive the uniqueness of the function (up to L2 norm) and relate
δ-minimal set to an L2 neighborhood of an optimal classifier.

Theorem 24. For any λ-strongly convex functional f on a convex hypothesis classH w.r.t. measure
µ, the minimizer is almost surely unique, in the sense that if h∗1, h∗2 are both minimizers, then

‖h∗1 − h∗2‖2,µ = 0, (B.27)

and thus h∗1, h∗2 only differ by a measure zero set. Suppose h∗ ∈ argmin f(h). If f(h) ≤ f∗ + ε with
f∗ the optimal value, then

‖h− h∗‖2,µ ≤
√

2

λ
ε. (B.28)

Proof. It suffices to prove the second claim only. From the definition of strong convexity, for
α ∈ [0, 1] we have:

f∗ ≤ f(αh∗ + (1− α)h) ≤ αf(h∗) + (1− α)f(h)− λ

2
α(1− α)‖h∗ − h‖22,µ

≤ (1− α)ε+ f∗ − λ

2
α(1− α)‖h∗ − h‖22,µ, (B.29)

where we use h∗ ∈ argmin f(h) and f(h) ≤ f∗ + ε. From this inequality we obtain that:

‖h− h∗‖22,µ ≤
2ε

αλ
. (B.30)

By taking α→ 1 we obtain (B.28).

With this theorem we can characterize the δ-minimal set argmin(εD, δ) as some neighborhood of
the unique optimal classifier h∗, if the functional εD is strongly convex and Lipschitz continuous.
Symbolically, it can be represented as:

B2(h∗) ⊆ argmin(εD, δ) ⊆ B1(h∗), (B.31)

where Bp(h∗) is some Lp norm ball with the center h∗.

B.4.3 Parametric formulation of classifier

We discussed the Lp distance between functions in previous subsections. In practice the functions are
often parametrized:

h(x) = q(θ, x). (B.32)

One can show that Lp distances between two functions h = q(θ, ·) and h′ = q(θ′, ·) on the function
space can be upper bounded:

Theorem 25. Suppose h = q(θ, ·) is parameterized by θ and for any x ∈ X , q(·, x) is L-Lipschitz
continuous (w.r.t. `2 norm), then for any 1 ≤ p <∞ and probability measure µ we have:

‖h− h′‖p,µ ≤ L‖θ − θ′‖2. (B.33)

26

Proof. From the Lipschitz continuity we can derive:

‖h− h′‖p,µ =

(∫
‖h(x)− h′(x)‖p2dµ

)1/p

=

(∫
‖q(θ, x)− q(θ′, x)‖p2dµ

)1/p

≤
(∫

(L‖θ − θ′‖2)pdµ

)1/p

= L‖θ − θ′‖2. (B.34)

The theorem above tells us that in parametrized models the closeness in terms of parameters can
imply the closeness in terms of the model function. However, the converse may not be true. For
example, we can permute hidden neurons of the same layer in a neural network and obtain the same
function, but the parametrization can be drastically different.

B.5 Comparison with other frameworks

We compare our Algorithm 2 with existing adversarial training frameworks.

Distributional robustness optimization (DRO) Sinha et al. [45] proposed a distributional robust-
ness framework for generalizing to unseen domains. In this framework, the following minimax
problem is proposed:

min
g,h

max
S′:W (S′,S)≤δ

ε′S(h ◦ g), (B.35)

which says that the classification error is small for any distribution S ′ close to our original source
distribution S. Here W (·, ·) denotes the Wasserstein metric. As we have discussed in Example 8,
transferability does not necessarily mean that the distributions have to be close.

DANN The Domain Adversarial Neural Network (DANN) formulation [16] solves the following
minimax optimization problem:

min
g,h

max
h′

εS(h ◦ g) + Ex∼pS |x [log(h′ ◦ g)(x)] + Ex∼pT |x [log(1− (h′ ◦ g)(x))], (B.36)

where g is a feature embedding, h is a classifier and h′ is a domain discriminator. If we can solve the
inner maximization problem exactly, then we obtain the Jensen–Shannon divergence between the
push-forwards of the input distributions g#pS |x and g#pT |x. In other words, we want to obtain a
feature embedding g and a classifier h such that:

εS(h ◦ g) +DJS((g#pS |x)‖(g#pT |x)), (B.37)

is minimized, with DJS denoting the Jensen–Shannon divergence. On the one hand, we need to have
small classification error given the feature embedding g. On the other hand, the feature embedding
between source and target should be similar. Our framework is similar to DANN in the sense that
they both solve minimax problems. The difference is that we minimize the transfer measure which is
weaker than the similarity between distributions (Example 8).

H∆H-divergence Finally we prove that our transfer measure is tighter than H∆H-divergence
[12]. We rewrite the theoretical result regardingH∆H-divergence:
Theorem 26 (Theorem 1, [12]). Let λ∗ = argminh∈H(εT (h) + εS(h)), and theH∆H-divergence
between the input marginal distributions S|x and T |x to be dH∆H(S|x, T |x), then for binary
classification and for any h ∈ H we have:

εT (h) ≤ εS(h) + λ∗ +
1

2
dH∆H(S|x, T |x). (B.38)

Now let us prove that our Proposition 3 is tighter than Theorem 26:

27

Proposition 27. The target error bound with our transfer measure TΓ(S‖T) is tighter than the target
error bound withH∆H-divergence, i.e., for any h ∈ Γ we have:

εT (h) ≤ εS(h) + ε∗T − ε∗S + TΓ(S‖T) ≤ εS(h) + λ∗ +
1

2
dH∆H(S|x, T |x). (B.39)

Proof. Note that from Definition 2 we can rewrite the middle of (B.39) as suph∈Γ(εT (h)− εS(h)).
Suppose h∗ ∈ argmaxh∈Γ(εT (h)− εS(h)), then from Theorem 26 we have:

εT (h∗) ≤ εS(h∗) + λ∗ +
1

2
dH∆H(S|x, T |x), (B.40)

and thus:

ε∗T − ε∗S + TΓ(S‖T) = sup
h∈Γ

(εT (h)− εS(h)) = εT (h∗)− εS(h∗) ≤ λ∗ +
1

2
dH∆H(S|x, T |x).

(B.41)

C Additional Experiments

We present additional experimental details in this section.

C.1 Datasets

The four datasets in this paper are RotatedMNIST [18], PACS [28], Office-Home [51] and WILDS-
FMoW [23]. Here is a short description:

• RotatedMNIST: this dataset is an adaptation of MNIST. It has six domains, and
each domain rotates the images in MNIST with a different angle. The angles are
{0◦, 15◦, 30◦, 45◦, 60◦, 75◦}. We choose the domain with 0◦ to be the target domain and
the rest to be the source domains. Each image is grayscale and has 28 × 28 pixels. The
label set is {0, 1, . . . , 9}. The numbers of images of each domain are 11667, 11667, 11667,
11667, 11666, 11666. The total is 70000.

• PACS: this dataset has four domains: photo (P), art painting (A), cartoon (C) and sketch (S).
Each image is RGB colored and has 224× 224 pixels. There are 7 categories in total and
9991 images. The number of images of each domain: A: 2048; C: 2344; P: 1670; S: 3929.
We choose the art painting domain to be the target domain and the rest to be the source
domains.

• Office-Home: this dataset has four domains: Art, Clipart, Product, Real-World. Each image
is RGB colored and has 224 × 224 pixels. There are 65 categories and 15588 images in
total. The numbers of images of each domain: Art: 2427, Clipart: 4365, Product: 4439,
Real-World: 4357. We choose the Art domain to be the target domain and the rest to be the
source domains.

• WILDS-FMoW: WILDS [23] is a benchmark for domain generalization including several
datasets. The Functional Map of the World (FMoW) is one of them, which is a variant
of Christie et al. [14]. Each image is RGB colored and has 224 × 224 pixels. There
are 62 categories and 469835 images in total. There six domains in total and we choose
five of them, since the last domain has too few images. The numbers of images of each
domain are 103299, 162333, 33239, 157711, 13253, and we choose the last domain as
the target domain. The rest are source domains. The license can be found at https:
//wilds.stanford.edu/datasets/.

C.2 Experimental settings

We introduce the experimental settings in this subsection. The code is modified from https:
//github.com/facebookresearch/DomainBed, with the license in https://github.com/
facebookresearch/DomainBed/blob/master/LICENSE.

28

https://wilds.stanford.edu/datasets/
https://wilds.stanford.edu/datasets/
https://github.com/facebookresearch/DomainBed
https://github.com/facebookresearch/DomainBed
https://github.com/facebookresearch/DomainBed/blob/master/LICENSE
https://github.com/facebookresearch/DomainBed/blob/master/LICENSE

• Hardware: Our experiments are run on a cluster of GPUs, including NVIDIA RTX6000, T4
and P100.

• Datasplit: we use the same data split as in Gulrajani and Lopez-Paz [20] except the WILDS-
FMoW dataset, where we throw away the last region because it has only very few samples
(201 samples). For all datasets we use data augmentation.

• Batch size: for all experiments on RotatedMNIST we choose batch size 64, for Office-Home
and PACS we choose batch size 32 (for our Transfer algorithm and PACS we choose batch
size 16), and for WILDS-FMoW we choose batch size 16. In each epoch, we go through k
steps, where k is the smallest number of samples among domains, divided by the batch size.

• Optimization: for the training of all other algorithms different from our Transfer Algorithm,
we use the default setting from Gulrajani and Lopez-Paz [20]. We choose Adam as the
default optimizer for training, with learning rate 1e-3 for RotatedMNIST, and learning rate
5e-5 for other datasets. For RotatedMNIST, PACS and Office-Home we run for 5000 steps;
For WILDS-FMoW we run for 50000 steps.

• Neural Architecture: we use the same neural architecture as in Gulrajani and Lopez-Paz
[20]. For each dataset, the feature embedding and classifier architectures for all algorithms
are the same. Specifically, all classifiers are linear layers. For RotatedMNIST the feature
embedding is CNN with batch normalization and for other datasets the feature embedding is
ResNet50.

• Algorithm 1: we choose Adam optimizer with projection. The learning rates are the same
as the training algorithms: for RotatedMNIST we choose 1e-3, and we choose 5e-5 for
others. We run the algorithm for 10 epochs and for three independent trials. Among the
three trials, we choose the accuracies with the largest gap between the target domain and
one of the source domains. The source domain is chosen in such a way that the gap is the
largest among all source domains.

• Algorithm 2 optimization: for RotatedMNIST we run Adam for minimization with learning
rate 0.01 and Stochastic Gradient Ascent (SGA) for maximization with learning rate 0.01.
We choose the ascent steps to be 30 for each inner loop and the projection radius to be
δ = 10.0; for PACS we run Adam for minimization with learning rate 5e-5 and Stochastic
Gradient Ascent (SGA) for maximization with learning rate 0.001. We choose the ascent
steps to be 30 for each inner loop and the projection radius to be δ = 0.3; for Office-Home
dataset we load the pretrained model from SD, and run Stochastic Gradient Descent Ascent
with learning rate 0.001 and δ = 0.3, i.e., each inner loop takes only one step of SGA and
each outer loop takes one step of SGD; for WILDS-FMoW dataset we loaded the pretrained
model from ERM, and run SGA for 20 steps in each inner loop, with learning rate 0.001
and δ = 0.5, for each outer loop we run SGD with lr = 0.001.

• Step number for Algorithm 2: for RotatedMNIST and PACS we train for 8000 outer steps
with each outer step including 30 inner steps. For Office-Home we train for 5000 outer steps
with each outer step including one inner step; for WILDS-FMoW we train for 5000 outer
loops with each outer step including 20 inner steps.

C.3 Additional results

We present additional experiments on RotatedMNIST [18], PACS [28] and Office-Home [51]. Thanks
to the suite from Gulrajani and Lopez-Paz [20], we are able to compare a wide array of algorithms
under the same settings. The algorithms that we compare include

• Empirical Risk Minimization [ERM, 50]

• Invariant Risk Minimization [IRM, 3]

• Domain Adversarial Neural Network [DANN, 16]

• Conditional DANN [CDANN, 31]

• Correlation Alignment [CORAL, 47]

• Maximum Mean Discrepancy [MMD, 30]

• Variance Risk Extrapolation [VREx, 26]

29

• Mariginal Transfer Learning [MTL, 11]

• Spectral Decoupling [SD, 40]

• Meta Learning Domain Generalization [MLDG, 29]

• Mixup [53, 54]

• Representation Self-Challenging [RSC, 22]

• Group Distributionally Robust Optimization [GroupDRO, 43]

• Style-Agnostic Network [SagNet, 37]

C.3.1 RotatedMNIST

In Figure 4 we show the performance of various algorithms on RotatedMNIST, including ERM,
IRM, DANN, CORAL, MMD, VREx, MTL, SD and our Transfer algorithm. It can be seen that
many algorithms fail our attack. For instance, based on the learned features, MTL classifies a source
domain with ∼95% (at δ = 3.0) but the target accuracy drops by ∼20%.

We also compare our Transfer algorithm (Algorithm 2) with different hyperparameters. From Figure
5 we can see that for RotatedMNIST, taking more inner steps (per outer step) has better performance.

Finally, we present results from Algorithm 1 with information about losses and accuracies, for a wide
array of algorithms in Table 2.

Figure 4: Measuring the transferability of various algorithms for domain generalization on Ro-
tatedMNIST. For the Transfer algorithm we take δ = 10.0 and the number of ascent steps to be
30.

Figure 5: Evaluation of transferability of popular algorithms for domain generalization on Transfer
algorithm with different hyperparameters. The dataset is RotatedMNIST. For the ascent method
we use SGD with learning rate 0.01, and the descent method to be Adam with learning rate 10−3.
“Transfer_d_δ” means the inner loop takes d steps with the radius δ.

30

Table 2: Evaluation of transferability of popular algorithms for domain generalization on RotatedM-
NIST. algorithm: the model that we evaluate; δ: the adversarial radius δ we choose in Algorithm
1; max/min index: the index of the domain with the maximal/minimal (test) classification errors
(w.r.t. 0-1 loss), and index 0 denotes the target domain; max/min loss: the largest/smallest loss
among domains (including the target domain); worst/best acc: the smallest/largest classification
test accuracies among domains (including the target domain). All the algorithms are using the same
architectures for the feature embedding and the classifier.

algorithm δ max index min index max loss min loss worst acc best acc
ERM 0.0 0 4 0.229 0.003 92.93% 98.80%
ERM 2.0 0 4 0.975 0.083 78.61% 97.17%

GroupDRO 0.0 0 4 0.136 0.000 95.76% 99.27%
GroupDRO 2.0 0 4 0.370 0.015 84.48% 98.07%

SagNet 0.0 0 4 0.109 0.000 96.61% 99.36%
SagNet 2.0 0 4 0.222 0.008 91.30% 98.67%

IRM 0.0 0 4 0.578 0.263 81.87% 92.20%
IRM 2.0 0 4 1.759 0.637 46.29% 86.76%

DANN 0.0 0 5 0.136 0.014 95.41% 98.29%
DANN 2.0 0 5 0.441 0.098 85.81% 96.19%
ARM 0.0 0 4 0.145 0.002 95.76% 99.10%
ARM 2.0 0 4 0.523 0.047 84.23% 98.54%
Mixup 0.0 0 4 0.175 0.009 94.98% 99.36%
Mixup 2.0 0 4 0.701 0.035 73.98% 98.71%

CORAL 0.0 0 4 0.119 0.001 95.93% 99.31%
CORAL 2.0 0 4 0.230 0.005 91.77% 98.89%
CORAL 3.0 0 4 0.372 0.056 86.67% 97.73%
MMD 0.0 0 3 0.125 0.005 96.19% 99.14%
MMD 2.0 0 3 0.199 0.014 93.61% 99.01%
MMD 3.5 0 3 0.300 0.036 89.54% 97.86%
RSC 0.0 0 4 0.146 0.000 95.46% 99.31%
RSC 1.0 0 4 0.360 0.007 89.33% 98.71%
RSC 2.0 0 4 1.343 0.289 72.01% 92.11%

VREx 0.0 0 5 0.137 0.003 94.94% 98.97%
VREx 2.0 0 5 0.551 0.082 81.74% 97.81%

CDANN 0.0 0 5 0.121 0.010 95.97% 98.76%
CDANN 2.0 0 5 0.410 0.079 84.78% 95.67%
MLDG 0.0 0 5 0.151 0.000 95.63% 98.89%
MLDG 2.0 0 5 0.351 0.006 88.90% 98.76%
MTL 0.0 0 4 0.150 0.000 94.98% 99.44%
MTL 2.0 0 4 0.417 0.014 84.57% 98.20%
SD 0.0 0 2 0.250 0.092 95.63% 99.01%
SD 2.0 0 2 0.630 0.490 92.76% 98.97%
SD 3.0 0 2 1.070 0.937 88.81% 98.33%

31

C.3.2 PACS

We implement similar experiments on PACS. Figure 6 and Table 3 show the results of Algorithm 1.
Figure 7 shows that taking more inner steps has better performance.

Figure 6: Measuring the transferability of various algorithms for domain generalization on PACS
dataset. For the Transfer algorithm we choose δ = 0.3, batch size 16, the number of ascent steps to
be 30 using SGD with learning rate 0.001.

C.3.3 Office-Home

We present results from Algorithm 1 with information about losses and accuracies, for a wide array
of algorithms in Table 4 for Office-Home. It can be seen that CORAL and SD learn more robust
classifiers while other algorithms are not quite transferable: with a small decrease of source accuracy
the target accuracy drops significantly.

Figure 7: Evaluation of transferability of popular algorithms for domain generalization on Transfer
algorithm with different hyperparameters. The dataset is PACS. One can see that if the number of
inner steps is large and δ is large, then the classifier is more robust. “Transfer_d_δ” means the
inner loop takes d steps with the radius δ.

32

Table 3: Evaluation of transferability of popular algorithms for domain generalization on PACS.
algorithm: the model that we evaluate; δ: the adversarial radius δ we choose in Algorithm 1;
max/min index: the index of the domain with the maximal/minimal (test) classification errors
(w.r.t. 0-1 loss); max/min loss: the largest/smallest loss among domains (including the target domain);
worst/best acc: the smallest/largest classification test accuracies among domains (including the target
domain).

algorithm δ max index min index max loss min loss worst acc best acc
ERM 0.0 0 2 1.327 0.011 74.33% 96.11%
ERM 0.2 0 2 2.449 0.064 63.33% 94.91%

GroupDRO 0.0 0 2 0.820 0.012 83.13% 97.60%
GroupDRO 0.2 0 2 1.509 0.052 75.79% 95.81%

SagNet 0.0 0 2 0.919 0.002 77.51% 99.10%
SagNet 0.1 0 2 1.409 0.014 71.39% 97.01%
SagNet 0.2 0 2 2.002 0.094 60.64% 94.31%
Mixup 0.0 0 2 0.471 0.009 86.06% 99.70%
Mixup 0.1 0 2 0.681 0.016 78.97% 98.80%
Mixup 0.2 0 2 0.974 0.067 66.26% 96.41%

CORAL 0.0 0 2 0.743 0.006 83.13% 97.31%
CORAL 0.2 0 2 0.954 0.008 80.68% 97.60%
CORAL 0.3 0 2 1.147 0.012 78.00% 96.71%
MMD 0.0 0 2 0.776 0.005 81.42% 97.31%
MMD 0.1 0 2 1.203 0.006 74.33% 96.41%
MMD 0.2 0 2 1.832 0.066 65.04% 93.11%
RSC 0.0 0 2 1.089 0.003 77.75% 95.81%
RSC 0.1 0 2 2.535 0.129 63.81% 93.41%
RSC 0.2 0 2 4.732 0.560 43.52% 82.63%

VREx 0.0 0 2 0.593 0.002 84.84% 97.60%
VREx 0.1 0 2 0.912 0.009 77.51% 97.01%
VREx 0.2 0 2 1.518 0.049 66.99% 94.61%
MTL 0.0 0 2 1.269 0.001 79.95% 96.11%
MTL 0.2 0 2 2.477 0.060 67.73% 93.41%
SD 0.0 0 2 0.589 0.113 85.33% 98.20%
SD 0.2 0 2 0.930 0.262 80.44% 97.60%
SD 0.3 0 2 1.191 0.454 73.35% 96.11%

33

Table 4: Evaluation of transferability of popular algorithms for domain generalization on Office-
Home. algorithm: the model that we evaluate; δ: the adversarial radius δ we choose in Algorithm
1; max/min index: the index of the domain with the maximal/minimal (test) classification errors
(w.r.t. 0-1 loss); max/min loss: the largest/smallest loss among domains (including the target domain);
worst/best acc: the smallest/largest classification test accuracies among domains (including the target
domain).

algorithm δ max index min index max loss min loss worst acc best acc
ERM 0.0 0 2 2.688 0.054 54.43% 88.16%
ERM 0.1 0 2 3.701 0.098 47.63% 87.37%

GroupDRO 0.0 0 2 2.940 0.072 58.76% 88.61%
GroupDRO 0.1 0 2 4.042 0.147 50.72% 86.81%

SagNet 0.0 0 2 2.030 0.055 56.08% 87.94%
SagNet 0.1 0 2 2.316 0.071 54.02% 88.05%
Mixup 0.0 0 2 1.657 0.051 60.62% 90.76%
Mixup 0.1 0 2 2.074 0.075 53.40% 90.08%

CORAL 0.0 0 2 1.878 0.043 59.79% 89.06%
CORAL 0.1 0 2 2.111 0.053 56.70% 88.73%
MMD 0.0 0 2 2.201 0.037 56.49% 89.74%
MMD 0.1 0 2 2.860 0.060 50.93% 88.16%
VREx 0.0 0 2 1.926 0.207 55.46% 85.46%
VREx 0.1 0 2 2.414 0.245 49.28% 84.89%
MTL 0.0 0 2 2.736 0.047 52.58% 87.71%
MTL 0.1 0 2 3.921 0.109 42.06% 85.12%
SD 0.0 0 2 1.535 0.047 64.33% 91.54%
SD 0.1 0 2 1.717 0.049 63.51% 92.33%

34

	Proofs
	Additional theoretical results
	Necessity of excess risks
	Other IPMs
	Estimation of transfer measures with VC dimension and Natarajan dimension
	Functional point of view of surrogate loss
	Lipschitz continuity of loss
	Strongly convex functional
	Parametric formulation of classifier

	Comparison with other frameworks

	Additional Experiments
	Datasets
	Experimental settings
	Additional results
	RotatedMNIST
	PACS
	Office-Home

