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Abstract

We develop a new primitive for stochastic optimization: a low-bias, low-cost
estimator of the minimizer x? of any Lipschitz strongly-convex function. In
particular, we use a multilevel Monte-Carlo approach due to Blanchet and Glynn
[8] to turn any optimal stochastic gradient method into an estimator of x? with bias
δ, variance O(log(1/δ)), and an expected sampling cost of O(log(1/δ)) stochastic
gradient evaluations. As an immediate consequence, we obtain cheap and nearly
unbiased gradient estimators for the Moreau-Yoshida envelope of any Lipschitz
convex function, allowing us to perform dimension-free randomized smoothing.
We demonstrate the potential of our estimator through four applications. First, we
develop a method for minimizing the maximum of N functions, improving on
recent results and matching a lower bound up to logarithmic factors. Second and
third, we recover state-of-the-art rates for projection-efficient and gradient-efficient
optimization using simple algorithms with a transparent analysis. Finally, we
show that an improved version of our estimator would yield a nearly linear-time,
optimal-utility, differentially-private non-smooth stochastic optimization method.

1 Introduction

Consider the fundamental problem of minimizing a µ-strongly convex function F : X → R given
access to a stochastic (sub-)gradient estimator ∇̂F satisfying E ∇̂F (x) ∈ ∂F (x) and E‖∇̂F (x)‖2 ≤
G2 for every x ∈ X . Is it possible to transform the unbiased estimator ∇̂F into a (nearly) unbiased
estimator of the minimizer x? := argminx∈X F (x)? In particular, can we improve upon the
O(G/(µ

√
T )) bias achieved by T iterations of stochastic gradient descent (SGD)?

In this paper, we answer this question in the affirmative, proposing an optimum estimator x̂?, which
(for any fixed δ > 0) has

bias ‖Ex̂? − x?‖ = O(δ) and variance E‖x̂? − Ex̂?‖2 = O

(
G2

µ2
log

(
G

µδ

))
,

and, in expectation, costs O(log( Gµδ )) evaluations of ∇̂F .3 Setting δ = G/(µ
√
T ), we obtain the

same bias bound as T iterations of SGD, but with expected cost of only O(log T ) stochastic gradient
evaluations (the worst-case cost is T ). Further, the bias can be made arbitrarily small with only
logarithmic increase in the variance and the stochastic gradient evaluations of our estimator, and
therefore—paralleling the term “nearly linear-time” [27]—we call x̂? nearly unbiased.

Our estimator is an instance of the multilevel Monte Carlo technique for de-biasing estimator
sequences [25] and more specifically the method of Blanchet and Glynn [8]. Our key observation is
that this method is readily applicable to strongly-convex variants of SGD, or indeed any stochastic
optimization method with the same (optimal) rate of convergence.
∗Stanford University, {asi,jmblpati,yujiajin,sidford}@stanford.edu
†Tel Aviv University, ycarmon@tauex.tau.ac.il
3When X = BR(x0) ⊂ Rd, F (x) = 1

n

∑
i∈[n] F̂ (x; i), and ∇̂F is the subgradient of a uniformly random

F̂ (x; i) we can also get an estimator with bias 0 and expected cost O(log(nd)). See Appendix A.1 for details.
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Objective Expensive operation O NO EN∇̂f
maxi∈[N ] f(i)(x) (Sec. 4) f(1)(x), . . . , f(N)(x) Õ(ε−2/3) Õ(ε−2)
f(x) in domain X (Sec. 3) ProjX (x) O(ε−1) "
Λ(x) + f(x) for L-smooth Λ (Sec. 5) ∇Λ(x) O

(√
L/ε

)
"

Table 1. Summary of our applications of accelerated bias-reduced stochastic gradient methods. We use
NO andN∇̂f to denote the number of expensive operations and subgradient estimations, respectively.
The Õ notation hides polylogarithmic factors. See Section 1.2 for additional description.

1.1 Estimating proximal points and Moreau-Yoshida envelope gradients

Given a convex function f and regularization level λ, the proximal point of y is Pf,λ(y) :=

argminx∈Rd
{
f(x) + λ

2 ‖x− y‖
2
}

. Since computing Pf,λ amounts to solving a λ-strongly-convex
problem, our technique provides low-bias and cheap proximal point estimators. Proximal points are
ubiquitous in optimization [43, 19, 52, 38] and estimating them efficiently with low bias opens up new
algorithmic possibilities. One of these possibilities is estimating the gradient of the Moreau-Yoshida
envelope fλ(y) := minx∈Rd

{
f(x) + λ

2 ‖x− y‖
2
}

, which is a λ-smooth, G2/(2λ)-accurate approxi-
mation of any G-Lipschitz f (see, e.g., [43, 29] and Appendix B.3). Since∇fλ(y) = λ(y−Pf,λ(y)),
our optimum estimator provides a low-bias estimator for∇fλ(y) with second moment and expected
cost greater than those of ∇̂f by only a logarithmic factor. Thus, for any non-smooth f we can turn
∇̂f into a gradient estimator for the smooth surrogate fλ, whose smoothness is independent of the
problem dimension, allowing us to perform dimension-free randomized smoothing [20].

1.2 Applications via accelerated bias-reduced methods

Our optimum estimator is a new primitive in stochastic convex optimization and we expect it to find
multiple applications. We now describe three such applications: the first improves on previously
known complexity bounds while the latter two recover existing bounds straightforwardly. For
simplicity of presentation we assume (in the introduction only) E‖∇̂f‖2 ≤ 1 and unit domain size.

In each application, we wish to minimize an objective function given access to a cheap subgradient
estimator ∇̂f as well as an expensive application-specific operation O (e.g., a projection to a
complicated set). Direct use of the standard stochastic gradient method finds an ε-accurate solution
using O(ε−2) computations of both ∇̂f and O, and our goal is to improve the O complexity without
hurting the ∇̂f complexity.

To that end, we design stochastic accelerated methods consisting of T iterations, each one involving
only a constant number of O and proximal point computations, which we approximate by averaging
copies of our optimum estimator.4 Its low bias allows us to bound T � ε−2 as though our proximal
points were exact, while maintaining an Õ(ε−2) bound on the total expected number of ∇̂f calls.5
Thus, we save expensive operations without substantially increasing the gradient estimation cost.
Table 1 summarizes each application, and we briefly describe them below.

Minimizing the maximal loss (Section 4). Given N convex, 1-Lipschitz functions f(1), . . . , f(N)

we would like to find an ε-approximate minimizer of their maximum fmax(x) = maxi∈[N ] f(i)(x).
This problem naturally arises when optimizing worst-case behavior, as in maximum margin classifi-
cation and robust optimization [53, 15, 45, 6]. We measure complexity by the number of individual
function and subgradient evaluations, so that the expensive operation of evaluating f(1), . . . , f(N)

at a single point has complexity O(N) and the subgradient method solves this problem with com-
plexity O(Nε−2). Carmon et al. [13] develop an algorithm for minimizing fmax with complexity
Õ(Nε−2/3 + ε−8/3), improving on the subgradient method for sufficiently large N . Using our
bias-reduced Moreau gradient envelope estimator in a Monteiro-Svaiter-type accelerated proximal
point method [12, 11, 38], we obtain improved complexity Õ(Nε−2/3 + ε−2). This matches (up to
logarithmic factors) a lower bound shown in [13], settling the complexity of minimizing the maximum

4While averaging is parallelizable, our optimum estimator itself is sequential. Consequently, our approach
does not yield improve parallelism; see Appendix A.2 for further discussion

5It is easy to turn expected complexity bounds into deterministic ones; see Appendix A.3.
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of N non-smooth functions. Our result reveals a surprising fact: for N � (GR/ε)−4/3, minimizing
the maximum of N functions is no harder than minimizing their average.

Projection-efficient optimization via dimension-free randomized smoothing (Section 3). Con-
sider the problem of minimizing a convex function f using an unbiased gradient estimator ∇̂f over
convex set X for which Euclidean projections are expensive to compute (for example, the cone
of PSD matrices). When f is L-smooth, a stochastic version of Nesterov’s accelerated gradient
descent (AGD) [16] performs only O(

√
L/ε) projections. For non-smooth f we instead apply AGD

to the Moreau envelope smoothing of f (with appropriate λ = O(ε−1)) using our nearly-unbiased
stochastic estimator for∇fλ. This yields a solution in O(ε−1) projections and Õ(ε−2) evaluations of
∇̂f . Our algorithm provides a simple alternative to the recent work of Thekumparampil et al. [51]
whose performance guarantees are identical up to a logarithmic factor.

Gradient-efficient composite optimization (Section 5). We would like to minimize Ψ(x) =
Λ(x) + f(x), where Λ is convex and L-smooth but we can access it only via computing (ex-
pensive) exact gradients, while f is a non-smooth convex functions for which we have a (cheap)
unbiased subgradient estimator ∇̂f . Problems of this type include inverse problems with sparsity
constraints and regularized loss minimization in machine learning [34]. To save ∇Λ computa-
tions, it is possible to use composite AGD [41] which solves O(

√
L/ε) subproblems of the form

minimizex
{
〈∇Λ(y), x〉+ f(x) + β

2 ‖x− x
′‖2
}

. Lan [34] designed a specialized method, gradient
sliding, for which the total subproblem solution cost isO(ε−2) evaluations of ∇̂f . We show that a sim-
ple alternative—estimating the subproblem solutions via our low-bias optimum estimator—recovers
its guarantees up to logarithmic factors.

1.3 Non-smooth differentially private stochastic convex optimization

We now discuss a potential application of our technique that is conditional on the existence of
an improved optimum estimator. In it, we minimize the population objective function f(x) =

ES∼P f̂(x;S) under the well-known constraint of differential privacy [22]. Given n i.i.d. samples
Si ∼ P and assuming that each f̂ is 1-Lipschitz, convex and sufficiently smooth, Feldman et al. [23]
develop algorithms that obtain the optimal error and compute O(n) subgradients of f̂ . The non-
smooth case is more challenging and the best existing bound is O(n11/8) for the high-dimensional
setting d = n [32, 3]. In Section 6 we show that our optimum estimator, combined with recent
localization techniques [23], reduces the problem to private mean estimation. Unfortunately, our
estimator is heavy-tailed, leading to insufficient utility. Nevertheless, assuming a version of our
estimator that has bounded outputs, we give an algorithm that queries Õ(n) subgradients for non-
smooth functions, solving a longstanding open problem in private optimization [14, 4]. This motivates
the study of improved versions of our estimators that have constant sensitivity.

1.4 Related work

Multilevel Monte-Carlo (MLMC) techniques originate from the literature on parametric integration for
solving integral and differential equations [25]. Our approach is based on an MLMC variant put forth
by Blanchet and Glynn [8] for estimating functionals of expectations. Among several applications,
they propose [8, Section 5.2] an estimator for argminx ES∼P f̂(x;S) where f̂(·; s) is convex for
all s and assuming access to minimizers of empirical objectives of the form

∑
i∈[N ] f̂(x; si). The

authors provide a preliminary analysis of the estimator’s variance (later elaborated in [9]) using an
asymptotic Taylor expansion around the population minimizer. In comparison, we study the more
general setting of stochastic gradient estimators and provide a complete algorithm based on SGD,
along with a non-asymptotic analysis and concrete settings where our estimator is beneficial.

A number of works have used the Blanchet-Glynn estimator in the context of optimization and
machine learning. These applications include estimating the ratio of expectations for semisupervised
learning [7], estimating gradients of distributionally robust optimization objectives [35], and estimat-
ing gradients in deep latent variable models [47]. Our estimator is similar to that of Levy et al. [35]
in that we also have to pick a “critical” doubling probability for the (random) computational budget,
which makes the expected cost and variance of our estimators depend logarithmically on the bias.
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1.5 Limitations

Our paper demonstrates that our proposed optimum estimator is a useful proof device: it allows us to
easily prove upper bounds on the complexity of structured optimization problems, and at least in one
case (minimizing the maximum loss) improve over previously known bounds. However, our work
does not investigate the practicality of our optimum estimator, as implementation and experiments
are outside its scope.

Nevertheless, let us briefly discuss the practical prospects of the algorithms we propose. On the one
hand, our optimum estimator itself is fairly easy to implement, adding only a few parameters on top
of a basic gradient method. On the other hand, in the settings of Sections 3 and 5, gradient-sliding
based methods [34, 51] are roughly as simple to implement and enjoy slightly stronger convergence
bounds (better by logarithmic factors) than our optimum estimator. Consequently, in these settings
we have no reason to assume that our algorithms are better in practice. In the setting of Section 4
(minimizing the maximum loss) our algorithm does enjoy a stronger guarantee than the previous best
bound [13]. However, both our algorithm and [13] are based on an accelerated proximal point method
that, in its current form, is not practical [13, Sec. 6.2]. Thus, evaluating the benefit of stochastic bias
reduction in the context of minimizing the maximum loss would require us to first develop a practical
accelerated proximal point algorithm, which is an open question under active research [see, e.g., 50].

Another limitation of our optimum estimator is that, while it has a bounded second moment, its
higher moments are unbounded. While this does not matter for most of our results, the lack of higher
moment bounds prevents us from setting the complexity of non-smooth private stochastic convex
optimization in Section 6. Finding an optimum estimator that is bounded with high probability—or
proving that one does not exist—remains an open question for future work.

Finally, our analyses are limited to convex objective functions. However, while outside the scope of
the paper, we believe our results are possibly relevant for non-convex settings as well. In particular,
for smooth non-convex functions (and weakly-convex functions [17] more broadly) the problem of
computing proximal points with sufficiently high regularization is strongly convex and our estimator
applies. Such non-convex proximal points play an important role in non-convex optimization [17]
with applications in deep learning [see, e.g., 49]. Applying the optimum-estimator technique in
non-convex optimization is therefore a viable direction for future work.

1.6 Notation

We let BR(x) = {y ∈ Rd : ‖y − x‖ ≤ R} denote the ball of radius R around x, where ‖·‖ is the
Euclidean norm throughout. We write ProjS for the Euclidean projection to S . We write 1{A} for the
indicator of eventA, i.e., 1{A} = 1 whenA holds and 0 otherwise. Throughout the paper, ∇̂f denotes
a (stochastic) subgradient estimator for the function f , and X ⊂ Rd denotes the optimization domain,
which we always assume is closed and convex. We use Pf,λ to denote the proximal operator (2) and
fλ to denote the Moreau envelope (3) associated with function f and regularization parameter λ.
Finally, we use Nf and N∇̂f to denote function and subgradient estimator evaluation complexity,
respectively.

2 A multilevel Monte-Carlo optimum estimator

In this section, we construct a low-bias estimator for the minimizer of any strongly convex function
F : X → R. This estimator is the key component of our algorithms in the subsequent sections, which
use it to approximate proximal points and Moreau envelope gradients. We assume that F is of the
form F = f + ψ, where the function ψ is “simple” and that f satisfies the following.

Assumption 1. The function f : X → R is convex (with closed and convex domain X ) and is
accessible via an unbiased subgradient estimator ∇̂f which satisfies E‖∇̂f(x)‖2 ≤ G2 for all x.

Our applications only use ψ of the form ψ(x) = λ
2 ‖x− x

′‖2 but our estimator applies more broadly
to cases where argminx

{
〈v, x〉+ ψ(x) + 1

2η‖x− y‖
2
}

is easy to compute for all v and y.

2.1 ODC algorithms

Our estimator can use, in a black-box fashion, any method for minimizing F with sufficiently fast
convergence to x? = argminx∈X F (x). We highlight the required convergence property as follows.
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Algorithm 1: OPTEST(∇̂f, ψ, µ, δ, σ2,X )

. δ, σ2 are required bias and square error

. c is the ODC algorithm constant

Tmax =
⌈

4cG2

µ2 min{δ2, 12σ2}

⌉
N =

⌈
32cG2 log(Tmax)

µ2σ2

⌉
for i = 1, . . . , N do

x̂
(i)
? = a draw of the estimator (1)

return 1
N

∑
i∈[N ] x̂

(i)
?

Algorithm 2: MORGRADEST(∇̂f, y, λ, δ, σ2,X )

. δ, σ2 are required bias and square error

. λ is the regularization level

. y is the point at which to estimate∇fλ(y)

ψλ(x) = λ
2 ‖x− y‖

2

x̂? = OPTEST
(
∇̂f, ψλ, λ, δλ ,

σ2

λ2 ,X
)

return λ(y − x̂?)

Definition 1. An optimal-distance-convergence algorithm ODC takes as input ∇̂f satisfying As-
sumption 1, a simple function ψ and a budget T ≥ 1. If F = f + ψ is µ-strongly convex with
minimizer x?, the algorithm’s output x = ODC(∇̂f, ψ, T ) requires at most T evaluations of ∇̂f to
compute and satisfies E‖x− x?‖2 ≤ c G

2

µ2T for some constant c > 0.

Standard lower bound constructions imply that the O( G
2

µ2T ) squared distance convergence rate is
indeed optimal; see Appendix A.4 for additional discussion. Conversely, ODC algorithms are readily
available in the literature [44, 28] since any point x satisfying EF (x) − F (x?) = O(G

2

µT ) (the
optimal rate of convergence in strongly convex, Lipschitz optimization) also satisfies E‖x− x?‖2 ≤
O( G

2

µ2T ) by due to the strong convexity of F . We provide a concrete ODC algorithm consisting
of a generalization of epoch SGD [28], which allows us to optimize over the composite objective
F = f + ψ instead of only f as in the prior study of epoch SGD.
Lemma 1. EPOCHSGD (Algorithm 8 in Appendix B.1) is an ODC algorithm with constant c = 32.

2.2 Constructing an optimum estimator
To turn any ODC algorithm into a low-bias, low-cost and near-constant variance optimum estimator,
we use the multilevel Monte Carlo (MLMC) technique of Blanchet and Glynn [8]. Given a problem
instance ∇̂f, ψ, an algorithm ODC and a cutoff parameter Tmax ∈ N, our estimator x̂? is:

Draw J ∼ Geom
(

1
2

)
∈ N and, writing xj := ODC(∇̂f, ψ, 2j), compute

x̂? = x0 +

{
2J(xJ − xJ−1) 2J ≤ Tmax

0 otherwise.
(1)

We note that for certain ODC algorithms it is possible to extract x0, xJ−1 from the intermediate steps
of computing xJ , so that we only need to invoke ODC once. This is particularly simple to do for
EPOCHSGD, as we explain in Appendix B.1. The key properties of our estimator are as follows.

Proposition 1. Let f and ∇̂f satisfy Assumption 1, F = f + ψ be µ-strongly convex with minimizer
x? and Tmax ∈ N. For any ODC algorithm with constant c, the estimator (1) has bias ‖Ex̂?−x?‖ ≤√

2c G
µ
√
Tmax

and variance E‖x̂? − Ex̂?‖2 ≤ 16cG
2

µ2 log2(Tmax). Moreover, the expected number of

∇̂f evaluations required to compute x̂? is O(log Tmax).

Proof. Let jmax = max{j ∈ N | 2j ≤ Tmax} = blog2 Tmax)c. The expectation of x̂? is

Ex̂? = Ex0 +

jmax∑
j=1

P(J = j)2j(Exj − Exj−1) = Exjmax
,

where the second equality follows from P(J = j) = 2−j and the sum telescoping. Noting that
xjmax = ODC(∇̂f, ψ, T ) for T = 2jmax ≥ Tmax/2, we have that

‖Exjmax − x?‖ ≤
√
E‖xjmax − x?‖2 ≤

√
c

G

µ
√
Tmax/2
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by Definition 1. To bound the variance we use ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2 and note that

E‖x̂? − Ex̂?‖2 ≤ E‖x̂? − x?‖2 ≤ 2E‖x̂? − x0‖2 + 2E‖x0 − x?‖2.

The ODC property implies that E‖x0 − x?‖2 ≤ cG2/µ2. For the term E‖x̂? − x0‖2 we have

E‖x̂? − x0‖2 =

jmax∑
j=1

P(J = j)22jE‖xj − xj−1‖2 =

jmax∑
j=1

2jE‖xj − xj−1‖2, and

E‖xj − xj−1‖2 ≤ 2E‖xj − x?‖2 + 2E‖xj−1 − x?‖2 ≤ 6c
G2

µ2
2−j .

Substituting, we get E‖x̂? − x0‖2 ≤ 6cG
2

µ2 jmax and E‖x̂? − Ex̂?‖2 ≤ 16cG
2

µ2 log2(Tmax). Finally,

the expected number of ∇̂f evaluations is 1 +
∑jmax

j=1 P(J = j)(2j + 2j−1) = O(jmax).

The function OPTEST in Algorithm 1 computes an estimate of x? with and desired bias δ and square
error σ2 by averaging independent draws of the MLMC estimator (1). The following guarantees are
immediate from Proposition 1; see Appendix B.2 for a short proof.

Theorem 1. Let f and ∇̂f satisfy Assumption 1, F = f + ψ be µ-strongly convex with minimizer
x? ∈ X , and δ, σ > 0. The function OPTEST(∇̂f, ψ, µ, δ, σ2,X ) outputs x̂? satisfying

‖Ex̂? − x?‖ ≤ δ and E‖x̂? − x?‖2 ≤ σ2

using N∇̂f stochastic gradient computations, where

EN∇̂f = O

(
G2

µ2σ2
log2

(
G

µmin{δ, σ}

)
+ log

(
G

µmin{δ, σ}

))
.

2.3 Estimating proximal points and Moreau envelope gradients

The proximal point of function f : X → R with regularization level λ at point y is

Pf,λ(y) := argmin
x∈X

{
f(x) + λ

2 ‖x− y‖
2
}
. (2)

When f satisfies Assumption 1, we may use OPTEST (with ψ(x) = λ
2 ‖x− y‖

2 and µ = λ) to obtain
a reduced-bias proximal point estimator. The proximal point Pf,λ(y) is closely related to the Moreau
envelope

fλ(y) := min
x∈X

{
f(x) + λ

2 ‖x− y‖
2
}

(3)

via the relationship ∇fλ(y) = λ(y − Pf,λ(y)) (see Appendix B.3). Therefore, we can use our
optimum estimator to turn Õ(1) calls to ∇̂f into a nearly unbiased estimator for∇fλ. We formulate
this as:
Corollary 2. Let f and ∇̂f satisfy Assumption 1, let y ∈ X and let λ, σ, δ >

0. The function MORGRADEST(∇̂f, λ, y, δ, σ2,X ) outputs ∇̂fλ(y) satisfying ‖E∇̂fλ(y) −
∇fλ(y)‖ ≤ δ and E‖∇̂fλ(y) − ∇fλ(y)‖2 ≤ σ2 and has complexity EN∇̂f =

O
(
G2

σ2 log2
(

G
min{δ,σ}

)
+ log

(
G

min{δ,σ}

))
.

3 Projection-efficient convex optimization

In this section, we combine the bias-reduced Moreau envelope gradient estimator with a standard
accelerated gradient method to recover the result of Thekumparampil et al. [51]. We consider the
problem of minimizing a function f satisfying Assumption 1 over the domain BR(0) subject to
the constraint x ∈ X , where X ⊂ BR(0) is a complicated convex set that we can only access via
(expensive) projections of the form ProjX (x) := argminy∈X ‖y − x‖. We further assume that an
initial point x0 ∈ X satisfies ‖x0 − x?‖ ≤ D.

Algorithm 3 applies a variant of Nesterov’s accelerated gradient descent method (related to [2, 1])
on the (λ-smooth) Moreau envelope fλ defined in eq. (3). Since computing the Moreau envelope

6



Algorithm 3: Stochastic accelerated gradient descent on the Moreau envelope

Input: A gradient estimator ∇̂f satisfying Assumption 1 in BR(0), projection oracle ProjX , and
initial point x0 = v0 with ‖x0 − x?‖ ≤ D.

Parameters :Iteration budget T , Moreau regularization λ, approximation parameters δk, σ2
k

1 for k = 1, · · · , T do
2 yk−1 = k−1

k+1xk + 2
k+1vk−1

3 gk = MORGRADEST(∇̂f, yk−1, λ, δk, σ
2
k,BR(0))

4 xk = ProjX
(
yk−1 − 1

3λgk
)

5 vk = ProjBR(0)

(
vk−1 − k

6λgk
)

6 return xT

does not involve projection to X , for sufficiently accurate approximation of ∇fλ we require only
T = O(

√
λD2/ε) projections to X for finding an O(ε)-suboptimal point of fλ constrained to X .

For that point to be also ε-suboptimal for f itself, we must choose λ of the order of G2/ε, so that the
number of projections is O(GD/ε).

As noted in [51] computing∇fλ to accuracy O(ε/R) is sufficient for the above guarantee to hold, but
doing so using a stochastic gradient method requires O((GD/ε)2) evaluations of ∇̂f per iteration,
and O((GD/ε)3) evaluations in total. To improve this, we employ Algorithm 2 to compute nearly-
unbiased estimates for ∇fλ and bound the error incurred by their variance. Our result matches the
gradient sliding-based technique of Thekumparampil et al. [51] up to polylogarithmic factors while
retaining the conceptual simplicity of directly applying AGD on the Moreau envelope. We formally
state the guarantees of our method below, and provide a self-contained proof in Appendix C.

Theorem 3. Let f : BR(0) → R and ∇̂f satisfy Assumption 1. Let X ⊆ BR(0) be a convex set
admitting a projection oracle ProjX . Let x0 ∈ X be an initial point with ‖x− x?‖ ≤ D for some
x? ∈ X . With λ = 2G2

ε , δk = ε
8R , σ2

k = 2ελ
k+1 , and T = 7GD

ε Algorithm 3 computes x ∈ X with

E [f(x)] ≤ f(x?) + ε with complexity EN∇̂f = O
(
G2D2

ε2 log2
(
GR
ε

))
and O

(
GD
ε

)
calls to ProjX .

4 Accelerated proximal methods and minimizing the maximal loss

In this section we apply our estimator in an accelerated proximal point method and use it to obtain an
optimal rate for minimizing the maximum of N convex functions (up to logarithmic factors).

4.1 Accelerated proximal point method via Moreau gradient estimation

Algorithm 4 is an Monteiro-Svaiter-type [38, 12] accelerated proximal point method [36, 24] that
leverages our reduced-bias Moreau envelope gradient estimator. To explain the method, we contrast
it with stochastic AGD on the Moreau envelope (Algorithm 3). First and foremost, Algorithm 3
provides a suboptimality bound on the Moreau envelope fλ (which for small λ is far from f ) while
Algorithm 4 minimizes f itself.

Second, while Algorithm 3 uses a fixed regularization parameter λ, Algorithm 4 handles an arbitrary
sequence {λk} given by a black-box function NEXTLAMBDA. To facilitate our application of
the method to minimizing the maximal loss—where gradient estimation is only tractable in small
Euclidean balls around a reference point—we include an optional parameter r such that the proximal
point movement bound ‖Pf,λk+1

(yk)− yk‖ ≤ r holds for all k. However, most of our analysis of
Algorithm 4 does not require this parameter (i.e., holding for r =∞), making it potentially applicable
to other settings that use accelerated proximal point methods [11, 38, 50].

The third and final notable difference between Algorithms 3 and 4 is the method of updating the xk
iteration sequence. While a projected stochastic gradient descent step suffices for Algorithm 3, here
we require a more direct approximation of function value decrease attained by the exact proximal
mapping Pf,λ (see eq. (2)). For a given accuracy ϕ, we define the ϕ-approximate proximal mapping

P̃ϕf,λ(y) := any x ∈ X such that EF (x) ≤ F (Pf,λ(y)) + ϕ for F (z) := f(z) +
λ

2
‖z − y‖2. (4)
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Algorithm 4: Stochastic accelerated proximal point method

Input: Gradient estimator ∇̂f , function NEXTLAMBDA, initialization x0 = v0 and A0 ≥ 0.
Parameters :Approximation parameters {ϕk, δk, σk}, stopping parameters Amax and Kmax,

optional movement bound r > 0.
1 for k = 0, 1, . . . do
2 λk+1 = NEXTLAMBDA(xk, vk, Ak) . guaranteeing that ‖Pf,λk+1(yk)− yk‖ ≤ r
3 ak+1 = 1

2λk+1

√
1 + 4λk+1Ak and Ak+1 = Ak + ak+1 and Xk = X ∩ Br(yk)

4 yk = Ak
Ak+1

xk + ak+1

Ak+1
vk and xk+1 = P̃

ϕk+1

f,λk+1
(yk) . defined in eq. (4)

5 gk+1 = MORGRADEST(∇̂f, yk, λk+1, δk, σ
2
k,Xk) and vk+1 = ProjX

(
vk − 1

2ak+1gk+1

)
6 if Ak+1 ≥ Amax or k + 1 = Kmax then return xk+1

Note that P̃0
f,λ = Pf,λ and that for ϕ > 0 we can compute P̃ϕf,λ with an appropriate SGD variant

(such as EPOCHSGD) using O(G2/(λϕ)) evaluations of ∇̂f .

With the differences between the algorithms explained, we emphasize their key similarity: both
algorithms update the vk sequence using our bias reduction method MORGRADEST (Algorithm 2),
which holds the key to their efficiency. The following proposition shows that Algorithm 4 has the
same bound on Kmax as an exact accelerated proximal point method [12], while requiring at most
Õ(G2R2ε−2) stochastic gradient evaluations; see proof in Appendix D.1.

Proposition 2. Let f : X → R and ∇̂f satisfy Assumption 1, and let X ⊆ BR(x0). For a
target accuracy ε ≤ GR let ϕk+1 = ε

60λk+1ak+1
, δk+1 = ε

120R , σ2
k+1 = ε

60ak+1
, A0 = R

G , and

Amax = 9R2

ε . If λk ≥ λmin ≥ 1
Amax

= Ω( ε
R2 ) for all k ≤ Kmax, then lines 4 and 5 of Algorithm 4

have total complexity EN∇̂f = O
(
Kmax log GR

ε + G2R2

ε2 log2 GR
ε

)
. If in addition ‖Pf,λk(yk−1)−

yk−1‖ ≥ 3r/4 whenever λk ≥ 2λmin then for Kmax = O
((

R
r

)2/3
log
(
GR
ε

)
+
√

λminR2

ε

)
, the

algorithm’s output xK satisfies f(xK)− f(x?) ≤ ε with probability at least 2
3 .

4.2 Minimizing the maximal loss

We now consider objectives of the form fmax(x) := maxi∈[N ] f(i)(x) where each function f(i) :
X → R is convex and G-Lipschitz. Our approach to minimizing fmax largely follows Carmon et al.
[13]; the main difference is that we approximate proximal steps via Algorithm 4 and our reduced-bias
bias estimator. The first step of the approach is to replace fmax with the “softmax” function, defined
for a given target accuracy ε as

fsmax(x) := ε′ log

(∑
i≤N

exp
(
f(i)(x)/ε′

))
, where ε′ :=

ε

2 logN
.

Since fsmax(x)− fmax(x) ∈ [0, ε2 ], any ε
2 -accurate solution of fsmax is ε-accurate for fmax.

The second step is to develop an efficient gradient estimator for fsmax; this is non-trivial because
fsmax is not a finite sum or expectation. In [13] this is addressed via an “exponentiated softmax” trick;
we develop an alternative, rejection sampling-based approach that fits Algorithm 4 more directly (see
Algorithm 9). To produce an unbiased estimate for ∇fsmax(x) for x in a ball of radius rε = ε′/G
we require a single ∇f(i)(x) evaluation (for some i), O(1) evaluations of f(i)(x) in expectation, and
evaluation of the N functions f(1)(y), . . . , f(N)(y) for pre-processing. Plugging this estimator into
Algorithm 4 with r = rε, the total pre-processing overhead of lines 4 and 5 is O(KmaxN).

The final step is to find a function NEXTLAMBDA such that ‖Pfsmax,λt+1(yk)− yk‖ ≤ rε for all k
(enabling gradient estimation), and ‖Pfsmax,λt+1(yk)− yk‖ ≥ 3

4rε when λk+1 > 2λmin (allowing
us to bound Kmax with Proposition 2). Here we use the bisection subroutine from [13] as is (see
Algorithm 10). By judiciously choosing λmin—an improvement over the analysis in [13]—we obtain
the following complexity guarantee onNf(i) and N∂f(i) , the total numbers of individual function and
subgradient evaluations, respectively. (See proof Appendix D.2).
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Theorem 4. Let f(1), . . . , f(N) : X → R be convex and G-Lipschitz and let X ⊆ BR(x0). For
any ε < 1

2GR/ logN , Algorithm 4 (with P̃ϕfsmax,λ
implemented in Algorithm 8, ∇̂fsmax given by

Algorithm 9 and NEXTLAMBDA given by Algorithm 10 with λmin = Õ(ε/(r
4/3
ε R2/3)) outputs x ∈

X that with probability at least 1
2 is ε-suboptimal for fmax(x) = maxi∈[N ] f(i)(x) and has complexity

ENf(i) = O

([
N
(
GR logN

ε

)2/3

+
(
GR
ε

)2]
log2 GR

ε

)
and EN∂f(i) = O

((
GR
ε

)2
log2 GR

ε

)
.

The rate given by Theorem 4 matches (up to logarithmic factors) the lower bound Ω(N(GR/ε)2 +
(GR/ε)2) shown in [13] and is therefore near-optimal.

5 Gradient-efficient composite optimization
Consider the problem of finding a minimizer of the following convex composite optimization problem

minimize
x∈X

Ψ(x) := Λ(x) + f(x) where Λ is L-smooth and f satisfies Assumption 1, (5)

given x0 such that ‖x0 − x?‖ ≤ R for some x? ∈ argminx∈X Ψ(x). Lan [34] developed a method
called “gradient sliding” that finds an ε-accurate solution to (5) with complexityN∇Λ = O(

√
LR2/ε)

evaluations of∇Λ(x) and N∇̂f = O((GR/ε)2) evaluations of ∇̂f(x), which are optimal even for
each component separately.6

In this section, we provide an alternative algorithm that matches the complexity of gradient up to
logarithmic factors and is conceptually simple. Our approach, Algorithm 5, is essentially composite
AGD [41], where at the kth iteration we compute a proximal point (2) with respect to a partial
linearization of Ψ around yk. In particular, letting Λ̄k(v) := Λ(yk)+ 〈∇Λ(yk), v−yk〉 and βk = 2L

k ,
we approximate PΛ̄+f,βk(vk−1). Similar to Algorithm 4, Algorithm 5 computes two types of
approximations: one is an εk-approximate proximal point P̃εk

Λ̄+f,βk
(vk−1) as per its definition (4),

while the other is our bias-reduced optimum estimator from Algorithm 1. We note, however, that
unlike Algorithm 4 which approximates the xk update, here we approximate vk, the “mirror descent”
update.

Below we state the formal guarantees for Algorithm 5; we defer its proof to Appendix E.

Algorithm 5: Stochastic composite accelerated gradient descent

Input: A problem of the form (5) with Λ, f ,∇Λ, ∇̂f .
Parameters :Step size parameters βk = 2L

k and γk = 2
k+1 , iteration number N , approximation

parameters {εk, δk, σ2
k} and x0 = v0 satisfying ‖x0 − x?‖ ≤ R.

1 for k = 1, 2, · · · , N do
2 yk = (1− γk)xk−1 + γkProjX (vk−1)

3 v̄k = P̃εk
Λ̄k+f,βk

(vk−1) for Λ̄k(v) := Λ(yk) + 〈∇Λ(yk), v − yk〉
4 vk = OPTEST(∇̂f, ψk, βk, δk, σ2

k,BR(v0) ∩ X ) for ψk(z) = βk
2 ‖z − vk−1‖2 + Λ̄k(z)

5 xk = (1− γk)xk−1 + γkv̄k

6 return xN

Theorem 5. Given problem (5) with solution x?, a point x0 such that ‖x0 − x?‖ ≤ R and target
accuracy ε > 0, Algorithm 5 with εk = LR/2kN , δk = R/16N , σ2

k = R2/4N , and N =

Θ(
√
LR2/ε) finds an approximate solution x satisfying EΨ(x) ≤ Ψ(x?) + ε and has complexity

N∇Λ = O

(√
LR2

ε

)
and EN∇̂f = O

((
GR
ε

)2
log2 GR

ε +
√

LR2

ε log
(
GR
ε

))
.

6 Efficient non-smooth private convex optimization
We conclude the paper with a potential application of our optimum estimator for differentially
private stochastic convex optimization (DP-SCO). In this problem we are given n i.i.d. sample

6The gradient sliding result holds under a relaxed Lipschitz assumption [see 34, eq. (1.2)]. It is straightforward
to extend EPOCHSGD, and hence all of our results, to that assumption as well.
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si ∼ P taking values in a set S, and out objective is to privately minimize the population average
f(x) = ES∼P [f̂(x;S)], where f̂ : X × S → R, is convex in the first argument and X ⊂ Rd is a
convex set, and S is a population of data points. That is, We wish to find x̂ ∈ X with small excess
loss f(x̂)−minx∈X f(x) while preserving differential privacy.
Definition 2 ([22]). A randomized algorithm A is (α, β)-differentially private ((α, β)-DP) if, for all
datasets S,S ′ ∈ Sn that differ in a single data element and for every event O in the output space of
A, we have P [A(S) ∈ O] ≤ eαP [A(S ′) ∈ O] + β.

DP-SCO has received increased attention over the past few years. Bassily et al. [5] developed
(inefficient) algorithms that attain the optimal excess loss 1/

√
n +

√
d log(1/β)/nα. When each

function is O(
√
n) smooth, Feldman et al. [23] gave algorithms with optimal excess loss and O(n)

gradient query complexity. In the non-smooth setting, however, their algorithms require O(n2)
subgradients. Subsequently, Asi et al. [3] and Kulkarni et al. [32] developed more efficient algorithms
for non-smooth functions which need O(min(n2/

√
d, n5/4d1/8, n3/2/d1/8)) subgradients which is

O(n11/8) for the high-dimensional setting d = n. Whether a linear gradient complexity is achievable
for DP-SCO in the non-smooth setting is still open.

In this section, we develop an efficient algorithm for non-smooth DP-SCO that queries Õ(n) subgra-
dients conditional on the existence of an optimum estimator with the following properties.
Definition 3. Let F = f + ψ be µ-strongly convex with minimizer x? and f is G-Lipschitz. For
δ > 0, we say that Oδ is efficient bounded low-bias estimator if it returns x̂? = Oδ(F ) such that
‖E[x̂? − x?]‖2 ≤ δ2, ‖x̂? − x?‖2 ≤ C1G

2 log(G/µδ)/µ2, and the expected number of gradient
queries is C2 log(G/µδ).

Comparing to our MLMC estimator (1) and Proposition 1, we note that the only place our current
estimator falls short of satisfying Definition 3 is the probability 1 bound on ‖x̂? − x?‖2, which
for (1) holds only in expectation. Indeed, for our estimator, ‖x̂? − x?‖ can be as large as O(G/(µδ)),
meaning that it is heavy-tailed.

It is not clear whether an EBBOE as defined above exists. Nevertheless, assuming access to such esti-
mator, Algorithm 6 solves the DP-SCO problem with a near-linear amount of gradient computations.
The algorithm builds on the recent localization-based optimization methods in [23] which iteratively
solve regularized minimization problems.

Algorithm 6: Differentially-private stochastic convex optimization via optimum estimation
Input: (s1, . . . , sn) ∈ Sn, domain X ⊂ BR(x0), EBBOE O (satisfying Definition 3).

1 Set k = dlog ne, B = 20(log( 1
β ) + C2 log2 n), n̄ = n

k , η = R
G min

{
1√
n
, α

B log(n)
√
d log( 1

β )

}
2 for i = 1, 2, · · · , k do
3 Let ηi = 2−4iη , fi(x) = 1

n̄

∑kn̄
j=1+(k−1)n̄ f̂(x; sj), ψi(x) = ‖x− xi−1‖2/(ηin̄)

4 Let x̃i = 1
n̄

∑n̄
j=1Oδi(Fi) with Fi = fi + ψi , δ2

i = G2η2
i n̄

5 Set xi = x̃i + ζi where ζi ∼ N(0, σ2
i Id) with σi = 8B(

√
C1 log n+ 2)ηi

√
log(2/β)/αi

6 return xk

We average multiple draws of the (hypothetical) bounded optimum estimator to solve the regularized
problems, and apply private mean estimation procedures to preserve privacy. We defer the proof of
the following results Appendix F.
Theorem 6 (conditional). Given an efficient bounded low-bias estimator Oδ satisfying Definition 3
for any δ > 0, then for α ≤ log(1/β), X ∈ BR(x0), convex and G-Lipschitz f̂(x; s), Algorithm 6
is (α, β)-DP, queries Õ(n) subgradients and has (hiding logarithmic factors in n) E[f(xk) −

minx∈X f(x)] ≤ GR · Õ
(

1√
n

+

√
d log3(1/β)

nα

)
.

Theorem 6 provides a strong motivation for constructing bounded optimum estimators that satisfy Def-
inition 3 . In Appendix F.3, we discuss the challenges in making our MLMC estimator bounded, as
well as some directions to overcome them.
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Appendix

A Additional results and discussion

Here we provide additional discussion of three topics pertinent to our results: a zero-bias optimum
estimator, the parallel depth of our estimator, turning expected complexity bounds into determin-
istic ones, and a justification for the adjective “optimal” in Definition 1 of the “optimal distance
convergence” property. We recommend reading Sections 1 to 3 before the subsections below.

A.1 Zero-bias optimum estimation given exact gradients
The main tool developed in this paper is an optimum estimator with bias δ whose expected query
complexity is O(log(G/(µδ))). In this section, we show how to obtain a completely unbiased
optimum estimator when, in addition to a stochastic subgradient oracle, we assume access to a
first-order oracle, i.e., one which outputs the functions exact value and subgradient at the query point.

To be concrete, assume that the domain is a ball of radius R in Rd, and that the objective F :

BR(x0)→ R is µ-strongly-convex and of the form F (x) = 1
n

∑
i∈[n] F̂ (x; i), where each F̂ (·; i) is

G-Lipschitz and given by a first-order oracle. In this case, we can compute an unbiased subgradient
estimator with single oracle query by sampling i ∼ Unif([n]) and taking ∇̂F ∈ ∂F̂ (x; i). Further,
value and subgradient evaluations of F can be implemented at n-times the cost by querying each
each Fi. In this setting, we design an unbiased estimator of x? = argminx∈BR(0) F (x) with variance
O((G2/µ2) log(nd)), expected query complexity O(log(nd)) and expected runtime O(d log(nd)).

To obtain this result, we leverage that first-order methods can compute the minimizer of a convex
function with a number of queries and runtime that depends polynomially on dimension and logarith-
mically on regularity parameters and the desired accuracy. In fact, any polynomial bound suffices for
our purposes and effect only constants factors in our expected complexity bounds. For concreteness,
we use the classic ellipsoid method [55, 48, 31] whose complexity we describe in the following
lemma. (We remark, however, that improved query complexities and runtimes are achievable; see
[30] for the state-of-the-art).
Lemma 2 (Ellipsoid method). There is an algorithm, ELLIPSOID(x0, f, T ), which given x0 ∈ Rd,
a first order oracle for G-Lipschitz, µ-strongly-convex f : BR(x0)→ R, and query budget T ≥ 0,
runs in O(d2T ) time, makes at most T queries, and outputs x̂? ∈ BR(x0) with ‖x̂? − x?‖22 ≤
(8G2/µ2) exp(−T/(2d2)) for x? := argminx∈BR(x0) f(x).

Proof. Since f is G-Lipschitz for all x ∈ BR(x0) we have |f(x) − f(x0)| ≤ GR. Con-
sequently, the ellipsoid method applied to f(x) − f(x0) can compute x̂? ∈ BR(x0) with
f(x̂?) − f(x?) ≤ 2GR exp(−T/(2d2)) with O(T ) queries and O(d2T ) time [see, e.g., 10,
Theorem 2.4]. Since by strong convexity ‖x̂? − x?‖22 ≤ 2

µ [f(x̂?) − f(x?)] this implies that
‖x̂? − x?‖22 ≤ (4GR/µ) exp(−T/(2d2)). Further, since f is G-Lipschitz and µ-strongly-convex we
know that for all y ∈ BR(x0) we have G‖y−x?‖ ≥ f(y)− f(x?) ≥ µ

2 ‖y−x?‖
2 and since BR(x0)

contain a point y with ‖y − x?‖ ≥ R this implies R ≤ 2G/µ. Combining yields the result.

Combining the ellipsoid method with an ODC algorithm (see Definition 1) we obtain our unbiased
optimum estimator, which we formally describe in Algorithm 7. The procedure is similar to the

Algorithm 7: Unbiased optimum estimator

Input: Initialization x0 ∈ Rd, first-order oracles for F̂ (x; i) for all i ∈ [n] and ODC algorithm
ODC.

1 Let J0 := d4 log2(14(nd2 + d4))e

2 For all j > 1 let xj :=

{
ODC(∇F̂ (·; i), 0, 2j) if j ≤ J0

ELLIPSOID(x0, F, d2j/2e) if j > J0

3 Draw J ∼ Geom
(

1
2

)
4 return x0 + 2J(xJ−1 − xJ) . Only x0, xJ−1, and xJ are computed explicitly by the algorithm.
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MLMC estimator (1), with the key difference that when (1) would output x0, we instead apply the
ellipsoid method. The following theorem establishes the performance of our algorithm.
Theorem 7 (Unbiased optimum estimator). Let F : X → R be µ-strongly convex with, X = BR(x0),
F (x) = 1

n

∑
i∈[n] F̂ (x; i) for all x ∈ X and E‖∇F (x; i)‖2 ≤ G2 for all x ∈ X and i ∼ Unif([n]).

Algorithm 7 outputs x̂? with Ex̂? = x? = argminx∈BR(x0) F (x) and E‖x− x?‖22 = O(G
2

µ2 log(nd))

with expected O(log(nd)) queries to (F̂ (x; i),∇F̂ (x; i)) and expected O(d log(nd)) time.

Proof. Note that

E‖x̂? − x?‖2 =

∞∑
j=1

1

2j
· E‖x0 − x? + 2j(xj−1 − xj)‖2

≤
∞∑
j=1

2

2j
E
[
‖x0 − x?‖2 + 22j‖xj−1 − xj‖2

]
≤ 2E‖x0 − x?‖2 + 4

∞∑
j=1

2jE
[
‖xj−1 − x?‖2 + ‖xj − x?‖2

]
= 10‖x0 − x?‖2 + 4

∞∑
j=1

(2j + 2j+1)E‖xj − x?‖2 ≤ 12

∞∑
j=0

2jE‖xj − x?‖2.

Further, by definition of ODC we have that E‖xj − x?‖22 ≤ (cG2/µ2)2−j/2 for all j ≤
J0 where c is the constant in Definition 1. Also, by Lemma 2 we have ‖xj − x?‖22 ≤
(8G2/µ2) exp(−d2j/2e/(2d2)) for all j > J0 (since by assumption and Jensen’s inequality for
i ∼ Unif([n]) we have ‖∇F (x)‖2 = ‖E∇F (x; i)‖2 ≤ E‖∇F (x, i)‖2 ≤ G2 for alll x ∈ X and
therefore F is G-Lipschitz). Note that j ≤ 5 · 2j/4 for all j ≥ 1 and 5 · 2j/4 ln 2 ≤ 2j/2/(4d2) for all

j ≥ 4 log2(14d2). Consequently, d2
j/2e

2d2 ≥ 2j ln 2 and ‖xj − x?‖22 ≤ (8G2/µ2)2−2j for all j > J0.
Therefore,

E‖x̂? − x?‖2 ≤ 12

J0∑
j=0

cG2

µ2
+ 12

∞∑
j=J0+1

8G2

µ2
2−j ≤ 12(cJ0 + 8)

G2

µ2
= O

(
G2

µ2
log(nd)

)
.

Further,

Ex? =

∞∑
j=1

2−j [x0 + 2j(xj − xj−1)] = x0 +

∞∑
j=1

(xj − xj−1) = lim
j→∞

xj = x? .

Now, note that when J ≤ J0 the algorithm makes 2J subgradient queries and runs in time O(d2J).
Further, when J > J0 by Lemma 2 the algorithm makes d2J/2e ≤ 21+(J/2) first-order oracle queries,
costing O(n2(J/2)) sub-gradient in total, and runs in time O((nd2 + d4)2J/2). Consequently, the
expected number of subgradient queries is upper bounded by∑

j∈[J0]

1

2j
· 2j +

∞∑
j>J0

1

2j
· n21+(j/2) = J0 +

2n

2J0/2

∞∑
j=1

1

2j/2
= O(J0) = O(log(nd))

where in the last step we used that J0 = Ω(log(n)) and
∑∞
j=1

1
2j/2

= O(1). Similarly, since
J0 ≥ log2(nd2 + d4) the expected runtime is at most∑

j∈[J0]

1

2j
·O(d2j) +

∞∑
j>J0

1

2j
·O
(

(nd2 + d4)2j/2
)

= O(J0 · d) +O
(
2−J0(nd2 + d4)

)
·
∞∑
j=1

1

2j/2
= O(J0 · d) = O(d log(nd)) .
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A.2 The sequential depth of our optimum estimator

Let us discuss the implications of our development—or more precisely, the lack thereof—on the
parallel complexity of non-smooth optimization. Following the standard setting for this problem,
consider the task of minimizing a G-Lipschitz convex function f in a domain of diameter R in Rd
given the ability to query a subgradient oracle for f in batches of B parallel queries. That is, at round
t we query points x(1)

t , . . . , x
(B)
t and observe subgradients g(i)

t ∈ ∂f(x
(i)
t ) for i ∈ [B]. In sufficiently

high dimension, the ability to query B points in parallel does not improve worst-case complexity: for
required accuracy ε and algorithm with batch size B = poly(1/ε), there exists a problem instance
in dimension d = O((GRε )4 log GR

ε ) for which the algorithm must make T = Ω((GRε )2) queries in
sequence in order to find an ε-accurate solution [11].

At first glance, our algorithms—and Algorithm 3 in particular—seem to contradict the lower bound
described above. Indeed, the algorithm performs O(GRε ) iterations, where each iterations consists of
averaging Õ(GRε ) copies of the optimum estimator (1). Since we can compute copies of the estimator
in parallel, the sequential depth of the algorithm appears to be only O(GRε ). To resolve the apparent
contradiction, recall that each evaluation of (1) itself involves a sequential computation. In particular,
while an evaluation of (1) has depth Õ(1) on average, it also has depth Ω(GRε ) with probability
Ω( ε

GR ). Therefore, for a batch of O(GRε ) copies of the estimator, one of them would have depth
Ω(GRε ) with constant probability, implying an overall bound of Ω((GRε )2) on the sequential depth of
Algorithm 3.

Viewed another way, the parallelism lower bound implies a limitation on the sequential depth distribu-
tion of any lower bias optimum estimator. More specifically, let T̂ be a random variable representing
the sequential depth of a single copy of a low-bias optimum estimator and let T̂1, . . . , T̂BK be i.i.d.
copies of that random variable, with B and K denoting batch size and AGD depth respectively. Then,
when setting B = K = O(GRε ) we must have

∑
k∈[K]

max
b∈[B]

{
T̂b+(k−1)B

}
= Ω

((
GR

ε

)2
)

with high probability. In particular, it is impossible to create a low-bias optimum estimator whose
depth is Õ(1) with high probability. This fact might serve as a useful sanity check when designing
new optimum estimators.

A.3 Obtaining deterministic complexity bounds

This paper measures complexity via N∇̂f , the number of gradient estimator evaluations by the
algorithm. The performance guarantees of our algorithms bound the expected complexity while
guaranteeing correctness with constant probability. In particular our guarantees in Sections 3 to 5
have the following general form: the algorithm outputs x such that f(x)−minz∈X f(z) ≤ ε with
probability at least p, and EN∇̂f ≤ C(ε). To guarantee a probability 1 bound on N∇̂f , we may
terminate the algorithm and output an arbitrary point whenever N∇̂f exceeds 2

pC(ε). By Markov’s
inequality such termination occurs with probability at most p/2 and therefore by the union bound we
will output a correct x (satisfying f(x)−minz∈X f(z) ≤ ε) with probability at least p/2.

In Section 6 we describe a differentially-private algorithm with bounded expected error and expected
gradient estimation complexity. Here too, we may terminate the algorithm if the number of gradient
estimations exceeds the bound on the expectation by more than a constant, and maintain a constant
probability bound on the error. Since the random amount of gradient estimations in this algorithm
is independent of the input (and in fact can be computed ahead of the algorithm’s execution), the
termination strategy described above does not affect the algorithm’s privacy guarantee.

A.4 The optimal distance convergence rate

Definition 1 of an optimal-distance-convergence (ODC) algorithm implies a claim on the optimal
rate of convergence (in Euclidean norm) to the minimizer of strongly-convex and Lipschitz functions.
Lemma 1 shows that this rate is achievable, and here we sketch a matching lower bound, showing
that this rate is not improvable and therefore optimal. More precisely, we exhibit a function F that is
G-Lipschitz, µ strongly-convex, has minimizer x? and satisfies the following: for every algorithm
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that queries points in the span of previously observed subgradients and outputs xT after T queries,
we have ‖xT − x?‖ ≥ Ω(G/(µ

√
T )). The restriction of queries to the span of previous gradients is

a standard simplifying assumptions [42], and we can extend the claim to any randomized algorithm
by choosing a random coordinate system [54, 11].

Let us describe our hard instance construction for algorithms that execute T steps, which we denote by
F . The function F : R2T → R is a strongly-convex variant of Nemirovski’s function [40, 39, 18, 11],
defined as follows

F (x) :=
G

2
max
i∈[2T ]

{
x[i]

}
+
µ

2
‖x‖2.

Note that the function is µ-strongly-convex, and—when constrained to a ball of radiusG/(2µ) around
the origin—is G-Lipschitz as required. It is also easy to verify that the minimizer of the function is

x? = − G

4µT
1,

where 1 denotes to the all-ones vector in R2T , since a calculation shows that 0 ∈ ∂F (x?).

To establish our claimed lower bound, consider a subgradient oracle for maxi∈[2T ]{x[i]} which only
outputs 1-sparse subgradients of F (it is also possible to design differentiable hard instances via
Moreau-Yoshida smoothing, see, e.g., [18]). Then, the query xT at iteration T is in the span of T
1-sparse vectors, which means that at least T of its coordinates are zero. Recalling the expression of
x?, this implies the claim that

‖xT − x?‖ ≥
G

4µT

√
T = Ω

(
G

µ
√
T

)
.

B Proofs and additional results from Section 2

B.1 Analysis of EPOCHSGD
Algorithm 8 is a composite variant of the “epoch SGD” algorithm of Hazan and Kale [28]. We note
that when ψ(x) = µ

2 ‖x − z‖
2 (as it is in all of our applications), the gradient step in line 5 of the

algorithm is simply

xt+1
k = ProjX

(
1

1 + µηk

[
xtk + µηkz − ηk∇̂f(xtk)

])
,

where ProjX is the Euclidean projection to X . To analyze Algorithm 8, we first prove the following
standard single-epoch optimization guarantee. Below, we let Vx(x′) := 1

2‖x
′ − x‖22 denote the

Bregman divergence induced by 1
2‖·‖

2
2.

Algorithm 8: EPOCHSGD(∇̂f, ψ, µ,X , T )

Input: A µ-strongly-convex function F = f + ψ : X → R with f satisfying Assumption 1,
iteration budget T .

Parameters :Initial step size η1 = 1/(4µ) and epoch length T1 = 16.
1 Initialize x0

1 ∈ arg minx∈X ψ(x), and set k = 1
2 while

∑
i∈[k] Ti ≤ T do

3 x1
k = arg minx∈X

(
ηkψ(x) + 1

2‖x− x
t
k‖2
)

4 for t = 1, 2, · · ·Tk − 1 do
5 xt+1

k = arg minx∈X

(
ηk

(
〈∇̂f(xtk), x〉+ ψ(x)

)
+ 1

2‖x− x
t
k‖2
)

6 Set x0
k+1 = 1

Tk

∑
t∈[Tk] x

t
k, update Tk+1 = 2Tk, ηk+1 = ηk/2 and k ← k + 1

7 return x = x0
k

Lemma 3. Let f : X → R and ∇̂f satisfy Assumption 1. For any k ≥ 1, T ≥ 1 and u ∈ X , the
iterates of Algorithm 8 satisfy

E

F
 1

T

∑
t∈[T ]

xtk

− F (u) ≤
Vx0

k
(u)

ηT
+
η

2
G2.
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Proof. xtk ≡ xt, ηk ≡ η, and Tk ≡ T . We furthermore let xT+1 ≡ u, and let gt := ∇̂f(xt) for
t ≥ 1 and g0 := 0. By the optimality conditions of the minimization in line 3 and line 5, we have

〈η
(
gt−1 +∇ψ(xt)

)
+ xt − xt−1, xt − u〉 ≤ 0 for all t ∈ [T ],

and consequently

〈gt−1 +∇ψ(xt), xt − u〉 ≤ 1

η

(
Vxt−1(u)− Vxt(u)− Vxt−1(xt)

)
for all t ∈ [T ].

Using the convexity of ψ and the bound above, we obtain∑
t∈[T ]

〈gt−1, xt − u〉+
∑
t∈[T ]

(
ψ(xt)− ψ(u)

)
≤
∑
t∈[T ]

〈gt−1 +∇ψ(xt), xt − u〉

≤ 1

η

∑
t∈[T ]

(
Vxt−1(u)− Vxt(u)− Vxt−1(xt)

)
≤ 1

η
Vx0(u)− 1

η

T∑
t=0

Vxt(x
t+1).

Adding
∑
t∈[T ]〈gt, xt − xt+1〉 to both sides, recalling that xT+1 ≡ u and gt = ∇̂f(xt)1{t>0}, and

rearranging terms, we have∑
t∈[T ]

〈∇̂f(xt), xt − u〉+
∑
t∈[T ]

(
ψ(xt)− ψ(u)

)
≤ 1

η
Vx0(u)− 1

η

T∑
t=0

Vxt(x
t+1) +

∑
t∈[T ]

〈∇̂f(xt), xt − xt+1〉

≤ 1

η
Vx0(u) +

∑
t∈[T ]

η

2
‖∇̂f(xt)‖2,

where in the last transition we used 〈g, x− y〉 ≤ 1
ηVy(x) + η

2‖g‖
2. Taking expectation, applying

Assumption 1 and using convexity of f , we have

E
∑
t∈[T ]

(
F (xt)− F (u)

)
≤ 1

η
Vx0(u) +

T

2
ηG2.

Dividing by T and applying Jensen’s inequality to bound F
(

1
T

∑
t∈[T ] x

t
)
≤ 1

T

∑
t∈[T ] F (xt)

yields the claimed bound.

We now are ready to prove the main guarantee of Algorithm 8 (see also Lemma 8, Theorem 5
in Hazan and Kale [28]), which implies Lemma 1.
Proposition 3. Let F : X → R by a µ-strongly-convex function of the form F = f + ψ, such
that f satisfies Assumption 1 and x? = argminx∈X F (x). Then, for any T ≥ 1, we have that
x = EPOCHSGD(∇̂f, ψ, µ,X , T ) satisfies

EF (x)− F (x?) ≤
16G2

µT
and E‖x− x?‖2 ≤

32G2

µ2T
.

Consequently, EPOCHSGD is an ODC algorithm with constant c = 32.

Proof. First we claim that F (x0
1)− F (x?) ≤ G2

2µ . To see this we have by µ-strong-convexity of F
that

F (x?) ≥ F (x0
1) + 〈∇f(x0

1), x? − x0
1〉+ 〈∇ψ(x0

1), x? − x0
1〉+

µ

2
‖x0

1 − x?‖2

≥ F (x0
1) + 〈∇f(x0

1), x? − x0
1〉+

µ

2
‖x0

1 − x?‖2,
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where we use the definition that x0
1 ∈ arg minx∈X ψ(x) and its first-order optimality condition for

the second inequality. Rearranging terms gives

F (x0
1)− F (x?) ≤ −〈∇f(x0

1), x? − x0
1〉 −

µ

2
‖x0

1 − x?‖2

≤ max
x

(
−〈∇f(x0

1), x− x0
1〉 −

µ

2
‖x0

1 − x‖2
)

=
‖∇f(x0

1)‖2

2µ
≤ G2

2µ
.

For x? = argminx∈X F (x), we so define the potential ∆k = F (x0
k) − F (x?) and use induction

to prove that E∆k ≤ G2

2kµ
for all k, with the base case k = 1 established above. Suppose that

E∆k ≤ G2

2kµ
for a fixed k. Then for k + 1 Lemma 3 yields

E∆k+1 ≤
EVx0

k
(x?)

ηkTk
+
ηk
2
G2

(i)

≤ E∆k

µηkTk
+
ηk
2
G2 (ii)

=
E∆k

4
+

G2

2k+2µ

(iii)

≤ G2

2k+1µ
,

with the transitions above following from (i) strong convexity of F , which implies that Vx0
k
(x?) =

1
2‖x

0
k − x?‖2 ≤ 1

µ∆k; (ii) the choice of parameters ensures ηkTk = 4
µ and ηk = 1

2k+1µ
; and (iii)

the inductive hypothesis E∆k ≤ G2

2kµ
. This completes the induction.

Let K be such that the algorithm outputs x = x0
K , and note that T ≤ 16 · (2K − 1)− 1. Therefore,

we have

EF (x)− F (x?) = E∆K ≤
G2

2Kµ
≤ 16G2

µT
,

and

E‖x− x?‖2 ≤
2

µ
(EF (x)− F (x?)) ≤

32G2

µ2T
.

Recalling Definition 1, we conclude that EPOCHSGD is an ODC algorithm with constant c = 32.

Remark 1 (Using EPOCHSGD for optimum estimation). When using EPOCHSGD as the ODC
algorithm in our MLMC optimum estimator (1), we need only call once with T = 2J and take
x0, xJ−1 and xJ to be the iterates x0

1, x
0
K−1 and x0

K of EPOCHSGD, for K the last value of k that
EPOCHSGD reaches.

B.2 Proof of Theorem 1

Theorem 1. Let f and ∇̂f satisfy Assumption 1, F = f + ψ be µ-strongly convex with minimizer
x? ∈ X , and δ, σ > 0. The function OPTEST(∇̂f, ψ, µ, δ, σ2,X ) outputs x̂? satisfying

‖Ex̂? − x?‖ ≤ δ and E‖x̂? − x?‖2 ≤ σ2

using N∇̂f stochastic gradient computations, where

EN∇̂f = O

(
G2

µ2σ2
log2

(
G

µmin{δ, σ}

)
+ log

(
G

µmin{δ, σ}

))
.

Proof. Write the algorithm’s output as x̂? = 1
N

∑N
i=1 x̂

(i)
? where x̂(1)

? , . . . , x̂
(N)
? are independent

draws of the estimator (1), with

Tmax =

⌈
(2c)2G2

µ2 min{δ2, 1
2σ

2}

⌉
and N =

⌈
2(4c)2G2

µ2σ2
log(Tmax)

⌉
as in Algorithm 1. Then, Proposition 1 implies that

‖Ex̂(1)
? − x?‖ ≤ min

{
δ,

1√
2
σ

}
and E‖x̂(1)

? − Ex̂(1)
? ‖2 ≤

N

2
σ2.

Noting that Ex̂? = Ex̂(1)
? and

E‖x̂? − x?‖2 =
1

N
E‖x̂(1)

? − Ex̂(1)
? ‖2 + ‖Ex̂(1)

? − x?‖2,

we obtain the claimed bias and error bounds. Finally, Proposition 1 guarantees that EN∇̂f =

O(N · log(Tmax)), giving the claimed bound on the number of evaluations.
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B.3 Properties of the proximal operator and Moreau envelope

For a convex function f : X → R we recall the definitions of

the proximal operator Pf,λ(x) := argmin
y∈X

{
f(y) + λ

2 ‖y − x‖
2
}

and the Moreau envelope fλ(x) := min
y∈X

{
f(y) + λ

2 ‖y − x‖
2
}
.

Below, we collect several well-known properties that we use throughout the paper.

Fact 1. Given a convex function f : X → R, and λ > 0 defined on a closed convex set X , the
following properties of the Moreau envelope fλ : Rd → R and the proximal operator Pf,λ : X → X
hold for all x ∈ X

1. Convexity: fλ is convex.

2. Differentiablility: fλ is λ-smooth and∇fλ(x) = λ(x− Pf,λ(x)).

3. Approximation: If f is G-Lipschitz then f(x)− G2

2λ ≤ fλ(x) ≤ f(x) .

4. Subgradient: ∇fλ(x) ∈ ∂f(Pf,λ(x)),

5. Three point inequality: for all u ∈ X :

〈∇fλ(x),Pf,λ(x)− u〉 ≤ λ

2
‖u− x‖2 − λ

2
‖u− Pf,λ(x)‖2 − λ

2
‖x− Pf,λ(x)‖2 .

See [29, Section 4.1] as well as [13, Lemma 1] and [51, Lemma 1] for proofs and additional
background and properties.

C Proofs from Section 3

In this section, we give a proof of Theorem 3. Before we give the technical details, we briefly comment
on our algorithm and its analysis. Algorithm 3 is at its core an instantiation of Nesterov’s accelerated
gradient method applied to the Moreau envelope fλ(x) = miny∈BR(0)

{
f(y) + λ

2 ‖y − x‖
2
}

. We
compute stochastic gradient estimates of fλ via Algorithm 2, and apply techniques from [1, 2] to
bound the accumulated error.

Based on the iterates {xk, vk} of Algorithm 3, we define

Ek = fλ(xk)− fλ(u), Rk =
1

2
‖vk − u‖2, and Pk = k(k + 1)Ek + 12λRk

for any fixed u ∈ BR(0). We first prove that (conditioned on the iterates xk−1, vk−1) the potential
Pk cannot increase significantly in expectation.

Lemma 4. Consider an execution of Algorithm 3 with parameters given by Theorem 3. Fix any
u ∈ BR(0). For any k ≥ 1 we have yk−1 ∈ BR(0) and

E [Pk|xk−1, vk−1] ≤ Pk−1 + εk .

Proof. We first remark that xk−1 ∈ X ⊆ BR(0) and vk−1 ∈ BR(0) by construction. As a result,
yk−1 ∈ BR(0) as well. Following [1, 2], we define the function

Prog(y; g) := min
x∈X

{
3λ

2
‖x− y‖2 + 〈g, x− y〉

}
.
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We observe

Prog(yk−1; gk) = min
x∈X

{
3λ

2
‖x− yk−1‖2 + 〈gk, x− yk−1〉

}
(6)

(i)
=

3λ

2
‖xk − yk−1‖2 + 〈gk, xk − yk−1〉

=

(
λ

2
‖xk − yk−1‖2 + 〈∇fλ(yk−1), xk − yk−1〉

)
+ λ‖xk − yk−1‖2 + 〈gk −∇fλ(yk−1), xk − yk−1〉

(ii)
≥ fλ(xk)− fλ(yk−1) + λ‖xk − yk−1‖2 + 〈gk −∇fλ(yk−1), xk − yk−1〉

(iii)
≥ fλ(xk)− fλ(yk−1)− 1

4λ
‖gk −∇fλ(yk−1)‖2.

Here, we use (i) the definition of xk, (ii) smoothness of fλ (Item 2 of Fact 1), and (iii) Young’s
inequality 〈a, b〉+ 1

2‖b‖
2 ≥ − 1

2‖a‖
2 with a = 1

2λ (gk−∇fλ(yk−1)) and b = 2λ(xk−yk−1). Define
the point

ỹk−1 =
k − 1

k + 1
xk−1 +

2

k + 1
vk.

We observe that

yk−1− ỹk−1 =

(
k − 1

k + 1
xk−1 +

2

k + 1
vk−1

)
−
(
k − 1

k + 1
xk−1 +

2

k + 1
vk

)
=

2

k + 1
(vk−1 − vk) .

Consequently, we have
k

6λ
〈gk, vk−1 − u〉 =

k

6λ
〈gk, vk−1 − vk〉+

k

6λ
〈gk, vk − u〉

(i)
≤
k

6λ
〈gk, vk−1 − vk〉+

1

2

(
‖vk−1 − u‖2 − ‖vk − u‖2 − ‖vk−1 − vk‖2

)
(ii)
=

k(k + 1)

12λ
〈gk, yk − ỹk−1〉 −

(k + 1)2

8
‖yk − ỹk−1‖2 +Rk−1 −Rk

(iii)
≤
k(k + 1)

12λ

(
〈gk, yk−1 − ỹk−1〉 −

3λ

2
‖yk − ỹk−1‖2

)
+Rk−1 −Rk

(iv)
≤ −

k(k + 1)

12λ
Prog(yk−1; gk) +Rk−1 −Rk

(v)
≤
k(k + 1)

12λ

(
fλ(yk−1)− fλ(xk) +

1

4λ
‖gk −∇fλ(yk−1)‖2

)
+Rk−1 −Rk.

(7)

Here we use (i) the proximal three-point inequality (Item 5 of Fact 1), (ii) the definition of ỹk−1, (iii)
(k+1)2

8 ≥ 3λ
2 ·

k(k+1)
12λ and ‖yk−1 − ỹk−1‖2 ≥ 0, (iv) the definition of Prog, and (v) Equation (6).

Thus,
k

6λ
(fλ(yk−1)− fλ(u)) ≤ k

6λ
〈∇fλ(yk−1), yk−1 − u〉

≤ k

6λ
〈∇fλ(yk−1), yk−1 − vk−1〉+

k

6λ
〈∇fλ(yk−1), vk−1 − u〉

(i)
=

k(k − 1)

12λ
〈∇fλ(yk−1), xk−1 − yk−1〉+

k

6λ
〈∇fλ(yk−1), vk−1 − u〉

≤ k(k − 1)

12λ
(fλ(xk−1)− fλ(yk−1)) +

k

6λ
〈∇fλ(yk−1), vk−1 − u〉

(ii)
≤
k(k − 1)

12λ
(fλ(xk−1)− fλ(yk−1)) +Rk−1 −Rk

+
k(k + 1)

12λ

(
fλ(yk−1)− fλ(xk) +

1

4λ
‖gk −∇fλ(yk−1)‖2

)
+

k

6λ
〈∇fλ(yk−1)− gk, vk−1 − u〉 ,
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where we use (i) yk−1 − vk−1 = k−1
2 (xk−1 − yk−1) and (ii) Equation (7). Rearranging, we obtain

1

12λ
(Pk − Pk−1) =

k(k + 1)

12λ
Ek +Rk −

k(k − 1)

12λ
Ek−1 −Rk−1

≤ k(k + 1)

48λ2
‖gk −∇fλ(yk−1)‖2 +

k

6λ
〈∇fλ(yk−1)− gk, vk−1 − u〉 (8)

Applying Corollary 2, we observe

E
[
‖gk −∇fλ(yk)‖2|xk−1, vk−1

]
≤ σ2

k =
2ελ

k + 1
and

E [〈∇fλ(yk−1)− gk, vk−1 − u〉 |xk−1, vk−1] ≤ ‖E [gk]−∇fλ(yk−1)‖‖vk−1 − u‖ ≤ 2Rδk =
ε

4
by the Cauchy-Schwarz inequality, the constraint that u, vk ∈ BR(0), and the choice of parameters
σk, δk. Taking expectations and applying these to Equation (8), we obtain

1

12λ
(E [Pk|xk−1, vk−1]− Pk−1) ≤ εk

24λ
+

εk

24λ
=

εk

12λ
.

Multiplying both sides by 12λ yields the claim.

With Lemma 4 in hand, we complete the proof of Theorem 3.

Theorem 3. Let f : BR(0) → R and ∇̂f satisfy Assumption 1. Let X ⊆ BR(0) be a convex set
admitting a projection oracle ProjX . Let x0 ∈ X be an initial point with ‖x− x?‖ ≤ D for some
x? ∈ X . With λ = 2G2

ε , δk = ε
8R , σ2

k = 2ελ
k+1 , and T = 7GD

ε Algorithm 3 computes x ∈ X with

E [f(x)] ≤ f(x?) + ε with complexity EN∇̂f = O
(
G2D2

ε2 log2
(
GR
ε

))
and O

(
GD
ε

)
calls to ProjX .

Proof of Theorem 3. Applying the law of total probability and inductively applying Lemma 4, we
obtain

E [PT ] ≤ P0 + ε

T∑
k=1

k = P0 +
ε

2
T (T + 1).

We choose u = x? and observe PT = T (T + 1)ET + 12λRT ≥ T (T + 1) (fλ(xT )− fλ(x?)) and
P0 = 12λR0 ≤ 6λD2. Plugging these in, we have

E [fλ(xT )]− fλ(x?) ≤
6λD2

T (T + 1)
+
ε

2
.

As f is G-Lipschitz, we apply Item 1 of Fact 1 and our choices of λ and T : this gives

E [f(xT )]− f(x?) ≤
G2

2λ
+

6λD2

T (T + 1)
+
ε

2
≤ ε

4
+

12G2D2

εT 2
+
ε

2
≤ ε

4
+

12ε

49
+
ε

2
< ε

as desired.

To finish, we bound the number of oracle queries. The bound on the number of projection oracle
calls is immediate since we only call it once per iteration of the algorithm. To bound the number of
stochastic gradients needed, we apply Corollary 2 together with the fact that yk ∈ BR(0) at all times.
Thus, we need

O

(
T−1∑
k=0

G2

σ2
k

log2

(
G

δk

))
= O

(
T−1∑
k=0

G2(k + 1)

ελ
log2

(
GR

ε

))
= O

(
G2D2

ε2
log2

(
GR

ε

))
subgradient computations as desired.

D Proofs from Section 4
D.1 Analysis of the stochastic accelerated proximal method
In this section we provide a complete analysis of the stochastic accelerated proximal method. We
first prove Lemma 5, which shows potential decrease in (conditional) expectation for the iterates of
Algorithm 4. Then we give Lemma 6 which provides an in-expectation bound on the potential when
the algorithm terminates. In Lemma 7 we give a deterministic error bound resulting from the growth
of the Ak sequence. We then combine these ingredients to prove Proposition 2.
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Notation. Define the filtration

Fk = σ(x1, v1, A1, ζ1 . . . , xk, vk, Ak, ζk)

where ζi is the internal randomness in NEXTLAMBDA(xi, vi, Ai). Throughout, we let

x̂k = Pf,λk(yk−1)

denote the exact proximal mapping which iteration xk of the algorithm approximate. We note that
Ak+1, yk, x̂k+1,∈ Fk, i.e., they are deterministic when conditioned on xk, vk, Ak, ζk.

For each iteration of Algorithm 4, we obtain the following bound on potential decrease.
Lemma 5. Let f : X → R satisfy Assumption 1. If X ⊆ BR(x0), we have

E
[
Ak+1(f(xk+1)− f(x?)) + ‖vk+1 − x?‖2

∣∣ Fk]
≤ Ak(f(xk)− f(x?)) + ‖vk − x?‖2 −

1

6
λk+1Ak+1‖x̂k+1 − yk‖2

+ λk+1a
2
k+1ϕk+1 + a2

k+1σ
2
k+1 + 2Rak+1δk+1.

Proof. We let
ĝk = ∇fλk (yk−1) = λk (yk−1 − x̂k)

and bound from both sides the quantity ak+1 〈ĝk+1, vk − x?〉. First, note that

vk − x? = x̂k+1 − x? +
Ak
ak+1

(x̂k+1 − xk)− Ak+1

ak+1
(x̂k+1 − yk) .

Since ĝk+1 ∈ ∂f (x̂k+1) (see Item 4 in Fact 1), f is convex and 〈ĝk+1, x̂k+1 − yk〉 = −λk+1‖x̂k+1−
yk‖2, we have that

〈ĝk+1, vk − x?〉 = 〈ĝk+1, x̂k+1 − x?〉+
Ak
ak+1

〈ĝk+1, x̂k+1 − xk〉 −
Ak+1

ak+1
〈ĝk+1, x̂k+1 − yk〉

≥ f (x̂k+1)− f (x?) +
Ak
ak+1

(f(x̂k+1)− f(xk))− Ak+1

ak+1
〈ĝk+1, x̂k+1 − yk〉

=
Ak+1

ak+1
(f (x̂k+1)− f (x?))−

Ak
ak+1

(f(xk)− f(x?)) +
λk+1Ak+1

ak+1
‖x̂k+1 − yk‖2.

Moreover, by definition of xk+1 we have that

E[f (xk+1) | Fk] ≤ E
[
f (xk+1) +

λk+1

2
‖xk+1 − yk‖2

∣∣∣∣ Fk] ≤ f (x̂k+1)+
λk+1

2
‖x̂k+1 − yk‖2+ϕk+1.

Substituting back, we have

ak+1 〈ĝk+1, vk − x?〉 ≥Ak+1 (E[f(xk+1) | Fk]− f (x?))−Ak (f (xk)− f (x?))

+
λk+1Ak+1

2
‖x̂k+1 − yk‖2 −Ak+1ϕk+1. (9)

To upper bound ak+1 〈ĝk+1, vk − x?〉, note that, since x? ∈ X ,

‖vk+1 − x?‖2 ≤
∥∥∥∥vk − 1

2
ak+1gk+1 − x?

∥∥∥∥2

= ‖vk−x?‖2−ak+1 〈gk+1, vk − x?〉+
a2
k+1

4
‖gk+1‖2 .

Our Moreau Envelope gradient estimtor (see Corollary 2) guarantees that

E[〈gk+1, vk − x?〉 | Fk] ≥ 〈ĝk+1, vk − x?〉 − ‖E[gk+1 | Fk]− ĝk+1‖ ‖vk − x?‖
≥ 〈ĝk+1, vk − x?〉 − 2Rδk+1,

and moreover

E
[
‖gk+1‖2

∣∣∣ Fk] =

(
1 +

1

3

)
E ‖ĝk+1‖2 + (1 + 3)E

[
‖gk+1 − ĝk+1‖2

∣∣∣ Fk]
≤ 4

3
‖ĝk+1‖2 + 4σ2

k+1.
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Combining the last three displays and rearranging, we obtain

ak+1 〈ĝk+1, vk − x?〉 ≤ ‖vk − x?‖2 − E
[
‖vk+1 − x?‖2

∣∣∣ Fk]+
λ2
k+1a

2
k+1

3
‖x̂k+1 − yk‖2

+ a2
k+1σ

2
k+1 + 2Rak+1δk+1 (10)

Combining (9) and (10) and simplifying using Ak+1 = λk+1a
2
k+1, we obtain the claimed bound.

Combining Lemma 5 with the optional stopping theorem, one obtains the following bound on the
potential at the final iteration K of the algorithm.
Lemma 6. Let K ≤ Kmax be the iteration in which Algorithm 4 returns and let

ε̄ ≥ max
k≤Kmax

{
λkakϕk + akσ

2
k + 2Rδk

}
with probability 1. Then, under the assumptions of Lemma 5, we have

E

AK(f(xK)− f(x?)− ε̄) +
1

6

∑
i≤K

λiAi‖x̂i − yi−1‖2
 ≤ A0(f(x0)− f(x?)) +R2.

Proof. Define Mk = Ak(f(xk) − f(x?) − ε̄) + 1
6

∑
i≤k λiAi‖x̂i − yi−1‖2 + ‖vk − x?‖2 for all

k ∈ [K]. We argue that it is a supermartingale adapted to filtration Fk. Clearly, E[|Mk|] < ∞ for
each k due to boundedness of f,K, λi and Ai. It therefore suffices to show that E[Mk+1|Fk] ≤Mk

for all k + 1 ∈ [K]. By Lemma 5 we have

E [Mk+1|Fk] ≤ Ak(f(xk)− f(x?)) + ‖vk − x?‖2 −
1

6
λk+1Ak+1‖x̂k+1 − yk‖2

+ λk+1a
2
k+1ϕk+1 + a2

k+1σ
2
k+1 + 2Rak+1δk+1 −Ak+1ε̄+

1

6

∑
i≤k+1

λiAi‖x̂i+1 − yi‖2

≤ Ak(f(xk)− f(x?)− ε̄) + ‖vk − x?‖2 +
1

6

∑
i≤k

λiAi‖x̂i+1 − yi‖2 = Mk,

where the second inequality used the definition of ε̄ and Ak+1 = Ak +ak+1 for the second inequality.
This completes the proof that Mk being a supermartingale adapted to filtration Fk.

Now note K is a stopping time adapted to Fk as it only depends on Ak+1. Also, K as a random
variable is finitely bounded by Kmax with probability 1. Thus, by optional stopping theorem for
supermartingale [26], we have

EMK ≤M0 = A0(f(x0)− f(x?)− ε̄) + ‖v0 − x?‖2 ≤ A0(f(x0)− f(x?)) +R2.

Further, following a similar argument to Carmon et al. [12, 13], we obtain a deterministic growth
bound on the coefficients Ak.
Lemma 7. Fix k > 0 and let

Tλ =
∑
i≤k

1{λi<2λmin} and Tr =
∑
i≤k

1{‖x̂i−yi−1‖≥3r/4}

count the number of times λi < 2λmin and ‖x̂i − yi−1‖ ≥ 3r/4, respectively. Then, the following
holds with probability 1,

1

Ak

9R2 − 1

6

∑
i≤k

λiAi‖x̂i − yi−1‖2
 ≤ O(min

{
λminR

2

T 2
λ

,
R2

A0
exp

(
−Ω(1)

r2/3

R2/3
Tr

)})
.

Proof. When 9R2 − 1
6

∑
i≤k λiAi‖x̂i − yi−1‖2 ≤ 0, the inequality holds true trivially. Thus, we

only consider the case when 1
6

∑
i≤k λiAi‖x̂i − yi−1‖2 ≤ 9R2. Consider the following iterate index

subsets
Iλ := {i ≤ k : λi < 2λmin}
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and, for t ≤ k
Ir,t := {i ≤ t : ‖x̂i − yi−1‖ ≥ 3r/4}.

We first show that

1

Ak

9R2 − 1

6

∑
i≤k

λiAi‖x̂i − yi−1‖2
 ≤ O(R2

A0
exp

(
−Ω(1)

r2/3

R2/3
Tr

))
. (11)

To see this, observe that for any t ≤ k by definition of Ir,t,
1

6

∑
i∈Ir,t

λiAi ·
(

9

16
r2

)
≤ 1

6

∑
i≤t

λiAi‖x̂i − yi−1‖2 ≤ 9R2,

which by rearranging terms implies ∑
i∈Ir,t

λiAi ≤
96R2

r2
. (12)

Note the reverse Hölder’s inequality with p = 2/3 states that for any u, v ∈ Rd>0,

〈u, v〉 ≥

∑
i∈[d]

u
2/3
i

3/2

·

∑
i∈[d]

v−2
i

−1/2

.

We have

√
At

(i)

≥ 1

2

∑
i∈Ir,t

1√
λi

(ii)

≥ 1

2

 ∑
i∈Ir,t

(√
Ai

)2/3

3/2

·

 ∑
i∈Ir,t

(
1√
Aiλi

)−2
−1/2

(iii)

≥ r

8
√

6R
·

 ∑
i∈Ir,t

(√
Ai

)2/3

3/2

,

where we used (i) Lemma 23 of [12] and Ir,t ⊆ [t], (ii) the reverse Hölder’s inequality with
ui =

√
Ai, and vi = 1/

√
Aiλi, and (iii) the bound (12). Rearranging, we have

A
1/3
t ≥ r2/3

4 3
√

6R2/3

 ∑
i∈Ir,t

A
1/3
i

 , for all t ≤ k, (13)

which by applying Lemma 32 of [12] and noting that Tr = |Ir,k| gives

A
1/3
k ≥ exp

(
r2/3

4 3
√

6R2/3
Tr

)
A

1/3
0 ,

and thus

1

Ak

9R2 − 1

6

∑
i≤k

λiAi‖x̂i − yi−1‖2
 ≤ 9R2

Ak
≤ O

(
R2

A0
exp

(
−Ω(1)

r2/3

R2/3
Tr

))
.

Next, we show that

1

Ak

9R2 − 1

6

∑
i≤k

λiAi‖x̂i − yi−1‖2
 ≤ O(λminR

2

T 2
λ

)
. (14)

Using Lemma 23 of [12] again, along with Iλ ⊆ [k] and |Iλ| = Tλ, we have√
Ak ≥

1

2

∑
i∈Iλ

1√
λi
≥ Tλ

2
√

2λmin

.

Rearranging the terms, we see that 1/Ak ≤ O(λmin/T
2
λ) as desired.

Combining Equations (11) and (14) we obtain the claimed bound.
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Putting these pieces together gives Proposition 2, which we prove below.

Proposition 2. Let f : X → R and ∇̂f satisfy Assumption 1, and let X ⊆ BR(x0). For a
target accuracy ε ≤ GR let ϕk+1 = ε

60λk+1ak+1
, δk+1 = ε

120R , σ2
k+1 = ε

60ak+1
, A0 = R

G , and

Amax = 9R2

ε . If λk ≥ λmin ≥ 1
Amax

= Ω( ε
R2 ) for all k ≤ Kmax, then lines 4 and 5 of Algorithm 4

have total complexity EN∇̂f = O
(
Kmax log GR

ε + G2R2

ε2 log2 GR
ε

)
. If in addition ‖Pf,λk(yk−1)−

yk−1‖ ≥ 3r/4 whenever λk ≥ 2λmin then for Kmax = O
((

R
r

)2/3
log
(
GR
ε

)
+
√

λminR2

ε

)
, the

algorithm’s output xK satisfies f(xK)− f(x?) ≤ ε with probability at least 2
3 .

Proof. First, let us prove correctness of the algorithm. The settings of ϕk, δk and σk in the proposition
guarantee that

max
k≤Kmax

{
λkakϕk + akσ

2
k + 2Rδk

}
=

ε

20
.

Therefore, Lemma 6 with ε̄ = ε/20 ≤ R2/(2.2Amax) yields

E

AK(f(xK)− f(x?)) +
1

6

∑
i≤K

λiAi‖x̂i − yi−1‖2
 ≤ R2 + ε̄ · EAK +A0(f(x0)− f(x?)).

Note that AK−1 ≤ Amax by definition. Therefore, λmin ≥ 1
Amax

implies that

aK =
1

2

√
1

λ2
K

+
4AK−1

λK
≤
√

5

2
Amax,

and therefore AK ≤ 2.2Amax ≤ R2/ε̄ with probability 1. Moreover the choice of A0 =
R/G and the fact that f is G Lipschitz imply that A0(f(x0) − f(x?)) ≤ R2. Therefore,
E
[
AK(f(xK)− f(x?)) + 1

6

∑
i≤K λiAi‖x̂i − yi−1‖2

]
is at most 3R2. Since the term in the expec-

tation is non-negative, we conclude that with probability at least 2/3 it is bounded by 9R2, which
implies

f(xK)− f(x?) ≤
1

AK

9R2 − 1

6

∑
i≤K

λiAi‖x̂i − yi−1‖2
.

If AK ≥ Amax = 9R2/ε we are done. Otherwise, K = Kmax and by the assumption on
NEXTLAMBDA we have Tλ+Tr ≥ Kmax for Tλ and Tr defined in Lemma 7. Therefore, either Tr ≥
Kmax/2 or Tλ ≥ Kmax/2, and in either case taking Kmax = O

((
R
r

)2/3
log
(
GR
ε

)
+
√

λminR2

ε

)
and applying Lemma 7 yields f(xK)− f(x?) ≤ ε and establishing correctness.

Next, let us prove the stated complexity bound. We note each step of computing xk in Line 4 requires
O(G2/λkϕk) queries via Proposition 3 and the definition (4) of the approximate proximal mapping.
Moreover, by Corollary 2 computing gk in Line 5 requires

O

(
log

(
G

min{δk, σk}

)
+
G2

σ2
k

log2

(
G

min{δk, σk}

))
queries in expectation. Summing over k ∈ [K] and substituting ϕk, δk, σk, we obtain

EN∇̂f =
∑
k∈[K]

O

(
G2

λkϕk

)
+
∑
k∈[K]

O

(
log

(
G

min{δk, σk}

)
+
G2

σ2
k

log2

(
G

min{δk, σk}

))

=
∑
k∈[K]

O

(
log

(
GR

ε

)
+
akG

2

ε
log2

(
GR

ε

))
= O

(
log

(
GR

ε

)
·K +

AKG
2

ε
log2

(
GR

ε

))

= O

(
Kmax log

(
GR

ε

)
+
G2R2

ε2
log2

(
GR

ε

))
,

where we have used AK = O(Amax) = O(R2/ε) once more.
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D.2 Minimizing the maximum of N functions
In this section, we first revisit the problem setup of minimizing the maximum of N functions and
reintroduce key notation. Then we provide the procedure of estimating the gradient of the softmax
using rejection sampling in Algorithm 9 and prove its guarantees in Lemma 8. Next, we bound the
query complexity of lines 4 and 5 of Algorithm 4 in Lemmas 9 and 10 respectively. Citing [13], we
provide a bisection procedure in Algorithm 10 and state its guarantee in Lemma 4. For this procedure
we use the Ball Regularization Optimization Oracle (BROO) implementation of [13]; see Definition 4
and Lemma 11. Combining these components with the developments of the previous subsection, we
prove Theorem 4.

Notation. Consider the problem of approximately minimizing the maximum of N convex functions:
given f(i) such that for every i ∈ [N ] the function f(i) : Rd → R is convex, G-Lipschitz, with a
subgradient oracle∇f(i) and a target accuracy ε we wish to

find a point x such that fmax(x)− inf
x?∈Rd

fmax(x?) ≤ ε where fmax(x) := max
i∈[N ]

f(i)(x) . (15)

A common approach to solving this problem is to consider the following “softmax” approximation of
fmax,

fsmax(x) := ε′ log

∑
i∈[N ]

ef(i)(x)/ε′

, where ε′ =
ε

2 logN
. (16)

It is straightforward to show that 0 ≤ fsmax(x) − fmax(x) ≤ ε
2 for all x ∈ Rd, and that the

subgradients of fsmax are of the form

∇fsmax(x) =
∑
i∈[N ]

pi(x)∇f(i)(x) where pi(x) =
ef(i)(x)/ε′∑

j∈[N ] e
f(j)(x)/ε′

(17)

for ∇f(i)(x) ∈ ∂f(i)(x) for all i ∈ [N ]. The small radius

rε :=
ε′

G
=

ε

2G logN

plays a key role in our analysis, since—as we now discuss in detail—this is a domain size where we
can efficiently minimize fsmax using stochastic gradient methods.

D.2.1 Gradient estimation via rejection sampling

We first construct the gradient estimator of fsmax(x) using rejection sampling. The high-level idea of
the technique is as follows. Given a ball Brε(x̄) where rε = ε′/G, Lipschitz continuity of f(i) implies∣∣f(i)(x)− f(i)(x̄)

∣∣
ε′

≤ Grε
ε′

= 1. (18)

As a result, we can perform a full data pass once to compute p(x̄), and use it to sample from p(x) at
nearby points x ∈ Brε(x̄) via rejection sampling. In particular, we draw i from p(x̄) and accept it
with probability qaccept = exp(f(i)(x)/ε′ − f(i)(x̄)/ε′ − 1), and otherwise repeat the process. The
the bound (18) guarantees that qaccept < 1 (so it is indeed a probably), and therefore the output i has
distribution p. The bound (18) also guarantees that qaccept = Ω(1) and consequently that the query
complexity of the procedure is O(1). We sate the procedure formally in Algorithm 9 and give its
guarantees in Lemma 8.
Lemma 8 (Rejection sampling). Given G-Lipschitz functions f(i) and p̄ = p(x̄), ∀i ∈ [N ], the
procedure SOFTMAXGRADEST with input x ∈ Brε(x̄) returns a vector ∇̂fsmax(x) such that
E∇̂fsmax(x) ∈ ∂fsmax(x) and ‖∇̂fsmax(x)‖ ≤ G. The procedure has complexity ENf(i) = O(1)
and N∂f(i) = 1.

Proof. We first prove correctness. Note thatG-Lipschitz continuity of the f(i)’s along with ‖x−x̄‖ ≤
rε = ε′/G guarantees that, f(i)(x)ε′ − f(i)(x̄)/ε′ ≤ 1 and therefore qaccept ≤ 1 is a valid probability
of every value of i. Therefore, the probability of sample and accepting i is proportional to

p̄i · exp

(
f(i)(x)

ε′
−
f(i)(x̄)

ε′

)
∝ exp

(
f(i)(x)

ε′

)
∝ pi(x),
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Algorithm 9: SOFTMAXGRADEST({f(i)}, {p̄i}, x̄, x)

Input: Functions f(i), pre-computed f(i)(x̄) and p̄i = pi(x̄) for i ∈ [N ], query point
x ∈ Brε(x̄).

Output: An unbiased estimator for∇fsmax with norm at most G.
1 Loop
2 Sample i from p̄
3 Let qaccept = exp(f(i)(x)/ε′ − f(i)(x̄)/ε′ − 1)
4 Draw A ∼ Bernoulli(qaccept)
5 if A = 1 then return∇f(i)(x)

which proves the correctness of the sampling distribution for the output i and, via eq. (17), the
unbiasedness of the gradient estimator. The norm bound on the output of the procedure is immediate
from Lipschitzness of f(i).

Next, we prove the complexity bound. Clearly, the algorithm only queries a single subgradient at
termination. To bound the number of function value queries, note that Lipschitz continuity and
the ball radius imply f(i)(x)ε′ − f(i)(x̄)/ε′ ≥ −1, and therefore the probability of acceptance is at
least e−2. Consequently, the expected number of iterations before accepting a sample is at most
e2 = O(1).

D.2.2 Estimating the proximal mapping and Moreau envelope gradient

Using gradient estimator for ∇̂fsmax developed above, we can implement lines 4 and 5 in Algorithm 4,
provided that the true proximal bound x̂ = Pλ,fsmax(y) satisfies ‖x̂ − y‖ ≤ r = rε. We begin the
implementation of the approximate proximal step in line 4, which we obtain by directly applying
EPOCHSGD. The following is an immediate consequence of Lemma 8 and Proposition 3.

Lemma 9. Let f(i) be convex and G-Lipschitz for all i ∈ [N ], let ε, ϕ > 0 and rε = ε/(2 logGN).
For any x̄ ∈ Rd and λ > 0, if Pfsmax,λ(x̄) ∈ Brε(x̄) then EPOCHSGD(∇̂fsmax,

λ
2 ‖· −

x̄‖, λ,X ∩ Brε(x̄), d16G2/(λϕ)e) (with ∇̂fsmax implemented with Algorithm 9) outputs a valid
point P̃ϕfsmax,λ

(x̄), and has complexity

ENf(i) = O

(
N +

G2

λϕ

)
and N∂f(i) = O

(
G2

λϕ

)
.

Similarly combining Lemma 1 with Corollary 2, one can also obtain the following expected oracle
complexity guarantee for estimating the Moreau envelope gradient .

Lemma 10. Let f(i) be convex and G-Lipschitz for all i ∈ [N ], let σ, ε, δ > 0 and
rε = ε/(2 logN · G). For any x̄ ∈ Rd and λ > 0, if Pfsmax,λ(x̄) ∈ Brε(x̄) then ĝ =

MORGRADEST(∇̂fsmax, λ, x̄, δ, σ
2,X ∩ Brε(x̄)) (with ∇̂fsmax implemented with Algorithm 9)

is an estimator of the Moreau envelope gradient ∇fsmax,λ(x̄) with bias at most δ and expected
square error at most σ2. Its complexity is

ENf(i) = O

(
N +

G2

σ2
log2

(
G

min{δ, σ}

)
+ log

(
G

min{δ, σ}

))
EN∂f(i) = O

(
G2

σ2
log2

(
G

min{δ, σ}

)
+ log

(
G

min{δ, σ}

))
.

D.2.3 Implementing NEXTLAMBDA via bisection

The third and final component in our algorithm is an implementation of the subroutine NEXTLAMBDA
in line 2 of Algorithm 4 that guarantees the following things on λk+1 and x̂k+1 = Pfsmax,λ(yk): (i)
that ‖x̂k+1 − yk‖ ≤ r and (ii) either ‖x̂k+1 − yk‖ ≥ 3r/4 or λ < 2λmin; we later set r = rε and
λmin = Õ(ε/(r

4/3
ε R2/3)) but for the development of the bisection procedure we keep them general.
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Our implementation of NEXTLAMBDA is identical to the one in [13], and we reproduce it here for
completeness.

We start by introducing the notion of a Ball Regularization Optimization Oracle (BROO).
Definition 4 ([13, Definition 1]). We say that a mapping Oλ,ρ(·) : X → X is a Ball Regularized
Optimization Oracle of radius r (r-BROO) for f , if for every query point x̄, regularization parameter
λ and desired accuracy ρ, it return x̃ = Oλ,ρ(x̄) satisfying

f(x̃) +
λ

2
‖x̃− x̄‖2 ≤ min

x∈Br(x̄)∩X

{
f(x) +

λ

2
‖x− x̄‖2

}
+
λ

2
ρ2. (19)

While a BROO is quite similar to the approximate proximal mapping P̃ϕλ , there are two important
differences. First, in the BROO definition we constrain the minimization to Br(x̄) where the
approximate proximal mapping is defined for the all domain—this allows us to efficiently compute a
BROO via stochastic methods even for values of λwhere the true (unconstrained) proximal point is far
from x̄. Second, we require the sub-optimality guarantee to hold deterministically (a requirement that
we will satisfy with high probability), as opposed the requirement (4) of an expected suboptimality
bound. In addition, note that the accuracy parameter ϕ and ρ are related via ϕ = λρ2/2 and that
ρ has units of distance. Strong convexity of the BROO optimization objective then implies that
‖Oλ,ρ(x)− Pf,λ(x)‖ ≤ ρ whenever Pf,λ(x) ∈ Br(x).

We have the following high-probability complexity guarantee for implementing a BROO.
Lemma 11 ([13, Corollary 1]). Let f(i) be convex and G-Lipschitz for all i ∈ [N ], let pf ∈ (0, 1),
ε, ρ > 0 and rε = ε/(2 logN · G). For any x̄ ∈ Rd and λ ≤ O(G/rε), with probability at least
1− pf , EPOCH-SGD-PROJ [13, Algorithm 2] that outputs a valid rε-BROO response for fsmax to
query x̄ with regularization λ and accuracy ρ, and has complexity

Nf(i) = O

(
N +

G2

λ2ρ2
log

(
log(G/(λρ))

pf

))
and N∂f(i) = O

(
G2

λ2ρ2
log

(
log(G/(λρ))

pf

))
(20)

Given a BROO implementation Algorithm 10 outputs values of λ meeting the requirements of Propo-
sition 2. The algorithm and the formal guarantee below are reproduced from [13] for completeness,
and we refer the reader to Appendix B.3 of that paper for additional description and discussion.

Algorithm 10: λ-BISECTION(x, v,A)

Input: Points x, v ∈ X , scalar A ≥ 0.
Parameters : BROO Oλ,δ(·) (see Definition 4), bisection bounds λmin, λmax, Lipschitz bound

G, distance bounds R and r.
1 For all λ′, let yλ′ := α2Aλ′ · x+ (1− α2Aλ′) · v, where ατ := τ

1+τ+
√

1+2τ

2 Define ∆(λ) := ‖Oλ, r17 (yλ)− yλ‖ . approximation of ball optimizer to yλ
3 Let λ = λmax

4 while λ ≥ λmin and ∆(λ) ≤ 13r
16 do λ← λ/2 . terminates in O(log λmax

λmin
) steps

5 if λ ≤ λmin then return 2λ . happens only if ball optimizer is O(ε)-optimal
6 Let λu = 2λ, λ` = λ and λm =

√
λuλ`

7 if ∆(λ`) ≤ 15r
16 then return λ` . happens only if ∆(λ`) ∈ [ 13r

16
, 15r

16
]

8 while ∆(λm) /∈ [ 13r
16 ,

15r
16 ] and log2

λu
λ`
≥ r

8(R+G/λ`)
do

9 if ∆(λm) < 13r
16 then λu = λm else λ` = λm

10 λm =
√
λuλ`

11 return λm . the while loop terminates in O
(
log
(
R
r

+ G
λminr

))
steps

Proposition 4 ([13, Proposition 2]). Let f : Rd → R be G-Lipschitz and convex, and let x, v ∈ Rd,
ε, r, R ∈ R>0 satisfy ε ≤ GR, r ≤ R and ‖x− v‖ ≤ 2R. Given λmax ≥ 2G

r and λmin ∈ (0, λmax),
λ-BISECTION(x, v,A) outputs λ ∈ [λmin, λmax] such that

‖Pf,λ(yλ)− yλ‖ ≤ r.
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The subroutine uses O(log(λmax

λmin
) + log(R+G/λmin

r )) calls to Oλ′, r17 (·) with λ′ ∈ [ 1
2λ, λmax]. More-

over, for α2λA = 2λA
1+2λA+

√
1+4λA

and yλ := α2λAx+ (1− α2λA)v one of the following outcomes
must occur:

1. λ ∈ [2λmin, λmax] and ‖Pf,λ(yλ)− yλ‖ > 3r
4 , or

2. λ < 2λmin.

When taking λmax = 2G
ε and λmin = Ω( ε

rR ), the number of calls to Oλ′, r17 (·) is O(log GR2

rε ).

D.2.4 Proof of Theorem 4

Finally, we combine the guarantees collected above to prove our near-optimal rate for minimizing the
maximum-loss.

Theorem 4. Let f(1), . . . , f(N) : X → R be convex and G-Lipschitz and let X ⊆ BR(x0). For
any ε < 1

2GR/ logN , Algorithm 4 (with P̃ϕfsmax,λ
implemented in Algorithm 8, ∇̂fsmax given by

Algorithm 9 and NEXTLAMBDA given by Algorithm 10 with λmin = Õ(ε/(r
4/3
ε R2/3)) outputs x ∈

X that with probability at least 1
2 is ε-suboptimal for fmax(x) = maxi∈[N ] f(i)(x) and has complexity

ENf(i) = O

([
N
(
GR logN

ε

)2/3

+
(
GR
ε

)2]
log2 GR

ε

)
and EN∂f(i) = O

((
GR
ε

)2
log2 GR

ε

)
.

Proof. We first prove correctness. Since ε′ = ε
2 logN , we have 0 ≤ fsmax(x)− fmax(x) ≤ ε/2 [see,

e.g., 12, Lemma 45]. Therefore, it suffices to find an ε/2-approximate solution of fsmax over the
domain X ⊆ BR(x0). Let pBROO be the probability that all the BROO calls within Algorithm 10
(implemented as described in Lemma 11) result in a valid output. Then, noting that yλ defined in
Proposition 4 is precisely yk defined in Algorithm 4, the guarantees of Proposition 4 imply that, for
x̂k+1 = Pfsmax,λ(yk), we have ‖x̂k+1 − yk‖ ≤ r and either ‖x̂k+1 − yk‖ ≥ 3r/4 or λ < 2λmin

with probability at least pBROO. Consequently, Proposition 2 (with ε→ ε/2 and Kmax as required by
the proposition), the output x of Algorithm 4 satisfies fsmax(x)− fsmax(x?) ≤ ε/2 with probability
at least 1− (1− 2

3 )− (1− pBROO) = pBROO − 1
3 .

To finish the proof of correctness, it remains to verify that pBROO ≥ 5/6. To that end, let Kbisect
max =

O(log GR2

rεε
) to be the total number of BROO calls in a single execution of λ-BISECTION, as per

Proposition 4. Then, if the probability of failure of a single BROO implementation is pf and we
perform at most Kmax calls to λ-BISECTION, we have pBROO ≥ 1 − KmaxK

bisect
max pf . Therefore,

taking

pf ≤
1

6KmaxKbisect
max

guarantees correctness.

We now proceed to bound the algorithm’s complexity. To that end, we set

λmin =
ε

r
4/3
ε R2/3

log2

(
GR

ε

)
.

Recalling that rε = ε
2G logN , the total number of iterations in Algorithm 4 is at most

Kmax = O

((
R

rε

)2/3

log
GR

ε
+

√
λminR2

ε

)
= O

((
GR logN

ε

)2/3

log
GR

ε

)
. (21)

Setting the approximation parameters to be ϕk = O( ε
λkak

), δk = O( εR ) and σ2
k = O( ε

ak
) as required

in Proposition 2, the complexity of lines 4 and 5 in the kth iteration of Algorithm 4 is bounded by
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Lemma 9 and Lemma 10 as

EN (k),1
f(i)

= O

(
N +

G2

λkϕk
+
G2

σ2
k

log2

(
G

min{δk, σk}

)
+ log

(
G

min{δk, σk}

))
= O

(
N +

G2ak
ε

log2

(
GR

ε

)
+ log

(
GR

ε

))
EN (k),1

∂f(i)
= O

(
G2

λkϕk
+
G2

σ2
k

log2

(
G

min{δk, σk}

)
+ log

(
G

min{δk, σk}

))
= O

(
G2ak
ε

log2

(
GR

ε

)
+ log

(
GR

ε

))
.

To bound the complexity of the bisection procedure at the kth iteration of Algorithm 4, note that
it makes a total of Kbisect

max = O(log GR2

rεε
) = O(log GR logN

ε ) = O(log GR
ε ) BROO calls, rε =

ε
2G logN and logN ≤ GR

2ε . Applying Lemma 11 with pf and λmin as determined above, the
complexity is bounded by

N (k),2
f(i)

= O

((
N +

G2

λ2
minr

2
ε

log

(
log(G/(λminrε))

pf

))
Kbisect

max

)
= O

((
N +

G2r
2/3
ε R4/3

ε2 log4
(
GR
ε

) log

(
GR

ε

))
log

(
GR

ε

))
,

N (k),2
∂f(i)

= O

(
G2

λ2
minr

2
ε

log

(
log(G/(λminrε))

pf

)
Kbisect

max

)
= O

(
G2r

2/3
ε R4/3

ε2 log2
(
GR
ε

)) .
Summing the bounds above over iterations 1 to K ≤ Kmax and noting that

∑
k≤K ak = AK ≤

2Amax = O(R2/ε) (see proof of Proposition 2) we obtain the total complexity bounds

ENf(i) =
∑
k≤K

(
EN (k),1

f(i)
+ EN (k),2

f(i)

)

= O

(
KmaxN log

GR

ε
+
G2AK
ε

log2 GR

ε
+Kmax

G2r
2/3
ε R4/3

ε2 log4
(
GR
ε

) · log2

(
GR

ε

))

= O

((
GR logN

ε

)2/3

N · log2 GR

ε
+
G2R2

ε2
log2 GR

ε

)
,

and

EN∂f(i) =
∑
k≤K

(
EN (k),1

∂f(i)
+ EN (k),2

∂f(i)

)
= O

(
G2R2

ε2
log2 GR

ε

)
,

where we have used formula (21) for Kmax. This concludes the proof.

E Proofs from Section 5
In the section we prove Theorem 5, the convergence guarantee for Algorithm 5, our gradient-efficient
composite optimization method. We first provide a lemma (Lemma 12) that helps us analyze the
behavior of the βk and γk sequences in the algorithm. Then we combine it with the approximation
guarantees of our estimator to show the convergence rate of Algorithm 5 in Proposition 5. Finally
we apply this proposition and bound the expected number of gradient queries complete the proof of
Theorem 5.

The following helper lemma is also used in Lan [33, 34]; we provide it here for completeness of
analysis.
Lemma 12 (Convergence of geometric sequence, cf. Lemma 2 of Lan [34]). Given γk ∈ (0, 1), for
all k ∈ N, and Γ1 > 0, define the sequence

Γk := (1− γk)Γk−1, ∀k ≥ 2.

31



If a sequence Ek satisfies Ek ≤ (1− γk)Ek−1 +Bk, for all k ≥ 1, then we have for any k ≥ 1,

Ek ≤ Γk

1− γ1

Γ1
E0 +

∑
i∈[k]

Bi
Γi

 .
Using the helper lemma, we can show the following convergence rate for Algorithm 5.

Proposition 5 (Convergence rate). Given problem (5) with optimizer x? and initial point ‖x0−x?‖ ≤
R, let σ2

k = R2

4N , δk = R
16N , εk = LR2

2kN , and let parameters βk = 2L
k , γk = 2

k+1 . Then, the iterates
of Algorithm 5 satisfy

Ψ(xN )−Ψ(x?) ≤ O
(
LR2

N2

)
.

Proof. We first observe that

Λ(xk)
(i)

≤Λ(yk) + 〈∇Λ(yk), xk − yk〉+
L

2
‖xk − yk‖2

(ii)
= (1− γk) [Λ(yk) + 〈∇Λ(yk), xk−1 − yk〉]

+ γk [Λ(yk) + 〈∇Λ(yk), v̄k − yk〉] +
Lγ2

k

2
‖v̄k − ProjX (vk−1)‖2

(iii)

≤ (1− γk)Λ(xk−1) + γk

[
Λ(yk) + 〈∇Λ(yk), v̄k − yk〉+

βk
2
‖ProjX (vk−1)− v̄k‖2

]
− γkβk − Lγ2

k

2
‖ProjX (vk−1)− v̄k‖2

(iv)

≤ (1− γk)Λ(xk−1) + γk

[
Λ(yk) + 〈∇Λ(yk), v̄k − yk〉+

βk
2
‖ProjX (vk−1)− v̄k‖2

]
,

where we use (i) L smoothness of function Λ, (ii) expanding xk = (1 − γk)xk−1 + γkv̄k and
replacing yk − xk = γk(ProjX (vk−1)− v̄k), (iii) convexity of Λ, and (iv) that βk ≥ Lγk.

Similarly using convexity of the non-smooth component f and the definition of xk and v̄k, we obtain

f(xk) ≤ (1− γk)f(xk−1) + γkf(v̄k).

Thus, summing the two inequalities and recalling the definition Λ̄k(v) = Λ(yk) + 〈∇Λ(yk), v − yk〉,
this is equivalent to

Λ(xk)+f(xk) ≤ (1−γk) (Λ(xk−1) + f(xk−1))+γk

[
Λ̄k(v̄k) + f(v̄k) +

βk
2
‖ProjX (vk−1)− v̄k‖2

]
.

Now we recall the definition of composite objectives Ψ(x) = Λ(x) + f(x) and define

Φk(x) = Λ̄k(x) + f(x) +
βk
2
‖x− ProjX (vk−1)‖2.

By convexity of Ψ one has the recursion

Ψ(xk)−Ψ(u) ≤ (1−γk) (Ψ(xk−1)−Ψ(u))+γk

(
Φk(v̄k)− Φk(u) +

βk
2
‖ProjX (vk−1)− u‖2

)
.

Let v?k be the exact minimizer of Φk restricted to X̄ := BR(v0) ∩ X . We have, for any u ∈ X̄ , that
Φk(u) ≥ Φk(v?k) + βk

2 ‖v
?
k − u‖2, and consequently

Ψ(xk)−Ψ(u) ≤(1− γk) (Ψ(xk−1)−Ψ(u))

+ γk

(
Φk(v̄k)− Φk(v?k) +

βk
2

(
‖ProjX (vk−1)− u‖2 − ‖v?k − u‖2

))
.
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Conditioning on past events and taking expectation over randomness of vk and v̄k, this gives for any
u ∈ X̄ ,

EΨ(xk)−Ψ(u) ≤ (1− γk) (Ψ(xk−1)−Ψ(u)) + γk (EΦk(v̄k)− Φk(v?k))

+
γkβk

2

(
‖ProjX (vk−1)− u‖2 − E‖vk − u‖2 + E‖vk − v?k‖2 + E2〈v?k − u, vk − v?k〉

)
(i)

≤ (1− γk) (Ψ(xk−1)−Ψ(u)) + γk (EΦk(v̄k)−Ψ(v?k))

+
γkβk

2

(
‖ProjX (vk−1)− u‖2 − E‖vk − u‖2 + E‖vk − v?k‖2 + 4R‖Evk − v?k‖

)
(ii)

≤ (1− γk) (Ψ(xk−1)−Ψ(u)) + γk (EΦk(v̄k)− Φk(v?k))

+
γkβk

2

(
‖ProjX (vk−1)− u‖2 − E‖ProjX (vk)− u‖2 + E‖vk − v?k‖2 + 4R‖Evk − v?k‖

)
where we use (i) the triangle inequality and v?k ∈ X̄ to conclude ‖v?k−u‖ ≤ ‖v?k−x0‖+‖x0−u‖ ≤
2R, and (ii) the projection property that ‖ProjX (vk)− u‖2 ≤ ‖vk − u‖2 for any u ∈ X̄ .

Note that EΦk(v̄k)−Φk(v?k) ≤ εk by the definition of v̄k = P̃εk
Λ̄k+f,βk

(vk−1). Moreover, Theorem 1
guarantees that E‖vk − v?k‖ ≤ δk and that E‖vk − v?k‖2 ≤ σ2

k. Therefore, writing

Ek = EΨ(xk)−Ψ(u)

and

Bk =
γkβk

2

(
E‖ProjX (vk−1)− u‖2 − E‖ProjX (vk)− u‖2

)
+ γkβk

(
εk
βk

+
σ2
k

2
+ 2Rδk

)
,

we conclude that Ek ≤ (1− γk)Ek−1 +Bk. Applying Lemma 12, we obtain

EΨ(xN )−Ψ(u) ≤ΓN
1− γ1

Γ1
[Ψ(x0)−Ψ(u)]

+ ΓN

N∑
k=1

βkγk
2Γk

(
E‖ProjX (vk−1)− u‖2 − E‖ProjX (vk)− u‖2

)
+ ΓN

∑
k∈[N ]

βkγk
Γk

(
εk
βk

+
σ2
k

2
+ 2Rδk

)
(i)

≤ΓNL‖v0 − u‖2 + ΓN
∑
k∈[N ]

βkγk
Γk

(
εk
βk

+
σ2
k

2
+ 2Rδk

)
(ii)

≤ 4LR2

N(N + 1)
,

where (i) follows from telescoping and γ1 = 1, and (ii) is due to Γk =
∏
k≥2(1− γk) = 2

k(k+1) , so

that βkγkΓk
= 2L, and εk

βk
+
σ2
k

2 +2Rδk ≤ R2

2N by the choices σ2
k = R2

4N , δk = R
16N and εk = LR2

2kN .

We are now ready to prove the main theorem of the section.
Theorem 5. Given problem (5) with solution x?, a point x0 such that ‖x0 − x?‖ ≤ R and target
accuracy ε > 0, Algorithm 5 with εk = LR/2kN , δk = R/16N , σ2

k = R2/4N , and N =

Θ(
√
LR2/ε) finds an approximate solution x satisfying EΨ(x) ≤ Ψ(x?) + ε and has complexity

N∇Λ = O

(√
LR2

ε

)
and EN∇̂f = O

((
GR
ε

)2
log2 GR

ε +
√

LR2

ε log
(
GR
ε

))
.

Proof. By Proposition 5, it suffices to run Algorithm 5 for N = O(
√
LR2/ε) iterations, which

immediately implies the stated bound on N∇Λ.

Now we consider the cost of attaining the requiring accuracy εk when computing v̄k. Using the
EPOCHSGD and Proposition 3 we can do so with

N
(1)
k = O

(
G2

βkεk

)
= O

(
G2k2N

L2R2

)

33



queries to ∇̂f .

Applying Theorem 1, the expected cost of attaining bias δk = R
16N and variance σ2

k = R2

4N is

EN (2)
k = O

(
log

(
GNk

LR

)
+
NG2

β2
kR

2
log2

(
GNk

LR

))
= O

(
log

(
GNk

LR

)
+
G2k2N

L2R2
log2

(
GNk

LR

))
queries to ∇̂f .

Summing these over all k ≤ N = O(
√
LR2/ε), we obtain the the required complexity bound

EN∇̂f =
∑
k

(
N

(1)
k + EN (2)

k + 1
)

= O

(
N log

(
GN2

LR

)
+
G2N4

L2R2
log2

(
GN2

LR

))

= O

(√
LR2

ε
log

(
GR

ε

)
+
G2R2

ε2
log2

(
GR

ε

))
.

F Proofs and additional remarks from Section 6
In this section we prove Theorem 6 which gives an optimal complexity and generalization bound for
differentially private stochastic convex optimization, conditional on the existence of an improved
optimum estimator (Definition 3). We begin by stating a standard privacy guarantee for the Gaussian
mechanism applied on mappings with bounded `2 sensitivity, and a lemma that helps us bound
the sensitivity of the conjunctured bounded estimator. With these results in hand, we prove Theo-
rem 6. Finally, we discuss some challenges and prospects for constructing bounded estimators that
satisfy Definition 3.

F.1 Helper lemmas
Privacy of the Gaussian mechanism. In this section, we present the privacy guarantees of the
Gaussian mechanism which will be useful for the proof of Theorem 6. First, for an estima-
tor (or a function) h : Sn → Rd, the `2-sensitivity of the estimator is upper bounded by ∆ if
supS,S′∈Sn:dham(S,S′)≤1‖h(S)− h(S ′)‖ ≤ ∆, where dham is the hamming distance between the two
samples (i.e., S,S ′ with hamming distance dham(S,S ′) ≤ 1 have at most a single different element).
We can now state the privacy guarantees of the Gaussian mechanism.
Lemma 13 (Gaussian mechanism [21, Theorem A.1]). Let h : Sn → Rd have `2-sensitivity ∆. Then
the Gaussian mechanism A(S) = h(S) + N(0, σ2Id) with σ = 2∆ log(2/β)/α is (α, β)-DP.

Bounding the number of estimator copies that use a particular sample. To prove Theorem 6,
we begin with a lemma which bounds the number of optimum estimator copies that each sample can
participate in. To this end, let Si,t denote the set of samples used in iteration i of Algorithm 6 during
the computation of the t’th optimum estimator copy. For a sample s`, we let Ki,` denote the number
of sets Si,t such that z` ∈ Si,t. Recalling that the number of iterations k = dlog ne and that n̄ = n/k,
we have the following lemma.
Lemma 14. Let µi = 1

ηin̄
. Assume we use an optimum oracleO satisfying Definition 3 with constant

C2 and δ2
i = G2

µ2
i n̄

. Then, for any β ≤ 1/n,

P
(

max
1≤i≤k,1≤`≤n

Ki,` ≥ 20 log(1/β) + 6C2 log2 n

)
≤ β/2.

Proof. We first prove the claim for a fixed i and ` and then we apply a union bound. Fix 1 ≤ i ≤ k
and 1 ≤ ` ≤ n and define Yt = 1{z`∈Si,t}. Now we upper bound p = P(Yt = 1). Let the random
variable Nt denote the number of subgradients the t’th query to Oδ at iteration i uses. First, note that
whenever Nt = j, we have

P(Yt = 1 | Nt = j) ≤ j/n̄,
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by the union bound. Thus, Definition 3 now implies

P(Yt = 1) =

∞∑
k=1

P(Yt = 1 | Nt = j)P(Nt = j)

≤ 1

n̄

∞∑
k=1

P(Nt = j)j =
E[N ]

n̄
=
C2

n̄
log

G

µiδi
.

We can now use a Chernoff bound to prove the claim. Indeed, as Ki,` =
∑n
t=1 Yt and Yt ∼

Bernoulli(p) are i.i.d., Lemma 15 below implies that for c ≥ 6,

P(Ki,` ≥ cE[Ki,`]) = P

(
n∑
t=1

Yt ≥ cnp

)
≤ 2−cnp.

As p ≤ C2 log(n) log(G/µiδi)/n, we take c ≥ 6 such that cnp ≥ 20 log(1/β), hence we have

P(Ki,` ≥ 20 log(1/β) + 6C2 log(n) log(G/µiδi))) ≤ β4.

Applying a union bound over all n samples and all k = dlog ne iterations, we have that

P
(

max
1≤i≤k,1≤`≤n

Ki,` ≥ 20 log(1/β) + 6C2 log(n) log(G/µiδi))

)
≤ β/2.

The claim now follows by noting that G
µiδi
≤
√
n using our choice of δi in Algorithm 6.

Lemma 15 ([37], Ch. 4.2.1). Let X =
∑n
i=1Xi for Xi

iid∼ Bernoulli(p). Then for c ≥ 6,

P (X ≥ cnp) ≤ 2−cnp.

F.2 Proof of Theorem 6
Theorem 6 (conditional). Given an efficient bounded low-bias estimator Oδ satisfying Definition 3
for any δ > 0, then for α ≤ log(1/β), X ∈ BR(x0), convex and G-Lipschitz f̂(x; s), Algorithm 6
is (α, β)-DP, queries Õ(n) subgradients and has (hiding logarithmic factors in n) E[f(xk) −

minx∈X f(x)] ≤ GR · Õ
(

1√
n

+

√
d log3(1/β)

nα

)
.

Proof. We begin by proving the privacy claim. We show that each iterate is (α, β)-DP which
completes the proof by post-processing as each sample is used in exactly one iterate. To this end, first
we show that, with high probability, each sample z` is used in at most B = 20(log( 1

β ) + C2 log2 n)

different optimum-estimator queries; we let E denote this event. More precisely, let Si,t denote the
set of samples used in iteration i during the application of the t’th oracle. Then for every i and
sample z`, letting Ki,` be the number of sets Si,t such that z` ∈ Si,t. Using this notation, the event
E is equivalent to max1≤i≤k,1≤`≤nKi,` ≤ B. Lemma 14 implies that P [E] ≥ 1− β/2, therefore
we only have to prove (α, β2/2)-differential privacy assuming event E happens as we have using
eα ≤ 1/β that

P [A(S) ∈ O] ≤ P [A(S ′) ∈ O | E]P [E] + (1− P [E])

≤ eαP [A(S ′) ∈ O | E]P [E] + β/2

≤ eαP [A(S ′) ∈ O] + β.

We therefore assume E holds and proceed to bound the `2-sensitivity of x̃i. To this end, let µi =
1/(ηin̄) and x̂i = argminx∈X Fi(x). First, note that each optimum estimation oracle output satisfies

‖Oδi(Fi)− xi−1‖ ≤ ‖Oδi(Fi)− x̂i‖+ ‖x̂i − xi−1‖
(?)

≤
√
C1G

√
log n/µi +G/µi

= (
√
C1 log n+ 1)G/µi,
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where the first term in inequality (?) above holds since the estimator Oδi satisfies Definition 3 and
Fi = fi + ψi where fi is G-Lipschitz and ψi is µi-strongly convex with G/(µiδi) ≤

√
n. The

second term of the inequality holds since ψi(x) = µi‖x− xi−1‖2, thus as fi is G-Lipschitz we have

µi‖x̂i − xi−1‖2 ≤ fi(xi−1)− fi(x̂i) ≤ G‖x̂i − xi−1‖.

As event E holds, each sample participates in at most B of the optimum estimator computations
queries, hence we have that the `2-sensitivity of x̃i is at most 2Bn̄ (

√
C1 log n + 2)G/µi. Privacy

properties of the Gaussian mechanism (Lemma 13) and our choice of σi now imply that each iterate
is (α, β2/2)-DP whenever event E holds, which proves the claim about privacy.

Let us now prove utility following steps similar to the proof of Theorem 4.4 in [23]. We define the
non-private minimizers, x̂i = argminx∈X Fi(x) and x̂0 = x?. We have

f(xk)− f(x?) =

k∑
i=1

[f(x̂i)− f(x̂i−1)] + f(xk)− f(x̂k). (22)

Using the definitions of σi and ηi in Algorithm 6, we also have that for every i ≥ 1

E[‖x̂i − xi‖2] ≤ 2E[‖x̂i − x̃i‖2] + 2E[‖x̃i − xi‖2]

≤ 2E[‖x̂i − x̃i‖2] +O

(
G2B2η2

i d log(n) log(1/β)

α2

)
≤ 2E[‖x̂i − x̃i‖2] +O

(
G2B2η2d log(n) log(1/β)

α228i

)
.

Moreover, using properties of the bounded-optimum estimator from Definition 3, that is,
‖Oδi(Fi, xi−1)−x̂i‖2 ≤ C1G

2 log(n)/µ2
i and ‖E[Oδi(Fi, xi−1)−x̂i]‖2 ≤ δ2

i , we have by choosing
δ2
i = G2/µ2

i n̄ = G2η2
i n̄,

E‖x̃i − x̂i‖2 = E

∥∥∥∥∥ 1

n̄

n̄∑
j=1

Oδi(Fi, xi−1)− x̂i

∥∥∥∥∥
2

≤ C1G
2 log(n)

µ2
i n̄

+ ρ2 ≤ (C1 + 1)G2η2
i n̄ log(n).

We can now bound the terms in (22). For the second term, the choice of η gives

E[f(xk)− f(x̂k)] ≤ GE[‖xk − x̂k‖]

≤ G ·O
(
Gηk

√
n̄ log(n) +

RB

26k

)
≤ G ·O

(
2Gη

√
n̄ log(n)

24k
+
RB

26k

)

≤ O
(
RG

n

)
.

For the first term in (22), as Fi isG-Lipschitz over Xi = {x ∈ X : ‖x−xi−1‖ ≤ 2Gηin̄}, Theorems
6 and 7 in [46] imply that for all y ∈ Xi

E[f(x̂i)− f(y)] ≤ E[‖y − xi−1‖2]

ηin̄
+ 2G2ηi,
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hence we now have
k∑
i=1

E[f(x̂i)− f(x̂i−1)] ≤
k∑
i=1

µi−1E[‖x̂i−1 − xi−1‖2] + 2G2ηi

≤ O

(
R2

ηn̄
+

k∑
i=2

µi

(
G2 log(n)

µ2
i n̄

+
G2B2η2

i d log(n) log(1/β)

α2
i

)
+G2ηi

)

≤ O

(
R2

ηn̄
+

k∑
i=2

G2ηi log(n) +
G2B2ηid log(n) log(1/β)

α2
i n̄

)

≤ O

(
R2

ηn̄
+G2η log(n) +

k∑
i=2

2−i
G2B2ηd log(n) log(1/β)

α2n̄

)

≤ GR ·O

(
log n√
n

+
B log(n)

√
d log(1/β)

nα

)
,

where the last inequality follows since n̄ = n/dlog(n)e, and η =
R
G min(1/

√
n, α/B log(n)

√
d log(1/β)).

F.3 The challenges of obtaining a bounded optimum estimator

To highlight the challenge of finding bounded estimators that satisfy Definition 3, let us explain why
our MLMC optimum estimator (1) fails to do so. For this estimator, we have (when 2J ≤ Tmax)

‖x̂? − x?‖ ≤ ‖x? − x0‖+ 2J‖xJ − xJ−1‖,

where xj is the output of an ODC algorithm with query budget 2j . The ODC property and the
triangle inequality then roughly imply that ‖xj − xj−1‖ = O(2−j/2G/µ) and consequently (since
‖x? − x0‖ = O(G/µ)) we have ‖x̂? − x?‖ = O(2J/2G/µ) = O(

√
TmaxG/µ) which clearly is not

enough to guarantee an Õ(G/µ) bound on ‖x̂?−x?‖. Indeed, to guarantee such bound with a similar
analysis we would have needed ‖xj − xj−1‖ = O(2−jG/µ). However, this would imply that, by
the triangle inequality,

‖xj − x?‖ = ‖xj − x∞‖ ≤
∞∑

k=j+1

‖xk − xk−1‖ =
∑
k=j+1

O(2−kG/µ) = O(2−jG/µ),

which contradicts the lower bound on the optimal distance convergence rate in Appendix A.4.

Having explained why the analysis strategy underlying our estimator (1) cannot directly yield a
bounded optimum estimator, we discuss two approaches with a potential to solve the problem. The
first approach is to apply ODC algorithms on a smooth surrogate of the true objective F , for which
the faster convergence to the optimum is possible, e.g., using randomized smoothing [20, 32].

The second approach is try to directly bound the `2 sensitivity of our MLMC-based approach. In
particular, it might be possible to leverage the structure of our estimator (or an improved version
thereof) in order to control the `2 sensitivity without relying on the boundedness of the estimator as
we currently do in the proof of Theorem 6.
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