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Abstract

Data valuation arises as a non-trivial challenge in real-world use cases such as
collaborative machine learning, federated learning, trusted data sharing, data mar-
ketplaces. The value of data is often associated with the learning performance (e.g.,
validation accuracy) of a model trained on the data, which introduces a close cou-
pling between data valuation and validation. However, a validation set may not
be available in practice and it can be challenging for the data providers to reach
an agreement on the choice of the validation set. Another practical issue is that of
data replication: Given the value of some data points, a dishonest data provider
may replicate these data points to exploit the valuation for a larger reward/payment.
We observe that the diversity of the data points is an inherent property of a dataset
that is independent of validation. We formalize diversity via the volume of the data
matrix (i.e., determinant of its left Gram), which allows us to establish a formal con-
nection between the diversity of data and learning performance without requiring
validation. Furthermore, we propose a robust volume measure with a theoretical
guarantee on the replication robustness by following the intuition that copying the
same data points does not increase the diversity of data. We perform extensive
experiments to demonstrate its consistency in valuation and practical advantages
over existing baselines and show that our method is model- and task-agnostic and
can be flexibly adapted to handle various neural networks.

1 Introduction

Data is increasingly recognized as a valuable resource [19], so we need a principled measure of its
worth. A suitable data valuation has wide-ranging applications such as fairly compensating clinical
trial researchers for their collected data [12, 16, 25], fostering collaborative machine learning and
federated learning among industrial organizations [35, 36, 39], encouraging trusted data sharing and
building data marketplaces [7, 30, 32, 37], among others.

A popular viewpoint is that the value of data should correlate with the learning performance of a model
trained on the data [14, 18], which enforces a close coupling between data valuation and validation.
However, a validation set may not always be available in practice [35]. Also, as different choices
of the validation set can lead to different data valuations, it is challenging for the data providers to
agree on the choice of such a validation set [35]. Since valuation is coupled with validation, if the
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validation set is not sufficiently representative of the distribution of test queries in a learning task, the
resulting valuation may not be as accurate/useful [40]. We adopt a different perspective: The value of
data should be related to its intrinsic properties and valuation can be decoupled from validation by
considering the inherent diversity of the data. Intuitively, a more diverse collection of data points
corresponds to a higher-quality dataset and thus yields a larger value. This perspective circumvents
the above practical limitations and allows our valuation method to be model- and task-agnostic. We
formalize diversity via the volume of the data matrix (i.e., determinant of its left Gram).

Data replication is another practical issue in data valuation due to the digital nature and anonymous
setting of data marketplaces [15]. Supposing a dataset has some value and a data provider instead
offers one containing two copies of every data point in this dataset, is this “new” dataset twice as
valuable as the original one? Intuitively, the answer should be no as replication adds no new data and
so does not increase diversity. We formalize this intuition by constructing a compressed version of
the original data to assign little value to replicated data and still preserve its inherent diversity, hence
guaranteeing replication robustness.

We provide theoretical justifications for formalizing diversity via volume: Firstly, diversity should be
non-negative and monotonic [14, 18, 35, 38] and volume satisfies both properties. Secondly, a greater
diversity should lead to a better learning performance [23]: We formally show that a larger volume
generally leads to a better performance using the ordinary least squares (OLS) framework and our
method can be flexibly adapted to handle more complex machine learning models (i.e., various neural
networks) in our experiments. Specifically, data with a larger volume can lead to a more accurate
pseudo-inverse (i.e., a key component of the least squares solution) and a smaller mean squared error.

To ensure replication robustness, we find that the marginal increase in value from replication must
diminish to zero. Otherwise, a data provider can exploit this valuation by making infinite copies
of the data to achieve infinite value. We thus formalize the notion of replication robustness via
the asymptotic value attainable through replication. Unfortunately, the conventional definition of
volume does not have this property. So, we propose a robust volume (RV) measure by constructing a
compressed version of the original data that groups similar data via discretized cubes of the input
feature space and represents those in each cube via a statistic. The RV measure offers practitioners
the flexibility to trade off between diversity representation and replication robustness via the cube’s
width. We perform extensive experiments on synthetic and real-world datasets to demonstrate that
our method produces consistent valuations with existing methods while making fewer assumptions.

The specific contributions of our work here include:

� Formalizing a measure of data diversity via the volume of data (Sec. 2) and justifying the suitability
of volume for data valuation both theoretically (Sec. 3) and empirically (Sec. 5);

� Formalizing the notion of replication robustness and designing a data valuation method based on
the robust volume (RV) measure with a theoretical guarantee on replication robustness (Sec. 4);

� Performing extensive empirical comparisons with baselines to demonstrate that our method is
consistent in valuation without validation, replication robust, and can be flexibly adapted to handle
complex machine learning models such as various neural networks (Sec. 5).

2 Problem Setting and Notations

Consider two data submatrices XS and XS0 to be valued that contain s and s′ rows of d-dimensional
input feature vectors, respectively. Let PS := [X>S 0]> 2 Rn×d be the zero-padded version of
XS 2 Rs×d. We concatenate the data submatrices along the rows to form the full data matrix
X 2 Rn×d, i.e., X := [X>S X>S0 ]> and n = s + s′. We denote the corresponding observed
labels/responses as y := [y>S y>S0 ]> 2 Rn×1. The least squares solution from OLS is w := X+y =

argminβ ky �X�k2 where X+ := (X>X)−1X> is the pseudo-inverse of X. Similarly, we denote
X+
S as the pseudo-inverse of XS and wS := X+

SyS . To ease notations, let V := Vol(X) and VS :=
Vol(XS) where Vol() is defined below. Let jAj denote the determinant of a square matrix A. The
left Gram matrix of X is G := X>X 2 Rd×d, so for data submatrix XS , GS := X>SXS 2 Rd×d.

Definition 1 (Volume). For a full-rank X 2 Rn×d with n � d, Vol(X) :=
p
j(X>X)j =

p
jGj.

We adopt the above definition of volume for several reasons: (a) Often, the input feature space of the
data is pre-determined and fixed due to the data collection process. But, new data can stream in and
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so,n can grow inde�nitely whiled remains �xed [9, 10]. (b) By leveraging the formal connection
between volume and learning performance (Sec. 3), we can design a validation free volume-based
data valuation to assign a larger value to data leading to a better learning performance. (c) This
affords an intuitive interpretation between volume and diversity: Adding a data point to a dataset can
increase the diversity/volume depending on the data points already in the dataset (Lemma 1).

We restrict our discussion to full-rank matricesX , X S , andX S0 since otherwise we can adopt the
Gram-Schmidt process to remove the linearly dependent columns [9, 10]. In practice, we perform
pre-processing such as principal component analysis to reduce the dimension of the input feature
space to ensure that this assumption is satis�ed. This assumption is to ensure that there are no
redundant features, namely, features that can be exactly reconstructed using other features. For
instance, if a dataset already contains monthly salaries, then an annual salary would be redundant.

3 Larger Volume Entails Better Learning Performance

The value of a data (sub)matrix depends on the learning performance trained on it [14, 18] which,
we will show, depends on its volume. Simply put, the larger the volume, the better the learning
performance. In this section, we will formalize this claim through theordinary least squares(OLS)
framework. In particular, we will investigate two metrics for learning performance: (a) the quality
of the pseudo-inverse represented bybiasS :=


 P +

S � X +

 because estimatingX + accurately is

important to achieving smallmean squared error(MSE) [9] and whereP +
S := ( X >

S X S ) � 1P >
S , and

(b) the MSE denoted asL(wS ) := ky � Xw Sk2.

3.1 Larger Volume Entails Smaller Bias

In regression problems, the closed-form optimal solution is constructed viaX + computed usingX .
So, the bias ofP +

S from X + indirectly determines the value ofX S [9], i.e., a smaller bias means a
larger value. We show in Proposition 1 below that `a larger volume means a smaller bias' always
holds ford = 1 . Ford > 1, it requires additional assumptions which are mostly satis�ed via empirical
veri�cation (Fig. 1).

Proposition 1 (Volume vs. Bias ford = 1 ). For non-zeroX S ; X S0 of X 2 Rn � 1, VS � VS0 ()
biasS � biasS0 � 0:

The above result can be generalized toM > 2 non-zero data submatrices: LetX :=
[X >

S1
X >

S2
� � � X >

SM
]> and w.l.o.g., suppose thatVS1 � VS2 � : : : � VSM . Then,biasS1 �

biasS2 � : : : � biasSM . Ford > 1, counterexamples exist (see Fig. 1), so we instead comparebiasS
and biasS0 in the next result:

Proposition 2 (Volume vs. Bias in General).For full-rank X S ; X S0 of X 2 Rn � d,

bias2S � bias2S0 =
1

V 4
S


 QSX >

S


 2

�
1

V 4
S0


 QS0X >

S0


 2

+ 2
�

1
V 2 QX > ;

1
V 2

S0

QS0P >
S0 �

1
V 2

S
QSP >

S

�

where Q :=
P k

l =1 (� l � l ) � 1 Q k
j =1 ;j 6= l (G � � j I ), f � l gk

l =1 denotes thek unique eigen-
values of the left Gram matrixG of X , QS ; QS0 are similarly de�ned w.r.t. G S ; G S0,
P S and P S0 are, respectively, zero-padded versions ofX S and X S0, and � l :=P k

g=1 (� 1)g+1 � k � g
l [

P
H�f 1;:::;k gnf l g;jHj = g� 1(

Q
h2f 1;:::;k gnH � � 1

h )].

The proof of Proposition 1 (Appendix A.1) relies on a key observation that ford = 1 , the left Gram
matrix is a number and the rest of the proof follows. However, it cannot be generalized to that for
d > 1, so we resort to a different proof technique. The proof of Proposition 2 requires Lemma 2 in
Appendix A.1 which establishes a formal connection between volume andG � 1 using the Sylvester's
formula. To obtainVS � VS0 =) biasS � biasS0, there are two cases requiring different additional
assumptions: (A)VS � VS0, and (B)


 QSX >

S


 �


 QS0X >

S0


 andV � max(VS ; VS0). Case A

is intuitive: VS � VS0 meansX S is much “larger” in volume thanX S0, sobiasS is smaller. Case
B is whenX S andX S0 are similar (e.g., when they are sampled from the same data distribution).
The intuition is that the �rst difference term will be relatively large in magnitude (so, its sign will
dominate the overall expression), while the second inner product term will be relatively small in
magnitude. This is because the �rst difference term involves1=V4

S and1=V4
S0 but the second inner

3



product term involves1=(V 2 � V 2
S ) and1=(V 2 � V 2

S0), and we showV � max(VS ; VS0) (Lemma 3
in Appendix A.1). Subsequently,


 QSX >

S


 �


 QS0X >

S0


 andVS � VS0 suggest that the �rst

difference term (and thus the overall expression) is likely negative. We empirically verify in Fig. 1
thatVS � VS0 =) biasS � biasS0 holds for more than80%of times.

3.2 Larger Volume Entails Smaller MSE

In Proposition 3 (see proof in Appendix A.2) below, we will show a similar result (to Proposition 1)
theoretically analyzing the connection between volume and MSE whend = 1 , which may be
surprising sinceVol() (De�nition 1) does not considery at all and can yet determine which data
submatrix offers better predictions on the rest of the (unobserved) data. Unfortunately, such a result
does not directly generalize tod > 1 or beyond two submatrices. Nevertheless, we will analyze the
effect of volume on the learning performance (i.e., MSE) in general.

Proposition 3(Volume vs. MSE for d = 1 ). For non-zeroX S ; X S0 of X 2 Rn � 1, VS � VS0 ()
L (wS ) � L (wS0) � 0:

Unfortunately, the above result does not generalize tod > 1. For full-rankX S ; X S0 of X 2 Rn � d,
we have derived in Appendix A.2 that

L (wS ) � L (wS0) = hwS � wS0; (X >
S X S + X >

S0X S0)(wS + wS0) � 2X > y i (1)

and also shown in Appendix A.2 that sinceL(wS ) � L (wS0) explicitly depends ony (1) andVol()
does not includey at all, it is possible to adversarially constructy s.t. L (wS ) � L (wS0) > 0 or
L (wS ) � L (wS0) < 0 for some �xedX S ; X S0.

The adversarial cases notwithstanding, volume is regarded as a good surrogate measure of the
quality of data applied to active learning and matrix subsampling with theoretical performance
guarantees [11, 28]. Similarly, we can adopt the perspective thatVol() is a measure of the diversity in
the input features [23], which provides an intuitive interpretation for Proposition 3: A more diverse
dataset with a larger volume gives a better learning performance (i.e., smaller MSE). We will show in
Sec. 5.2 that not requiring labels/responses can be an advantage in practice if the labels/responses are
noisy/corrupted or there is a distributional difference between the validation and test sets.

We conclude Sec. 3 by empirically verifying whether the additional assumptions described in the
last paragraph of Sec. 3.1 are satis�ed by checking the percentage of times thatVS � VS0 =)
biasS � biasS0 � 0 holds. To elaborate, we randomly and identically sample equal-sizedX S ; X S0

over500independent trials and compute the percentage of times that a larger volume leads to better
learning performance (vertical axis) against the size ofX S ; X S0 (horizontal axis). We consider
samplingX S ; X S0 from either a uniform or normal distribution of varying dimensions: In Fig. 1,
for example, Ǹ d = 1 ' denotesX S ; X S0 being sampled from1-dimensional standard normal
distribution. For MSE, the responsey of a data pointx is calculated fromy = sin( hw � ; x i ) where
the true parametersw � are randomly sampled fromU(0; 2)d. Fig. 1 (left) shows that a larger volume
leads to a smaller bias for more than80%of times, thus verifying that the additional assumptions in
Sec. 3.1 are satis�ed. Fig. 1 (right) shows that a larger volume leads to a smaller MSE for more than
50%of times ford � 10, which is consistent with the above implications from (1).

Figure 1: Volume vs. bias (left) and volume vs. MSE (right) for both identically sampled, equal-sized
datasetsX S ; X S0 from either a uniformU(0; 1)d or normalN (0; 1)d distribution. The vertical axis
shows the percentage of times over500independent trials that the dataset with a larger volume leads
to a better learning performance (i.e., smaller bias or MSE).
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4 Robustifying Volume-based Data Valuation

As a larger volume can entail a better learning performance (Sec. 3), we consider a volume-based
data valuation method. Unfortunately, volume (De�nition 1) isnot robust to replication via direct
data copying. Hence, we will introduce a modi�ed volume measure that can trade off a more re�ned
representation of diversity for greater robustness to replication.

4.1 First Attempt of Volume-based Data Valuation

Directly usingVol(X ) as a valuation ofX satis�es both non-negativity and monotonicity which
follow directly from De�nition 1 and the matrix determinant lemma, respectively:

Proposition 4(Non-negativity and Monotonicity of Vol() ). For full-rank X 2 Rn � d, Vol(X ) � 0
andVol([X > x> ]> ) � Vol(X ) wherex 2 R1� d is a new data point.

The properties ofVol() in Proposition 4 imply that a bigger-sizedX (i.e., more data) should yield
a larger value [14, 18, 35]. However,Vol() is unbounded and has a multiplicative scaling factor
w.r.t. replication. The implication is that a data provider can arbitrarily “in�ate” the volume or value
of data by replicating the data in�nitely, as shown in the following result (see proof in Appendix A.3):

Lemma 1 (Unbounded Multiplicative Scaling of Vol(X ) from Replication). For full-rank X 2
Rn � d, let xq 2 R1� d be a data point replicated form � 1 times andX rep := [ X > x>

q : : : x>
q ]> 2

R(n + m ) � d. Then,Vol(X rep) = Vol( X ) � (1 + m � xq(X > X ) � 1x>
q )1=2.

Replication robustness de�ned via in�ation. We de�ne a measure ofin�ation as the ratio
� (replicate(X ; c))=� (X ) where� () is a data valuation function (e.g.,Vol() ) mapping a data matrix
to a real value, the functionreplicate(X ; c) directly copies the data inX and appends them back to
X to outputX rep 2 R(nc ) � d, and thereplication factorc denotes the amount of replication. One
way of replication is to copy the entireX for c times. Another way is to copy some data submatrix
for a certain number of times s.t.X rep 2 R(nc ) � d. We consider the second way because replicating
different data increases the value differently (Lemma 1). We de�ne below a measure of replication
robustness to formalize the intuition that greater robustness should guarantee smaller in�ation:

De�nition 2 (Replication Robustness of Data Valuation� () ). De�ne replication robustness of� ()
as � := � (X )=(supc� 1 � (X rep)) whereX rep := replicate(X ; c) 2 R(nc ) � d.

The theoretically optimal robustness is � = 1 , which implies no additional gain from replicating
data, hence discouraging replication completely. In contrast, the worst-case robustness is � = 0 ,
which is the case for any� () that strictly monotonically increases with replication and, in particular,
 Vol = 0 by applying Lemma 1. As a result, a replication robust data valuation function must have a
diminishing marginal value from replication: The additional gain from having more copies of the same
data converges asymptotically to0 w.r.t. c. This aligns with what we observe in practice: Repeatedly
adding the same data to a training set does not improve the learning performance inde�nitely.

4.2 Replication Robust Volume (RV)-Based Data Valuation

We will propose an RV measure by constructing a compressed version of original data matrixX that
groups similar data points via discretized cubes of the input feature space and represents those in each
cube via a statistic. The RV measure offers practitioners the �exibility to trade off a more re�ned
diversity representation for greater replication robustness by increasing the cube's width.

De�nition 3 (Replication Robust Volume (RV)). Let thed-dimensional input feature space/domain
for X be discretized into a set	 of d-cubes of width/discretization coef�cient! , � i denote the number
of data points ind-cubei 2 	 , � i 2 R1� d be a statistic (e.g., mean vector) of the data points in
d-cubei , and eX := [ � >

i ]>i 2 	: � i 6=0 be a compressed version ofX s.t. each row ofeX is a statistic� i
of the data points in non-emptyd-cubei . The replication robust volume is

RV( X ; ! ) := Vol( eX ) �
Q

i 2 	 � i (2)

where� i :=
P � i

p=0 � p with hyperparameter� 2 [0; 1] controlling the degree of robustness.
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In contrast to the unboundedVol() , we ensure thatRV(; ! ) is bounded by setting
Q

i 2 	 � i to be
bounded and convergent w.r.t. the size of the replicated data. Note that� i = 0 = ) � i = 1 (i.e.,
an emptyd-cube) and� i > 0 =) � i > 1. Before considering any robustness guarantee, we will
�rst show in Proposition 5 (see proof in Appendix A.3) below that RV (De�nition 3) preserves the
original volume in a relative sense, i.e., the ratioVS=VS0 is preserved. The implication is a similar
effect of RV on the learning performance (Sec. 3), as empirically demonstrated in Sec. 5.1.

Proposition 5 (Bounded Distortion of RV( X S ; ! )=RV( X S0; ! )). De�ne distortion � (! ) :=
[RV( X S ; ! )=RV( X S0; ! )]=[Vol(X S )=Vol(X S0)]. Then,(exp(� � 1)) � 1 � � (! ) � exp(� � 1) for
any! > 0 where� = 1=(�n ). For example,� = 10 bounds� (! ) 2 [0:905; 1:105]approximately.

Near-optimal robustness by upper-bounding in�ation. We have previously de�ned robust-
ness (De�nition 2) as the maximum attainable in�ation via replication. Since� i and in�ation
are monotonic in� i , we consider the asymptotic in�ation:� i ! 1 . In De�nition 3, even when the
data ind-cubei is replicated in�nitely many times, the in�ation from thisd-cube is still upper-bounded
by a constant. This can be generalized to all thed-cubes as each can be considered independently and
there is a constant number ofd-cubes for a �xedX and! .

Proposition 6 (Robustness RV ). For � 2 [0; 1),  RV � (1 � � ) j 	 j where, with a slight abuse of
notation,	 denotes the set of non-emptyd-cubes. For� = 1 ;  RV = 0 .

Its proof is in Appendix A.3. Recall from De�nition 2 that RV = 1 is optimal robustness. From
Proposition 6, reducing� achieves a smaller upper bound on in�ation and greater robustness.
However, if� is too small, then it may have an undesirable effect:RV( X ; ! ) < Vol(X ) for some
X (with similar data points) from an honest provider without replication. In this case, RV has an
over-correcting effect: RV is designed to avoid exploitation ofVol() due to replication but mistakenly
leads to a decrease in the value of an honest dataset. Therefore,� should be set to achieve a certain
upper bound on in�ation but should not be unnecessarily small; more details are given in Proposition 8
in Appendix A.3. In particular, setting� = 1=(�n ) guarantees a constant upper boundexp(� � 1) on
the in�ation, as proven in Lemma 5 in Appendix A.3. For instance, setting� = 10 and� = 1=(�n )
guaranteesRV( replicate(X ; c); ! ) � 110%� RV( X ; ! ). However, it requires us to know the truen
withoutany replication. In practice, as we can only observe the data with replication (if any) [15], we
estimaten with the numberj	 j of rows in eX .

Trading off diversity representation for replication robustness via ! . A smaller! means that the
d-cubes are more re�ned and RV can better represent the original data instead of crudely grouping
many data points together and representing them via a statistic. On the other hand, a larger! means
a less re�ned diversity representation but greater replication robustness. In the extreme case, a
suf�ciently large ! results in grouping all data points together and representing them all using a
single statistic, hence foregoing the diversity in data. So, a practitioner should determine the trade-off
between diversity representation vs. replication robustness based on the requirements of the real-world
use case. The following result (see proof in Appendix A.3) formalizes both extremes of the trade-off:

Proposition 7 (Reduction to Vol() vs. Optimal Robustness).Set! to be s.t. eachd-cube only
contains completely identical data points, and

1. set� i to some constantK eX ;i for i 2 	 based on a recursive application of Lemma 1. Then,
RV( �; ! ) = Vol() ;

2. set� = 0 . So,� i = 1(� i 6= 0) and name this formulationRV1 (�; ! ). Then, RV 1 = 1 .

RV1 (�; ! ) can be seen as reducing all potential replications to one data point. It achieves robustness
but loses the density information of eachd-cube due to the indicator function. Speci�cally, the true
distribution may have different densities at differentd-cubes, which is re�ected via� i 's. But, this
information is completely lost inRV1 (�; ! ). In contrast,Vol() represents all the data indiscriminately,
hence sacri�cing robustness. Furthermore, while we restrict our consideration of replication to
direct copying, it is natural to additionally consider a noisy replication (i.e., adding small random
perturbations to copies [15]). Intuitively, RV1 (�; ! ) is not robust to noisy replication as the replicated
data are perturbed. Our preliminary empirical study in Appendices B.2 and B.3 shows that RV is
robust to noisy replication if the noise magnitude is small relative to! . So, a future work is to devise
a way to optimize the trade-off between diversity representation and replication robustness via! . In
our work here, we empirically �nd! = 0 :1 suitable for the case of standardized input features.
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