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A Preliminary Lemmas and Notation

If a function f is three-times differentiable then we let:

ai,kf(xlzn) = a:v”cf(xln) alf(mln) =
aZkl:Qf(xlzn) = 8$i,k1 8mi,k2 f(xlzn) a?f(xln) =
ari,kl 3.%,62 6zi,k3f(x1:n) aff(xln) =

8?,k1:3f($1:n) =
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(32',1f(351:n), sy 8i,df(m1:n))—r

(aiz,klzz f(xln)) k1,ko<d

3
(ai,klzs f(xlin)) ker ko ks <d

Lemma 3 Let (XZL) be an array of martingale differences taking value in RP». Suppose that

Hmaxkgpn |X{L7k|’

the distribution of (X", such that

1 ~ -
— X" < X"
< L,
Thus if log(pn) = o(n'/*) then
1 -
— S % — 0 | 108(py,
S e

Ly

sup X;"
k<pn

(15 (togtrn) + 22220 )

vn

Ly

< 0o where p > 3. Then there exists a constant Cy, that does not depend on
LP

Moreover let (X]') be a triangular array of i.i.d process and (gi ) be sequences of measurable

functions, for each k € [p]. Then:

= O | log(pn) v sup

L, i<n

XTL
IAx g (X™)

k<pn
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X7, if j A

X ifiej with (X!) being an independent copy of (XI").

where we have defined X;” = {

See Appendix [T.1] for proof of Theorem 3]

Lemma 4 For any set of random variables U1, ..., Up,:
d d
E|[D U | <2 I,
t<m t<m

Proof: By expanding the polynomial, applying a repeated version of Cauchy-Schwarz inequality
and collapsing the polynomial again, we get:

d d
d d
EN(X U] | =E| > [I0u|< > TTW0le. < | D I0L,
t<m t1.a<m ¢=1 t1.a<m ¢=1 t<m
]
Lemma 5 The distribution distance dr satisfies the triangle inequality.
Proof: For any three random variables X, Y, Z:
dr(X,Z) = sup E[W(X)] — E[h(Z)]
heF
= SugE[h(X)] —E[R(Y)] +E[R(Y)] - E[n(2)]
€
< sup E[A(X)] = E[n(Y)] + sup E[A(Y)] - E[i(Z)] = d#(X,Y) + d#(Y, Z)
heF heF
]

Lemma 6 The distribution distance dr is translation invariant: For all random variables X and Y

and all constant z we have
d]:(X,Y) :d]:(X—z,Yfz)

Proof: Forall h € F define h,x — h(x — z). We have:
Eh(X —2) —h(Y —2) =Eh,(X) — h,(Y) <dr (X,Y).
As this holds for all A € F it implies that
dr (X —2,Y —2) <dr (X,Y).
The reverse inequality is proved in exactly the same fashion. (|

Lemma 7 Let p1, p2 be two distributions that are uniformly continuous with respect to a measure L.
Then the following holds:

1
1 §e,KL(p2.,p1) > |p1(-) = p2()llrv

Proof: We denote fi, fo the Radon-Nikodym densities of respectively p; and po with respect to p.
By the Cauchy-Swartz inequality we have:

([ VAwmEmwe)
< ( [ VR, @) s o), fz(X))du(af)> 2

< [ win( i), fa(o)du(e) [ max(fa(o), £200)dutz)
< [win(f@). faleiute) (2~ [ min(i(0), 200 dut)

<2(1 = |Ip1(-) = p2()|l7v)-
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Moreover by another application of Cauchy-Swartz we know that

(/ \/fl(x)fz(X)du(x)>2
_ Jes(( VAR m®) )

~ v/ f1(=x)
2108 ([ YE fa(X)au(2))

< e—KL(p2>p1)

=€

Therefore by combining those two inequalities we obtain that:

1 _
1_ 56 K L(p2,p1) > |Ip1(-) = p2()llrv

B Extensions and Variations of Main Theorem

In this section we present some supplementary results that have been motivated in the main body of
the article.

B.1 Alternative Condition to (H;))

As mentioned in the main body of the text the results also hold under a slightly modified condition
(H1). We denote || ||v,d,,» || - |lm,a, and ||-||+,m,, respectively the L1 norm for d,, dimensional vectors,
d, x d, dimensional matrices and d,, X d,, X d,, dimensional tensors. We define the following
quantities:

1 X"
P = 2 supHHaifn(Zﬁ;s Mo, | 5w 1x31]
1
2
R: .= 4 1/2 H 82 anX” ’ X
2,n n Sup H )Hm,dn Lis zs<udp| 11| Lo
. ) 4
R;m := 8nsup . max _ |affn(Z””"”)||td sup |X{LZ|
i<n lze[X" Y U[X™,Z7] Lo i<, Ly

We assume that the functions ( f,,) satisfy the following conditions:
1
ogdy) (2 max { L R o R )+ i =0 )

Theorem 8 Let (g, : x?zl]Rd" — R) be a sequence of symmetric measurable symmetric functions.
Let (X7') be a triangular array of i.i.d processes such that X7 € Lis. Assume that there is a
sequence (fy,) of measurable functions satisfying condition and (HY). Then there exists a
universal constant K such that:

| dr (90(2"), gu(P) | X7)

< |

g"(}'}n) 7fn(Yn Ly + Hg” .fn Z” ||L1

* 1 *
K <10g(d71) ((Rn,1>2 max {nl/67 n 1} + Rn 2) + Rn,3>

Similarly Theorem [2]also holds under the hypothesis H. In addition we generalize it to the setting
where the variance-covariance matrix of (X[*) is unknown but can be estimated.

Ly

Theorem 9 Let (g, : xleRd" — R) be a sequence of measurable functions satisfying hypothesis
(Hy), (HY) and (H3). Denote .2 the variance-covariance matrix of X7 and by 2 an estimator of

32, and (N™) to be a sequence of Gaussian vectors distributed as N ~ N(0,1d). Suppose that 3,,
is independent from (X[') and that it verifies:

sup’P (mgx(in]\f")ﬂ > t) - P (mgx|(ZnN”)k| > t) ’ — 0.
t
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Let 3 > 0 be a real; write 7?5 /73 , and tg/j (X™) as quantities satisfying

P (|gn(2") = Blga(Z")|X™)| = (02(X") | X™) < B/2;

P (max (2,870l 2 (2)5C,7% ) <.
Then the following holds:

lim sup lim sup P (E(M")) < [ga(Z27) — )2 1012 — 6, gn(Z™) + 1002 + 1512 + 5}) <B.
510 n ) ) ) s

B.2 Extension to Exchangeable Sequences and Random Estimators (g,,)

In this subsection we generalize theoremto random estimators (gy,,) and to exchangeable processes
(X7). We say that a process (X[") is exchangeable if and only if for all permutations = € S(N) and
all indexes i1, ..., € N we have:
n n d n n
()(7;17 PR 7X1k) - (Xﬂ'(il)7 —— 7X7T(ik))'

We designate by 7(X™) the tail c—algebra of X™ which is defined as 7(X™) := 2, o (X}, k >
i). By the De Finitti theorem we know that (X*) is exchangeable if and only if conditionally on
7(X™) the process (X[") is an i.i.d process.

We assume that the sequence of (potentially random) functions (g,,) is such that there is a net of
(potentially random) three-times differentiable functions ( f,,) respecting conditions and (H7).
We establish under those conditions the limiting distribution of the bootstrap estimator.

Theorem 10 Let (g, : xI"R%¥ — R) be a sequence of measurable functions. Let (XI*) be a
triangular array of exchangeable processes such that X}* € Lqs. Assume that there is a net (f,,)
of (potentially random) functions satisfying Assumption|l} Let Y™ = (Y;") be a process that is,
conditionally on T(X™), an independent copy of X™ that is also independent from (g,,). Define (Z™)
to be a boostrap sample of X™ that is independent of (gy,) conditionally on X™. Then there exists a
universal constant K such that:

dz (9n(2"),90(Y") | X

ga(Y") = fu(¥™)

< |

Iy Lt + lgn(2") — fn(Zn)HL1

1
+ K (R?z,l max <nl/6 Rm) + B3+ Rn,z)
— 0.

Remark 4 We note that Theorem|[I2] Theorem|I1) Theorem[I3and Theorem|[8} can be generalized

in the exact same fashion.

C Counter-examples when Assumption 1 does not hold

Firstly we note that if and hold we have |[g, (X™) — gn (0X2.,)||, = o(n=1/3). This is
a first-order stability property, i.e. that each sample i’s influence on the estimate has to decay at rate
n~1/3. Our first example is chosen to violate this.

Example 1 Let (X)) be a sequence of i.i.d observations distributed as X; ~ unif(0, 1). Let (gy,) be
the following sequence of functions: gy (z1.n) := nmin,<,, x;. Then neither the bootstrap method nor
the centered bootstrap method are consistent. Moreover, we note that: ||gn(X1:n) — gn(0X2:0)|[ 1, o

n~Y/3. In this example, the bootstrap estimator g, (Z"™) > gn(X) is systematically larger than the
original statistic, which leads to inconsistency of the bootstrap distribution.

Another consequence of having the second and third order derivative of respective order o(n’l/ 2)
and o(n 1) is that the following two conditional expectations are very similar:

= o(1). (1)

1

|Elga(z") | X" ~E [gu(77) | X"]
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Our second example is chosen to satisfy the main implication of the first order stability conditions:
ie. [|gn(X™) — g0 (0X%. )|z, = o(n'/3); but to fail to respect this new property.

Example 2 Let (X) be a sequence of i.i.d observations distributed as X" ~ unif (0, 1). Let (g,,)
be the following sequence of functions:

1
n(T1m) = — 1<min|z; —x;| >1/np — Pmin|X; — X;| >1/n|.
(o)1= S S el > 1nf =P (il 0> 1/m)

Then neither the bootstrap nor the centered bootstrap are consistent. Moreover we note that the first or-
der stability result holds, but ||gn(Y1.n) — gn(0Y2.1,) HLg x n~Y2 and Condition (1) is violated. The
main driving force of inconsistency in this example is that contrary to the original sample, it is likely
that the bootstrap sample will contain repeats. Hence we expect P (min; 1 |27 — Z>1/n| X ™)

to be smaller than P (min;z, | X1 — X;| > 1/n). See Appendix|N.1|for formal proof.

D Illustrative Examples and Counterexamples

We present a sequence of simple examples illustrating that our theorems hold even if the estimator
is not asymptotically normal. Moreover, we provide negative examples where the shape of the
confidence intervals obtained by the bootstrap method can be arbitrary compared to the ones of the
original statistics g,,(Y7.,,). The first example we consider are polynomials of the empirical average.
Their limiting distribution is in not Gaussian for p > 1.

Example 3 Let p € N be an integer and let X := (X;) be an i.i.d sequence taking value in R
with mean 0 and admitting a 12p-th moment E HXi|12p] < 00. We define the functions (g,) as

P
n : Tl — (ﬁ di<n aci) . We write (Z!") a bootstrap sample and (Y;") an independent copy of
X. Then the following holds:

_ _ 1
ld (g0 ("), (Vi X" +v/n ¥ | X)[|,, =0 (—= -
1 \/ﬁ
Moreover, let A be an 1 — « confidence-interval for gn(ffl:n) meaning P(gy, (f’lm) cA)>1—-a
Write: Agn == {z € R| Jy € As.t x =sign(z)] (|y|'/? — )_(”)p} then
P(gn(Y1.n) € Agn) 21—

See Appendix [O.1]for the proof.

Example 4 Let X := (X;) be an i.i.d sequence of bounded real valued random variables satis-
fing E(X1) = 0. We define g, : x]_ ;R — R to be the following function: g,(z1,...,%,) =

\/E{H?:l (1+ ) — 1}. Write (Z!') to be a centered bootstrap sample and let Y := (Y;) be an
independent copy of X. Then the following holds:

|45 (90(2") = B(ga(Z7)1X), gu(Yiin) = Elga(Y™))| X) |
See Appendix|0.2]for a formal proof.

The next example demonstrates that the confidence intervals obtained by the bootstrap method are
neither systematically bigger or smaller than the ones of original statistics.

— 0.
Ly

Example 5 Let (X;) be a sequence of i.i.d standard normal observations X; ~ N(0,1). Define (g,,)
+

to be the following sequence of functions: gn(x1.,) := [ﬁ di<n xl} . Let (Z™) be a bootstrap

sample. The following holds:

iz (gnz™), va [y + X7 1 X)| o,
Moreover given o. < 0.5 and a sequence (t,,) such that: P(g,(Z™) <t, | X™) =1 — o then:
P(gn(Yn) S t'n, - \/ﬁXn) ~1—a.

We notice that the segment [0, t] is smaller than [0, t—~/nX™] only if \/nX™ > 0 which asymptotically
happens with a probability of 1/2.

20



See Appendix [0.3|for a formal proof.
In the next example we show that our results apply to classical quantities in mathematical physics.
We consider the entropy of spin glasses configurations.

Example 6 Let X := (X, ;) be an array of i.i.d observations satisfying X; ; < N(0,1). We denote

X" .= (Xivj)i,jgn the induced matrix and define g, : M,(R) — R fo be the following function:
gn(X) := L1og (Zme{—l 1yn € g X" m) Write (Z7';) and (Z';) respectively a bootstrap and
centered bootstrap sample and Y™ an independent copy of X™. Then the following holds:

1 LonTyn xn N2
d ny smm Yrm (32 ma)*/vm n .
| g (Z27), nlog Z e e | X — 0;
me{—-1,1}" I
and
a5 (gu(2), Z10g [ S0 ) x| | o
F | 9n 'n g )
me{—1,1}» L.

vn . 1 n
where we have denoted X" := 55, ., X[";

See Appendix [O.4]for a formal proof.

E Consistency of the Centered-Bootstrap

First we explore the case when we know the mean of the observations E [X7']. In this case, we can
leverage this knowledge to build centered bootstrap samples Z* := ZI" + E[X}] — X™. Observe

that these centered samples satisfy the crucial property that E [Z T X ”} = E(X}"). We prove that,

under mild conditions, the centered bootstrap estimator is asymptotically consistent. The conditions
needed for the centered bootstrap to be consistent are hypothesis (Hy) and (H7) formulated instead

for (Y;") and (Z!") rather than for (Y;*) and (Z7).

Assumption 2 (Approximation by C? of g,,(- + E(XT) — X™).) There exists a sequence of func-
tions (f,,) with f, € C3 s.t.:

1. The functions ( f,,) approximate the estimators (gy):

LNy} (HS)

sup [|£a(Z") = 92, + [ £Y™) = ()]

2. The first, second and third order derivatives are respectively of size o(n=/3), o(n=1/2),
o(n™1h):

Ry, i=n'/? Z DTy, (fal +E(XT) = X™)) = o(1);

k1<d,

co=vn > Dy (- HEXT) = X)) = o(1); (HY)
k1,ka<dn

Rig:=n Y Dy (ful- +EXT) = X)) = o(1).
k1,k2,k3<d,

We show that under those conditions the centered bootstrap is asymptotically consistent and thereby
can be used to build confidence intervals with asymptotically nominal coverage.

Theorem 11 Let (g,, : xI"R%¥ — R) be a sequence of measurable functions. Let (XI*) be a
triangular array of i.i.d processes such that X{* € Lis. Assume that there is a sequence (f, :

21



x RI» — R) of measurable functions satisfying conditions (HS) and (HY). Then there is a
universal constant K such that:

lgn (™) = Fa(Y )l +||9a(Z7) = fu(2")

Ly

| (gn(2), guymy 1 x7), =0

<
= 1
B (e R R )

Example 7 (Application to hypothesis testing) An important application is hypothesis testing. Sup-
pose we want fo test (Hy) : E[XT] = 0 against an alternative (Hy). In this goal, we build a test

statistic Tn(X ™) for which we want to compute a p-value. Let (ZI") be a bootstrap sample of
{XP, ..., X"}, define (Z?) as the following process:
Z0 = Zr — X" 0.

We remark that under the null, (Z?) is a centered bootstrap sample of X™. Using Theoremwe
know, under stability conditions on (T},) (i.e. Assumption , that we can use T™(Z4.,) to estimate
the p-value of T,.

Proposition 4 Let (X) be a triangular array of i.i.d processes taking value in R and T, :
xR — R be a sequence of measurable functions that satisfies Assumption Then:

|dx (T2l By 1 X7)|| o

Ly
F Stable Estimators to Uniform Perturbations

In this section we explore conditions guaranteeing that the distribution of g, (Y") — E [¢,,(Y™)] is
asymptotically the same as the distribution of g,,(Y") — E [gn(fm) | X ”} , conditional on X™, as

this would imply that the bootstrap method provides consistent confidence intervals for E [g,, (Y™)].
We start by noting that if (g,,) are linear then it automatically holds as we have

Z?’in_E Z}?’Z"|XTL :Z}/;TL_E ZY';L'X»,L

i<n i<n i<n i<n

Observe that the random variables )71” differ from Y, in a benign manner: a random offset X" —
E [X7'], which is independent of Y™, is added to all the random variables. Moreover, this offset is
with high probability O(n~'/2), since it is the difference of a sample and a population mean. We
will refer to such perturbations of a sample Y as a uniform perturbation. To study general statistics,
we introduce the following assumption which guarantees that small uniform perturbations do not
drastically change the distribution of g, (Y™):

Assumption 3 (Stability to Uniform Perturbation) A statistic sequence (gy,) is stable to small
uniform perturbations if for all B > 0:

rmBi= )l sup ‘gn(X" +a/vn) — gn(X") —]E[gn(X" +a/vn) —gn(X”)H "0
x€Ba, (0,B) L
(Hs)

where we define By, (0, B) := {x € R | ||z||» < B}.

Note that the perturbations considered in hypothesis are uniform on all the coordinates i € [n].
This notably implies that if g,, depends only the relative distance between the observations then
hypothesis holds. We prove, under hypothesis (H2), that the bootstrap method is consistent
and hence by Proposition[I|can be used to build asymptotically consistent confidence intervals for

E [g,(X™)] (proof in Appendix [N.2).
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Theorem 12 Let (g, : x}‘led” — R) be a sequence of measurable functions. Let (X!") be a
triangular array of i.i.d processes such that X}* € Lyo. Assume that (g,,) satisfies Assumptionand
Assumption[3} Then there exists a universal constant K such that:

Hd}' (gn(zn) - E[gn(Zn)‘Xn]a gn(Y") = E(gn(Y™)) | Xn)HL1
‘ gn(Y™) = fu(Y™) . + Hgn(Z") - fn(Z")HLl + K(R,.1)* max {nll/G,le}
< inf

= boer 2/ S, IXT4IE,
+K (Rn,g + Rn,Z) + B

— 0.

[lon ™, + lan],, ]+

Condition holds beyond linear statistics. We present two simple illustrative examples of such
non-linear estimators, for which is satisfied.

Example 8 Ler (X;) be an i.i.d sequence of random variables taking value in R. We suppose that
they are bounded: || X1||L., < oo. We define the functions (gn.1) and (gn,2) as satisfying:

2
1 n «731‘ _ jn
In1 't Tim =7 Tn Z Ti = Titins2| | > 9n721$1:n—>\/ﬁ[H<1+ - ) —1}.
" i<lny2) i=1
Then the functions (gn. 1, gn,2) satisfy conditions (Hy), (H1) and (Ha). Hence the bootstrap is

consistent, i.e.:
dr (gn1(Z") = E(gn,1(Z")1X); gn1 (Yiin) — E(gn1 (Y1) | X) = 0;
dr (9n,2(Z") = E(gn,2(Z2")|X), gn,2(Y1:n) — E(gn,2(Y1:0)) | X) — 0.
However hypothesis can be easily violated by simple examples. We prove in the next subsection,

under mild conditions, that violation of implies that no re-sampling method can provide
asymptotically consistent confidence intervals. We present here a simple example of this phenomenon.

Example 9 Let (X;) be an i.i.d sequence of scalar-valued, bounded observations with mean 0. Write
2
(Y;) an independent copy of (X;). Define the following functions g, : 1., — (ﬁ Yoi<n :m) .

Then hypothesis (Ha)) does not hold and the centered distributions of (g, (Y1.n)) and (gn(f/ln)) are
not asymptotically identical

a5 (92(Vi) =B [0 (F1n) | X ], g0 (Yin) = Elga(Vien)] | X) /5 0.

G Impossibility for Unstable Estimators to Uniform Perturbations

In this section we prove that if the estimators are sensitive to small uniform perturbations then the
bootstrap method is not consistent. Then we offer three solutions on how to use the bootstrap to build
confidence intervals with a guaranteed minimum coverage.

Non-consistency of the bootstrap if the estimators are unstable. Let P), be a class of probability
distributions on R9. Write P, (R) the set of probability measures on R. We say that the centered
distribution of g,,(-) can be estimated over the class of distributions P, if there is a measurable
function Q,, : z1,...,z, — Pa(R) such that for all sequences of distributions (v,,) € [[;~, P},

we have e
Exne, [[dr (Qn(X"), gn(Y") —E[g.(Y™)] | X™)[] —— 0;

where (V) is taken to be to be an independent copy of (X ). We prove that the centered distribution
of g, (-) cannot be estimated if a hypothesis similar to (Hs)) is not respected (proof in Appendix [N.4).

Theorem 13 Let (g, : xleRd" — R) be a sequence of measurable functions. Define §2,, C R to
be a non empty open subset of R4 and let P!, := {py,0 € Q. } be a parametric subset of P,, such
that Ex ~pn (X) = 0. Denote (Z,,(0)) the Fisher information matrix of (py ). Suppose that there is a

sequence of measures (py ) € [1,°, Py, a sequence (z,) € [, R* and a real ¢ > 0 such that
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T, (0,)2 22 || < .
(6) vl o0

(i). lllnsupsupéne[emenJr%} ’

(ii). The following holds if (X") ES 7

lim in d > (gn (X” + \Z/’%) —E {gn (X” + \Z/%)] , gn(X™) — E[gn(X”)]) > e

(iii). 6,, + ZT% €,
Then for all measurable functions Q,, : 1, ..., %, — P (R) there is a sequence (v,) € [[,—, Pl
such that:

1dF (Ln(X™), gn(Y") = Elgn(Y™")[ | X")[I, # 0
where (X1, (Y;") .
Theorem [[3]implies that if the means of the observations are unknown then no re-sampling method
will in general be consistent. We propose in Appendix [E| ?? and Appendix [[|three alternative ways to
build confidence intervals, that bypass this impossibility result and have asymptotically a guaranteed

coverage of at least 1 — a.. Albeit, some of these intervals will potentially have larger size than
needed.

H Corrected confidence intervals

We start by presenting an illustrative example of Theorem 2}

Example 10 Let (X;) be an i.i.d sequence with mean 0 and variance 1. Suppose that X; € L1o and
let co (X™) be such that:

1 1
P [%ZZW—]E([%ZZ;\XH > (X)X | <o

i<n i<n

Denote z,, the 1 — « quantile of a standard normal: P (Z > z,) < a where Z > N(0, 1). Then the
following holds:

lim sup P [%ZZZH}?_E([%ZXZF) an/z(X)—i-ZiM <a

n—0 i<n i<n

The second method exploits the bootstrap method for slightly shifted observations. The goal is to use
the fact that under moderate conditions we know that |FX — E(X7]")]| is of size O(1/y/n). In this

goal, we denote By, () the ball in R of radius  for the Euclidean-norm.

Theorem 14 Let (g,,) be a sequence of measurable functions. Suppose that for all sequence () €
Ba, (vn) Assumption[l|is satisfied by (X™ + p,,) and (gn). Define (v,,) to be a sequence such that

12@3") — 00. Set t& (X ™) to be satisfying

sup P (|gn(Z" + p) —E(gn(Z" + p) | X™)| 2 12(X") | X™) S«
uEBa,, (Yn)

Then the following holds:

lim sup limsup P (|gn(Y™) —E (g, (Y™))| > t3(X") +0 | X") < a.
640 n—0

See Appendix for a proof. We apply this new result to the previous illustrative example.
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Example 11 Let (X;) be an i.i.d sequence with mean 0 and variance 1. Suppose that X; € L1 and
let co,(X™) be such that:

sup P [%ZZi—i-x]Q—IE([%ZZH—x]z) an(X")|X" <a.

z,|z|<log(n)/v/n i<n i<n

Then the following holds:

imsup P {|[ =S¥~ B([ = )| 2 x| <a

n—0 i<n i<n

I Robust Confidence Interval

Theorem states that if the mean E [X '] of the observations is known then we can instead study the
centered bootstrap estimator, which under technical conditions, is asymptotically consistent. However
assuming that the mean is known can be unrealistic. In this section, we instead assume that we know
that it belongs to a certain subset A,, and seek to find a confidence interval with a guaranteed coverage
level for all potential values of the mean. To make this more precise, we consider an adversary
that can see the draw of the random samples and translate them by any offset in the translation set
B, = {x —E[X]] : © € A,}. Our goal is to guarantee that no-matter what perturbation the
adversary chooses, we produce a confidence interval with guaranteed coverage. Let P,, a set of
probability distributions on R%» such that there exists a sequence of functions (f,,) with f,, € C3
such that:

1. The functions ( f,,) approximate the estimators (g, ):

sup Exnpoos (|£a(27) = gn(Z7)]) + Exno (1fa(X7) = ga(X™)]) 22250,

veP,
(HE)
2. The first, second and third order derivatives are such that:
sup max (RfLVl, RZ’;, sz’é) — 0. (HT°Y)

vEP,

C,V

where for each distribution v € P,, we denoted by R,
i.d

.1 5, o and Ry, 3 computed for (X ) "y

R and R, the coefficients

Our goal we is to use the bootstrap method to find (¢%(X™)) such that the following holds:

tmsup  sup Py, (007" = Elga (V)] 2 £(X7) < @)
n—00 vePy ’
IEXN,,(X)GAn

If conditions (H°P) and (H}°P) hold then the bootstrap method can be used to find a sequence (%)
such that (3) holds (proof in Appendix [N.10).

Theorem 15 Let (g,,) be a sequence of measurable functions, let (P,,) be sets of probability measures
chosen such that (H}°P) and (H}°P) hold. For all v € P,, and given a sample X™ ~ v define t&(X™)
to be such that:

sup P (|gn(Z" +p— X") = E [gn(Z" + p— X7) | X"]| 2 t2(X™) | X") <. (3)
HEA,

Then if we write Q,, :== {v € Py, | Ex,(X) € A,,} then the following holds

lim inf lim sup sup P "y (lgn(Y™) = E[gn(Y™)]| = t5(X™) +6) < a.

50 nooo veg, XY
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J Uniform Confidence Bands

In this section, we study the maximum of centered empirical processes. This is motivated by its
application to uniform confidence bounds (see e.g. [[18}[19]]). Let (X*) be a triangular array of i.i.d
process with X7 taking value in RP» where (p,,) is an increasing sequence. We want to estimate the
distribution of

1
max == X[ —E[X{,].

For fast growing sequences of (p,,) this statistics is not asymptotically Gaussian [23]]. Therefore to
study its distribution one might want to use the bootstrap method. Using our results we recover the
results of [23]] and establish conditions under which the bootstrap is asymptotically consistent (proof

in Appendix [P.I).

Proposition 5 Let (p,) be a sequence of integers satisfying log(p,) = o(n'/*). Define (XI*) to
be a triangular array of sequences of i.i.d random variables taking value in RP». We suppose that
Jsupecy, X1
holds

< oo. We denote M., (z1.,) = max;<p, ﬁ > i<n i j. Then the following

12

|dx (Ma(27 = X7), Mo (Y™ —EDY)) | X7)

= o(1).

K Additional results for the stacked estimator

If 3,, grows proportionally to 3,, o y/n — m,, then the bootstrap method is not a systematically
consistent estimator of the risk of the smooth stacked estimator. We present a simple example
demonstrating this.

Example 12 Let (X;) be a process of i.i.d random variables taking value in R. Suppose that
X1 ~ N(0,1). We choose m,, = |n/2| and B, = \/n and define the estimators (0%,62) as
constantly equal to

0L(X1m):=1 and 62(Xy.,):=—1.
We shorthand by ©,, the corresponding stacked estimator. We choose the loss function L to be the
square loss L(z,0) := (z — )% Let (Z1,Z2) ~ N(0, 3 ﬂ) be a Gaussian vector. Then the

asymptotic centered distribution of the empirical loss is Z1 + Zatanh(4Z,). However the asymptotic
distribution of the bootstrap empirical loss is

s n s n A d v
RE (23 1n) — E(RY (70 1) 00) & 21+ thanh(4ZQ + 4\/5an,+1:”).
Therefore the bootstrap method is not asymptotically consistent.

For ease of notations, we denote

1/i
L} := sup | max 82l (Xn,ﬁfb(Xﬁmn)(Xg))‘ V1.
i<4 ||P<pn Lo
11::<d),

We establish the limiting distribution of our bootstrap estimate under the following hypothesis:

(d), max (L, \/log ymax(T,,1)3 = o(n 1/6) (3t bisy

Proposition 6 Choose (m.,), (8,) and (py) be increasing sequences. Let (X[') be a triangular
array of i.i.d observations taking value in R%. Set (L, : R x R — R) to be a sequence of
smooth loss functlons verlﬁ)mg condition (H3* P%). Let (Z"") and (Z1?) be independent bootstrap
samples; and (Y;"") and (Y;""*) be independent copies of (X 41m)-
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Then we have:

l:in—m,,

[ (Re (22t ) ~ B (R (2250 1627 X7

RS@; (Y{:L;ll—m ) (RS ’n( 1nn1 Mmn ) én) ‘ Xn) L — 0,
where we have set ©2"" := ), (X" e Z82 Y and defined
B [RE(XT,, Y2 ) 4RE(X™)]
Z ep X{Lnl [ 2 — - } ;
p<pn ' <pn —Bn R (Xl IYL,LYIn mn)‘i‘Rn (X )
where we wrote RE(X") = R(X") — /i =T [£a(X3, 03 (Xt )08 (X T )]

We notice that this implies that the bootstrap method is in general not consistent if 3,, < v/n — m,,
as it is illustrated in example[T2]

However using Theorem 2] we can still use the bootstrap method to obtain confidence intervals that

asymptotically have a minimum guaranteed coverage. To do so we need to estimate the (random)

conditional variance-covariance matrix of (ﬁn(X]}, 0,(X7, )(X;}))‘Xf.m ) . In this goal
n ma ) o

>Pn

for all i < m,, we write O\i,, == 0,(X7", ..., X |, X ,..., X, ) the leave-one-out estimator

obtained by omitting the random variable X" from the tralmng set. Moreover we write .S; , :=

L(XT], é;Z(XZ”)) and S; := (S5;,). We denote by i% the empirical variance-covariance of the
leave-one-out cross validated risks:
. 1 _ _
2222 Sl—S SZ'—ST.
R e PICEUCE

We make the following additional hypothesis: We assume that there is b > 0 such that
Hypothesis (H;* %)

: n log(pn)7/6 _

95131% I£(X5, 0]z, >, SV o(1)

O, += || max [ LK, 0 (X01) = £(X2, 0, (XT VXD | = o(1)
p<pn " Lo

€, = |[max [ L0 (X)) = £ 0p(X X5, )X | = o((Vilog(pn)) ™)
PSPn i Lo

L'n := ||max [,(Xﬁ,@;l(X”))’ < o0,
pP<pn Lo

where X' is an independent copy of X .

Proposition 7 Choose (m.,), (By) and (py,) be increasing sequences. Let (X]") be a triangular
array of i.i.d observations taking value in R, Set (L, : R x R — R) to be a sequence
of smooth bounded loss functions satisfying conditions (H;* ®**) and (H$' P*). Suppose that the

estimators (0,) are symmetric in their coordinates: ép(xl:mn) = 0p(Tr(1)s -+ s Tr(m,)) Sor all
permutations .
Let (Z["") be a bootstrap sample; and (Y;"") and (Y;""*) be independent copies of (X7 1) Let

N™ ~ N(0,Idp, ). Let o > 0 be a real; write tf;/nz, and fg/? (X™) as quantities satisfying
P (|E (Ryzna (Z551,0,) | X7, Z"J) ~E (Rezn S Zh ) | X7 [ 2 602X | X7) < a2

lin—mag, b,n
ta/2

where we have set éTZLn’Q =0, (X”. zn2 ). ThenfOr all 6 > 0 we have:

l:n—my,

hmlan (IE[ @Y"Q(Ymn—s-l 2| X" € IE( ozm: (2 ) Xn,Zn,l) (ta/2 tha/Q(Xn) 4 5)> >1—a

Lin—mg,

2 2
where we have set @z = O, (X1, Y )-
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L Proof of Theorem[I, Theorem [§, Theorem [15|and Theorem 10|

As the proof of Theorem [I|and Theorem [§]are very similar, we present the proof for Theorem [T] and
highlight the differences with the proof of theorem 8] The proof of Theorem [I]and Theorem [10]are
identical.

Throughout the proofs we will use the following notations. We write (X¢) and (Y;°) the re-centered
processes, around the empirical mean:

Xf=XP—X", Y=Y'-X", Yf=Y"-X", Zf{=2Z'-X"
L.1 Main Lemmas

Lemma 16 (Approximation Error) Let (f,,) be a sequence of C? functions that approximates (gy,)
as designated by (Hy). Then:

de (gn(Z”),gn(Y") | X")

. <l (5@ x|

+lgn(Y") = fa(YT) o, Tlon(Z2%) = (2],

Proof: Let (f,) be a sequence of C? functions that approximate approximate (g,,) as designated
by Assumption|I} By Condition (Hy) and the fact that for all h € F, sup, g |1/ ()| < 1, we have:

Vhe F: HE [h (gn(Y")) —h (f Y”)) |X"} ‘Ll < HIE [ gV — fo (V™) |X"} .
< gn( ) fn(Yn) )
Vh e F i |E[h(9.(Z2") = h(fu(Z™) | X", < NE[gn(Z7) — fu(Z7) | X1,
< ”gn(Zn) - fn(Zn)”Ll

Thus we can conclude that:

|4x (90(2"),9u (¥ | X7)

|, < |z (Fazn. a1 x7)|
o = £+ 92 - £u(2,

Therefore it is enough to study the metric distance between the distributions of f,,(Z") and f,,(Y™).
([

Lemma 17 (Lindenberg Path Decomposition) For any statistic f,, and i € [n), let:

Ao [sup B [n (1 (21)) = (0 (2747)) | X7]

Ly
Then:

<ZA

[ CACONASIR SN

Proof: By the triangle inequality and writing the difference between h( f,,(Y™)) and h(f,(Z™)) as
a “Lindenberg” telescoping sum of interpolating differences, we have for all h € F:

| dr (£ a7 | x7) supE 1 (f (V7)) = B (£ (2) | X7]

Ly heF

= |[supE [ (fn (Z™") = h (fn (2™°)) | X"]
heF

Ly

Ly

= o B (a(29) = (i (2 )

heF

Ly
n

IN

sup E [ (fu (271)) = h (fa (2771)) 1 X7]

heF

Ly
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Lemma 18 (Third-Order Approximation of Test Function) For any statistic f,, let:
J?;L = fn (Zn’LXn) = fn(iflna o f/z'zlenv Zzn-&-lv R Z':;L)

Ai(frx) = fu(Z757) = fy.
Then each quantity A; as defined in Theorem[I7|can be bounded as:

A; < Q5 + Qo + Q34 “4)
with:
- 1 «
. . n n,i,X n| _ — ) n
Quii= || [8i(fa, V7)1 27057 X7] = =57 Ai(fa, X7)
{=1 L1
1 crm 2 n,i, X" n 1 - 72
Qq; = 5 E[Ai(fmyi) | zmot X }n;Ai(f’“Xf)
= Ll

3 a3
I8 2, )
3

Qsi == % <HAi(fmi/z’n)

Proof: By centering around h(f?) we can re-write A; as:

Ai = [sup B [h(fa (2™1) =k (fa) = (fa (Z7771) + 0 (Fa) | X7]

heF

Ly

Applying a third-order Taylor expansion of each difference around f? and using the fact that h € F
has third order derivatives, uniformly bounded by 1:

Ai < |lswpE [N (fr) (fu (2™) = fo = (fa (2™77) = £1)) | X7]
heF L,y
L " Fi nd\ _ FiNZ nyi—1\ _ Fi\2 n
+ g B[ () (4 (27 = B = (1 (27 = 1)) 1]
1 nyi Fi||? nyi— 7i||3
+5 (12 @) = B, + 15 (27 = £i7,) = h+ R+ 1o
Bounding I;. We now upper bound the I; term. Observe that:
L= |lsup [B 1" (£a) (fa (2) = fo = (fa (Z27'70) = £2)) | X7
heF Ly
= |lsup [E [0 (72) (8ih0 ¥ = Al Z)) | X
heF Ly
By a tower law of expectations and the fact that |/ (f2)| < 1, forall h € F:
L= |[supE [E[B(F) (8ifu ¥ = Ailfa 20)) | 27057 x| | X7
her Ly
— [ E [ (F2) B [Ai(fa, V) = i, 20) | 27457, X7] | X7
her L L
< |[sup E [|1 (F)] |E [Ai(f, T = Bilhn Z0) | 2457 x| | X7
her - Ly
. VY AL n n,i, X" yn n
< |E[[E A ) - Auhzpy | 2005, x| 20|
= | [ais. 7 - aipn 2y 1 2005 x|
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Moreover, observe that conditional on X" and Z n.i, X " the only thing that varies in the random
variable A;(fn, Z") is Z!'. Moreover, Z" is distributed uniformly over { X7, ..., X'}, conditional

on ZmHX" , X™ (since conditional on X", Z7* is independent of )7”):

E A 201 27557 X7 = 23 Au(f X7)
(=1

We can then conclude that:

3

E A ¥7) | 275 X0] = LS Mg X)

n
=

I <

Ly

Bounding I,. Observe that:

b= % sup B () ((Fa (27 = ) = (f (2770 = 1)) | X7 L
e ) (sanver - s ze) 1 0]

By a tower law of expectations and the fact that |2 (f2)| < 1, forall h € F:

1 - _ - on
lo= 5 [sup B [E[n” (F2) (8ihn, 772 = Ailfa, 200) | 2757 X7 | X
heF b Ly
= 5 [swE[W () B [8i(h 707 — Aalf 2007 | 20057 x7] | %]
her * Ly
< 5 [ 10 ()] [B [Ath 72 = il 2077 20057 7] X7
heF - Ll
1 n n\2 n,i, X" n n
< 5 BB |20 ¥ = At 207 | 2057, x| x|
_ 1 ) YAYER n\2 n,i, X" n
= 3 [B[ahn 79 - autpa 22y | 2005 x|

By the conditional independence reasoning we presented in the bound for I, the latter can further be
written as:

B (80 T 1 2 x0] = LS, gy

=1

1
H2§§

3

Ly

Bounding 5. We simply observe that I3 can be re-written as:
1 % i [|3 n,i— 7i |3
L= 5 (1 (27) = B2, + 15 (277 = F23,)
1 A ~ o l1?
6 <H ilfn Y77) Ls

N, zmnia)
O

Lemma 19 (Third Order Approximation of Smooth Statistic) Consider any statistic f,, € C3
and any random vector V. € R%. Consider the random variables:

Ji = 0ifn (Z"’i’xn)
Hii= 02 (27F")
IfHVk”le < ||X]?||L12 and holds, then:

= 1 T 47 Rn 3
Ai n’v . _Tvc —Z (V¢ ivc < s
[ty - grve- oA <R
If[[supgcq Vil < [|supr<q Xp 2., and (H) holds, then:
_ 1 _ R
’ ANi(fu, V)= TVe—Z(vOTHve| < =28
2 Ls 6n
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Proof: Since f,, is three-times differentiable, for any random vector V' € R? with ||Vi|z,, <
| X% Ly, forall k € [d], if welet V¢ =V — X™, then by a Taylor expansion and Theorem

_ 1 _
807 = TV T H
L3
1 1 3
< 6 Sup Z 1 k1 an(Zn & ch)‘/161‘/162‘//793 < 6 Z Dglﬁ’ (fn) = n
ze[ X", V] E1,ko,ks<dy k1,k2,k3<d,

L3

where we used the fact that ||ViE|| 2., < Vil + 1 X2 2. < 21 X2 2., = M. The second part
of the lemma follows along identical lines, but in the second-to-last inequality we instead bound by:

3
1 ; .
o S sl ()
PEIX™ VT by ko ks < ksd L,
By a Cauchy-Schwarz inequality the latter is upper bounded by:
1 . 4
o D DR P ]| A
2EXT VT by kg kg <dy, P 2P
Since [[supy<qVillL,, < [Isupr<q Xillz,,» We also have that: |[[sup,<,V{llz,, <
2| supj<q X7 *I|,,- By the definition of R}, 5, we get the result. O

L.2 Proof of Theorem/Il

Lemma 20 (Bounding Q3; under (Hy) For any statistic sequence (f,,), with f,, € C3 that satisfies
(H3), we have for all i € [n]:
1

n T 9
max {1 8:(fos Z0)IE,» 18 (s TN, < = (R N R)
Therefore:

1
3 R R
e = ( RO )
Proof: By Theoremand the fact that for any a,b € R: |a + b|* < 3 (Ja|® + [b]*), we have that:
R s et L eNT P 3
. n < g c - c Ve n,
N T
a3 9 e NT - . R?
S 9 k77;TY7;C + = (Y'ZC) HiY;C n,3
L, 8 FRRCTE
Moreover, by Theorem 4] we have:
3
7Ty c 3 (Rn,l)g
Bl < | X 1Fedual il | <
k<d,
s 3
\C T \C v C \C )/ (Rn,2)3
E U(n) O I D D (PN A PN O P
k1,k2<dn

Combining the above yields the bound on ||A;(f,, Y;*) 17, The same bound on [|A;(fn, Z7*)[17,
can be obtained in an identical manner. The lemma then follows. ]

Lemma 21 (Bounding Q1; under (f7y)) For any statistic sequence (f,), with f, € C3, which
satisfies (H1), we have for all i € [n]:

Rn 3 + 2 Rn,Q

3n n

le =~
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Proof: Applying Theoremfor V=XpandV = f’L” and replacing the terms A, ( f,, X;') and
A;(fn, Y]") in Qy, with their corresponding second degree approximations, we have:

Qu; < % + H.ZT (E [}71” | Xﬂ] _ X")

Ly

L1
2

1 S o\ T 45 c \C T \C n,i, X" n
EZ(XZ) HiXy —E (Yz> HY |20 X
(=1

Ly

Importantly, observe that by the definition of f’i”, we have that E [}71” | X "} = X™. Thus the first

order term in this expansion vanishes. Hence:

Rn 11 S c I/ c v C T o5 c n,i, X" n

Sl o XD X - [(Yi) A | Zm X }
=1

We can further split the second term on the right hand side as:

Qu <

Ly

R" 1 1 S c I/ c c I/ \C n,i, X" n
Qu < S22 45 | () WX B () Yy | 20 X
=1 L1
1 Py AP X"
5 B | e - (V) A 2 x| )
Ly
Moreover by exploiting the independence of the observations (X*) we remark that
W= | LSS g - ()T e | 2 ]
{=1 Ly
= Z Z Xf o T E [Yvi?kl i?kz | Xn} H/}:[i,kl,kz HL2
ko ka<d, || =1 Lo
1 _
< Z Var | — Z Kooy Xk | || Hiskr o HL2
E1,ka<d, i
+ Z |Xk2 X E [X;Zl]) + X]?l (Xlzz - E [Xlzlz])HLg Hﬁivkhk? HL2
kl,k2<d
< — M2 M ||H;
= \f N %;d” k1 ke H k1, k2||L2
S Dk1 fn) S Rn ,2 (6)

Moreover, since for any two vectors a, b and smemetric matrix M, we have that: T Ma — b Mb =
(a—b)TMa+b"M(b— a) and since Y — Y = E[X}"] — X", we have:

_ ~N\NT - . on
e [e [ e (57) i s

Ly

_ - o o
= HE [(X” _]E[X{L])T?Li Y 4 (yf) H; (X" —E[X7]) | 27X ,X”}

Ly
Moreover, since E [Yf | Z”’i*Xn,X”} =E[X}] - X" and E {}ZC | Zmi X" X"} = 0, we have:

ol = | (& -Elx) " #i EL1x7] - X7)

Ly
< D0 xR BRI, 1K - E T, ik,
k1,k2<dp
_ 1
S Z M]?1Ml?2 HHi,kthHLg S man (7)

k17k2§dn
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Combining (3), (6) and (7) we obtain the result. O

Lemma 22 (Bounding Q.; under (Hy)) For any statistic sequence (f,,) that satisfies Assumption|l}
we have for all i € [n]:

Rn73 2 1 3 2 1 2
Qs < 34/ <4Rn,1 + WRnQ + 712/3Rn’3) + 76 ((Rn,l) + e} (Rn.2)

Proof: For shorthand notation, let:
_ 1 _
We will use the fact that for any two random variables U, V:
U2 = V2L, = 1T = V) (U + V), SNV = Vllz, (1Ullz. + 1VI]z.) -

We instantiate the latter with U = U(X}') and V' = V(X¥). Then by Theorem we then have that:
U=V, < 117;1’3. By Theorem we have that | U], < ﬁ (le + ﬁRmz + ﬁRn,g).
Moreover, by a sequence of triangle and Cauchy-Schwarz inequalities, we also have that: ||V||L, <
5’{‘/’§ + R\/"%“ . We can thus measure the approximation error of a second degree Taylor approximation:

R 3 1 1 R R
n\2 _ c\2 n,3 2 - 4in,1 n,2
||U(X[) V(Xe) HLl 671 <n1/3 (Rn,1+2n1/6Rn2+2 2/3R ) + n1/3 + \/ﬁ)
R, 2 1
< on 4/3 <4Rn 1+ / Rn 2+ 273 Rn,3) =€,

With identical steps the same bound holds for the analogous quantities U (Y;*), V (Y;). Therefore we
have

IN

QQL 26” - ZV XZ _ [V(YZC)Q ‘ Zn,i,X""Xn:|
Z<n
Ly
Moreover, if we denote X}* := X — E[X}] and ¢ := X" — E[X7], then we have:

. _ 1 _ 1 o - .
[vee? - ve?|, < |97 g grmke| (VG + IV EIL)

Lo

Observe that the first term in the product on the right-hand side is at most ﬁ (f’f 5+ If? ); by

applying a series of Cauchy—Schwarz and triangle inequalities, and invoking concentration of the

. M . .
vector ¢, i.e. ||Cklln, < - Moreover, each of the summands in the second term is at most

(Rll 7 + I?L ) ; by Cauchy—Schwarz and traingle inequality. Thus we get:

v - v, <= (Rln bR, )

Thus it suffices to upper bound the term:

l z V(Xéz)2 _F [V(i/i,c)Q | Zn,i,X”’Xn}
<n I

Shnod .
Moreover, note that X' = Y. Noting that by the form of V', we can expand the latter as:

o 1 - S
Yo Tk Tia - > Xl Xew, —E [Xe,lelf,ka]

k1.2<dn, <n L

_ _ 1 ~ ~ ~ ~ ~ ~
+2 3 Tk ko ks ;ZXZMX@,@X@,% —]E{ Zlef,kthz,kg}

k1.3<dn {<n In

_ _ 1 ~ ~ ~ ~ ~ ~ ~ ~
Y [ Hikr o i EZXZIchZ;kzX&kSX&M_E{XZleAkzXZ,kaX&M}

k1:.4<dn 1<n L.
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By invoking Cauchy—Schwarz inequality and the concentration of each of the centered empirical
averages, we have that the latter is bounded by‘

1
7r 2 Wl 1ol MM, + f > okl Fkansll o, M M, M

kl 2<dn k1.3<dn

\f . Z<d HfHZ ki, k2HL4 HHl k37k4||L MkleszsMh
1:4>

which in turn is upper bounded by:

1 _ _ N 1 (R, R, 2
vn Z H\7i,k1HL4 My, + Z ’|Hi,k1,k2HL4 M My S% (nl/?l’ + \/712)

k1<d, k1.2<dp,
O

Therefore by combining Theorem[T6] Theorem [I7] Theorem|[T8] with the three lemmas in this section
we obtain that for some sufficiently large universal constant K:

Jdz (902", 0 | X7) | < {lonT™) = £ 77)

We can then conclude that:

3 1
Q2 < 26, + 776 <(Rn,l)2 + i3 (Rn.2)

]

L + lgn(2™) — fn(Zn)HLl
1
+ K (Rn,g + Rpo + (Ry1)? max {1/6 : le}) :
n

L.3 Proof of Theorem 8l

Lemma 23 (Bounding Qs; under (H)) For any statistic sequence (f,) that satisfies (H7)), we
have for all i € [n]:

" ~n 9 1
mﬂ%%@%ﬂm%nmggﬁmwwﬁm+6mﬁ

Therefore:
18 % 3 1 * 3
Qs < — <( D)2+ 5;7:( 2)” + g3 (Bns) >

Proof: By Theoremand the fact that for any a,b € R: |a + b|* < 3 (Ja|® + [b]?), we have that:

Gy
Ls 72n3

L ()’
s 72n3

HAi(fmi/in) i

IN

3|+ g (7)

3

IN

Ly 8

Moreover, by Cauchy-Schwarz inequality we have:

- 3 ~ N o~
QH‘-ZTY;C +9H(Y;C) rHlY'Zc

3
3
7T~ c 3 ¢ |13 7 \C ’ (R:71)
E ‘ji Y | < || sup |V Z | Tk < || sup Y] Z ‘Jm‘ S
k<dn k<dn n
Sdan k<d, = Le ||k<d,
L, Lo
By similar applications of the Cauchy-Schwarz inequality we obtain that:
3
T 3 2 (R 5)?
~ o~ ~ ¥, n,
E ‘(Yic) Hye| | < sup f,c’ Z |Hi,k1,k2’ < 32
k<dn Lo ||k1,k2<dn "

Lg

Combining the above yields the bound on || A;(f,, Y")||3, . The same bound on || A;(f., Z)|13,
can be obtained in an identical manner. The lemma then follows.

O
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Lemma 24 (Bounding Q.; under (H{)) For any statistic sequence (f,) that satisfies (H)), we
have that there is a constant C' that does not depend on n such that for all i € [n]:

R: , Cmax(log(d,),1)R5 ,,
< , ,
le = T35 + n

Proof: Applying Theorem.for V=X}andV = 17” and replacing the terms A, (f,,, X') and
A;(fn, Y") in Qy, with their corresponding second degree approximations, we have:

Qui < % +||7T (= [Y" x] - x7)

Ly

l\D\»—t

1 " =, T — ;o
72 X¢) T HXf {(Y) Y| 2 X ,X"}

Ly

Importantly, observe that by the definition of }7;” we have that E [}72” | X "] = X". Thus the first

order term in this expansion vanishes. Hence:

1 cTﬁ c v C T \C n,i, X" n
LS o s - [(7) AT | 2 x

£=1

Ris 1
le_ 3+7
3n 2

L,y
We can further split the second term on the right hand side as:

R* 3 141 n T A7 c e T 47 c n,i, X" n
Qu < 32+ |20 () T X —B ()T ALY | 20 X
=1 Ly
1 — ~ T — -~ VL]
+ 5 HE |:(}/lC)T Hi)/ic _ (ch) Hz}/lc | Zn,z,X 7)(n:| (8)
L,y
Moreover by the triangular inequality we remark that
a 1 = ¥ 7, i X"
N RO O R AN ORI AR o
=1 Ly
1 n
= |, sup )EZXf,leZkQ —E Y%, Y | X" > [Hikn]
k1,k2<dp /=1 Lo k1,k2<d, Lo
< sup )*ZXMIXZIQ—]E[ ity Vil |Xn] | Z |7'_li,k1,kz|
k1,k2<dp Lo ||k1,k2<dn Lo
+2| sup |X7] Z T —E Y, | X7 Z |Hi o o | ©))
k1,k2<dn, Z: Lo ||k1,k2<dn Lo
Using theorem 3] we know that there is a constant C' € R that does not depend on n such that
1 & n wn n n n C’log 2
sup ’*ZXé,lee,kz —E [V, Yk, | X"] | || |Xl ez,
b1k <dy, | 10— L,
and such that
1 & C'log(d
su — X —E|Y | X" bu X .
kmgdn‘n; tka Vi 1 X7 T m || P| | P
- 4
Therefore we can upper-bound (9) as:
1 & _ _ Com 3max |1,Clog(d,)|R5 ,,
=S MC ORIV R A DA o | I [ ng( M )
=1 Ly
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Moreover, since for any two vectors a, b and sy~mmetric matrix M , we have that: " Ma — b" Mb =
(a—b)"Ma+b"M(b— a) and since Y, — Y = E[X?] — X", we have:

b
Qgi) =

|0 e - (7) AT 20 x|

Ly

¢ T NT o
= H]E {(X"_E[Xﬁ) Hin-i—(Yf) H, (X" —E[X])) | 20X ,X”]

Ly

As we established that HSUPkgdn | Xr —E {X{L’k] ]HL < Clog(dy) ||supg<a, | Xix| HL4 we have:
4

o < |[E[(E"-EX7) " 7 Yy]

AL on n n,i, X" n
L1+H]E[(Yi°) Hi (X7 —E[X7]) | 2miX ,X]

Ly
< [ 152 - D | g 172 Ao
k<dn ! Ly [1k<d, L3 kl,ggdn o Ls
4C1og(d, ? .
< 4C log(dn) sup | Xi x| > Hikiks
" k<dn La ||k1,ka<d, L
Combining (8), (I0) and (TI)) we obtain the result. O

Lemma 25 (Bounding Qo; under (H)) For any statistic sequence (fy) that satisfies (HT)), we
have that there is a constant C' that does not depend on n such that for all i € [n]:

R} 5 . 2 1, C max(log(dy), 1) . N2 1 . N2
Q2 < 3nA/3 <4Rn»1 + /672 + n2/3 n73>+ n7/6 ( nyl) + nl/3 ( n72)
Proof: For shorthand notation, let:
_ 1 -
Uw) = Ailfar o) V)= Jla+ jo e
We will use the fact that for any two random variables U, V:
U2 = V2|2, = (U = V) (U +V)llz, U = Vllz, (U2, + V|2, -

We instantiate the latter with U = U(X}') and V = V/(X§). Then by Theorem[19] we then have that:

R
|U—-V|L, < 2% By Theorem we have that | U]z, < # ( w1t nl/GR* n12/3 :3)

Moreover, by a sequence of triangle and Cauchy-Schwarz inequalities, we also have that: |V, <
LA

s T We can thus measure the approximation error of a second degree Taylor approximation:
ny\2 c\2 n,3 3 1 1 :1,1 n,2
||U(X€) _V(XE) HLI < 6n <n1/3 (Rn1+ 1/6Rn2+2 2/3R ) + nl/3 + \/H)

6 4/3 4R 1/6 TL,Q + 777/2/3 RTL,?) =. Gn

With identical steps the same bound holds for the analogous quantities U (}71")7 V(f/f). Therefore we
have

L1 c v C n,5, X ™ n

Qui < 260+ |- Y VXD —E [V(F)? | 25", X7
<n

< I

Moreover, if we denote X7 := X7 — E[X}] and  := X" — E[X}], then we have:

lvxm? - vixp?|

L,y

= 1 _ 1 o o
< H [TECH+ (XD Hi ¢+ ST HXY

(VO + IV EDI ) 12
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Observe that by Theorem [3] we know that there is a constant C' that does not depend on n such

n

that: || supy, Cllz, < Clog(dy) % Therefore, by applying a series of Cauchy—Schwarz
and triangle inequalities, the first term in the product on the right-hand side of (I2) is at most

c IOg(dn) RI,% R;,n .
NG (n1/3 Ta .Thus we get:

2C'log(dy,)

2
- 1
n\2 c\2 * *
HV(XU - V(XF) \Ll N (Rl,n + nust,n>

Thus it suffices to upper bound the term:

1 -~ ~ s Y
~ Y V@EN-E [V | 20 X
n <n I

Snod O .
Moreover, note that X' = Y°. Noting that by the form of V, we can expand the latter as:

by

k1.2<dp

L 1 . .
n n n n
NV ﬁ§ Xz,lez,kQ—E[Xz,lee,kQ} ‘
<n
Ly

o 1 L L
+2| Y ‘\7i7k17"1:k27k3 gZXZleZkzXZm*E[ Ok EszXst] ’

k1:3<dn, £<n Iy

_ _ 1 - T
n n n n n n n n
+ E ’Hi;k17k2Hi7k2;k3 o E X0 ts Xy Xty Xy — E [Xé,leé,kQX&ng&kJ ‘
k1:4<dn 1<n

Ly
By invoking theorem and Cauchy-Schwarz we can find C’ such that:
2
1 Z } ~ ~ B C'log(dy) ‘Squgdn ‘Xﬁk’HL
sup | >0 Xpy, Xiw, B [X7, X2 || < 1
k;l:2§I)dn ne<n é,kl f,k}g E,k}l f,k}z \/ﬁ
< Ly
, 3
1 ~ ~ ~ R R ~ C'log(dy) ‘SUPkgdn |Xl"k|’ :
sup |= S Xp, Xn, X —E{X” Xr, Xn } < o
kra<d, nKZn [ N PR N Lk ka4 ks \/ﬁ
< Lo
) 4
C"og(dn)||suprca, | X0 |,
8

1 - - - - - - - -
. n n n n n n n n

+ sup | — E Xé,klxé,kgxé,kgxé,lm —E I:Xé7k1X[7k2X‘€7k3Xevk4:| <

k‘l:4§dn n <n

N

Lo
Therefore by Cauchy—Schwarz inequality we have that

o max(C'log(du) 1) (Riy | Fro 2
= \/’E nl/3 \/ﬁ :

L,y

LSV B [V | 2R ]

<n

‘We can then conclude that:

Q2; < 26, +

2max((C’ + C)log(dy,),1) (( . )2+ 1 ( 2’2)2>

n7/6 n,1 nl/3
O

Therefore by combining Theorem[I6] Theorem[I7] Theorem|[T8] with the three lemmas in this section
we obtain that for some sufficiently large universal constant K:

| (9a(27). 907" | X7) 90(V") = 0|+ ll9a(Z") = £a(Z27)]1,

< |

L, L

1
16 (tosta) (5 Pmax { s o b4 12 ) + )
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L.4 Proof of corollary ]|

Proof: Firstly, we remark that by using Theorem 5] we have:

|7 (9n(2") = Elgn(2") | X™), ga(¥™) = E(gu(¥") | X*) | X")

’Ll

< |[dr (9n(2") = Blga(2") | X™), 90(2") ~Elga(¥™) | X") | X")

‘Ll

+ de(gn(Z"> —E(ga(Y") | X"), gu(Y") —=E(ga(Y") | X") | X™) Ly
< (A)+(B)

In the goal of bounding (A), denote h : x — x the identity function. We easily note that h belongs
to the function class F. Indeed it is three times differentiable with all its derivatives bounded by 1.
Therefore by theorem [I] we have

(4) <E ([E (9:(27) — 9u(7™) | X7)

) < ar (002,007 1 %)

Li
To upper-bound (B) we note that Theorem|§| guarantees that:

|47 (9n(2") = Elgn(2") | X7), ga(¥™) ~Elgn(2") | X™) | X")

.
_ de(gn(z"), gn(Y™) | X™)

Ly

This implies that (A) + (B) < 2 de (gn(2™), gn(Y") | X")

which proves the desired result.
Ly

O

M Proofs from Section

M.1 Proof of Proposition|[l]

Proof: We choose a measurable subset A C R and define the characteristic function
frax—1I(x € Ase).

Choose € > 0 and set h, : R — R to be the following three-times differentiable function:

he(z) = 613/ /tte /yyéf(z)dzdydt.

By simple observation we obtain that sup, . max;<3 ’hgi) (:1:)‘ < 6%, Therefore we have for any two
random variables U, V' and any event &:

d]:(U7 V | g)
€3 '

E[he(V) [ €] -E[h(U) | €] <

Moreover, we remark that h.(z) # 0 only if x € Ag. and that h(x) = 1 if x € A. Thus for any
random variable Z:

E[h(2) | €] € [Pr(Z € A[€),Pr(Z € Agc | €)]
which then implies that:
Eh(V)|E]-Eh(U)|E>PV eA|E) —PU € As | £).
Thus we have that for any two random variables U, V':

PU€eAs |E)>P(VeA|E) 3

13)

€
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Finally we observe that since for any h € F, we have |h’(u)| < 1 for all u, we have that h(X —E[X |
&) <h(X)+E[X | £ and h(Y — E[Y]) > h(Y) — E[Y | £]. Thus:

dr(X —E[X | €],Y —E[Y | £][€) = zggE[h(X—E[Xlg])|5]—E[h(Y—E[Y\5])|5]

< supE[h(X) [ £] ~E[(Y) | €] + E[X | £] — E[Y | €|
< sup E[h(X) | €] = E[r(Y) | €] + sup E[n(X) | €] = E[(Y) | €]
her heF

Thus applying Equation (T3) to the centered random variables and invoking the fact that Pr(Y —
E[Y] € A) > 1 — «, we get that:

2dr(X,Y | € 2dr(X,Y | €
P(X—E[X | £] € A¢c | E) > P(Y-E[Y | E] € A | 5)-% > 1—04—%
which concludes the proof of the proposition.
O
N Further Proofs from Section[3
N.1 Proof of Example 2]
Proof: For simplicity, we write:
1
Ji = I(min | X, — X;| > 1/n n(Xin) (= — J; — E(J;
(min| X, ~ X[ > 1/n) (X1) = 2 3= B

Moreover we note that for all i # j we have Z; — Z; = Z; — Z; this implies that

gn(len) == gn(len)-

It is therefore enough to study g,,(Z;1.,). We remark that g, is stable in the perturbation of one
of the observations, since changing the value of X; can change at most 3 of the random variables
(J;). To make this rigorous, we denote the distance to closest neighbour of x € [0, 1], larger
than z, as d+(9c) = min;>2 x>z | X; —x | and to the closest neighbour, smaller than x, as
d~(z) = minj>2 x; <« | X; — 2 |. By convention, if there is no j > 2 such that X; > «
(respectively X; < x) then we take d™ () to be 0 (respectively d~ (z) = 0). We then have

Jon 1) = n0Xe) |, < = (191 = g 51> 1/ -+ a#60) = @), + e,
(2 i
= Vi

We show that d » (gn Y™, gn(2™) |X”) does not go to 0. We prove it by contradiction. Suppose

that ||d}-(gn(Y”),gn(Z”)|X”)||L1 — 05, as the random variables (g,(Y™)) and (g,(Z™)) are

uniformly integrable we have that E [¢,,(Y™) | X™] converges to E [g,,(Z™) | X"]. Moreover, we
note that by the definition of g,,: E [g,(Y™) | X™] = 0. We remark that

P (n;l? X, — Xy| > 1/n) _ (1 _ i)m +0 (;) — e 4 o(1/ V).

Moreover if we denote C% := card (j # i s.t | X; — X;| < 1) we have

n

. 1 —1-cn
Plmin|Z-Z7|>1/n| X" | =— e Xi +0(1/4/n).
(1minlzr - 221 2 1/n] ") Y (1/vm)
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This notably implies that:

Blga(27) | X7 = Vi [ 13— et o)

i<n

1 n
= Vet [ L 1) o

i<n

We show that E [g,,(Z™) | X"] is asymptotically non-positive and takes asymptotically, strictly
negative values with non-zero probability. This would then imply that E[g,(Z™) | X"]
is not asymptotically converging to E[g,(Y™)] = 0, which contradicts the fact that

ldz (gn(Y"),gn(Z™) | X™)||, — 0. The first part follows since, e~ 9%, < 1, and we there-
fore have that limsup,,_, . E[9,(Z™) | X™] < 0. For the second part, we note that it is enough
to lower bound the probability that %an e 9% —1is strictly negative. We observe that
% > <n e~ % — 1 is bounded by 1 and that E [6_0}1} is the moment generating function of
a binomial distribution with n — 1 trials and success probability at most 2/n. This is at most
(1-2/n+2 e’l/ny%1 < e~ (22/e)(n=1)/n < =12 1 o(1). Thus for sufficiently large n, we
have that with probability bounded away from zero: % > <n e % —1<0, implying:
liminf P (E[g,(Z") | X"] < 0) > 0;
n—oo
Thus [|dz (gn(Y™),gn(Z™) | X™)||L, - 0 and the bootstrap method is not consistent. O

N.2 Proof of Theorem

Proof: Let (Y;") be an independent copy of (X*). Since, by Theorem dr satisfies the triangular
inequality:

ld7 (9:(Z") = Elgn(Z™)|X"], gn(Y") = Elgn(Y™)] | X™)I,
< de (gn(Z") — E[gn(Z™)|X"), gn(Y") = Elgn(Y")|X"], | X”)

Ly

=1, +1I, (14)

1

+||r (97 = Elga(F)1X", 9(y™) = Elga(v™)] | X7) |

The first term I; can be upper-bounded using Corollary[I] We therefore focus on bounding the second
term I, of Equation (T4)

Let (B,,) be a an increasing sequence such that (i) B,, — oo and (ii) r™Bn 5 0. We remark that
under Assumptionp such a sequence always exists. For example set B = 1 and L; = 1; then for all
nif 280 < 27En thenset L,y = L, + 1 and B, = 2B, (by Assumptionthe latter will
occur at some finite n); otherwise keep B,,+1 = By, and L, 11 = Ly,.

We note that:

Io < [|gn(Y™) ~ Elgn(¥™)] = (9u(7") ~ Elgu(¥") | X"

Ly

< |uva| %" ~ELx7]) < B.)

X sup
z€Ba,, (0,Bn)

n <Y" T %) - E[gn (Y” n \fﬁ) | X”} — g (Y") + E[g, (Y™) ]‘ ’

Ly

+|[I(Vn|| X" —E[XT][l2 > B) x [gn(Y") —E[ga(Y")] = (92(Y") = Elga(Y") | X"D} HLl
where (a) is a consequence of the triangle inequality. The first term is bounded by
sup g (Y” + ””) ~Egn <Y” + x) | X7 = gnY™) +Elga (Y)]|[| <
©€Ba, (0,Bn) Vn NG .
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The second term can be bounded by the use of the Cauchy-Swartz inequality:

HV/AlE" =B XTI 2 Ba) % [gu (™) = Elga(Y™)] = (92(7") ~ Elga (™) | X"])] |

)

Ly

In (f/n)

< vl - Bl 2 B}, (lon(r, +

Observe that:
B —EXI5] =E | > (X —E[x74])°
k<d,

_ 4
= Z Var (X}') < ki,

k<dn

XTlli,

n

Hence, by Chebyshev’s inequality:

nVar (HXn - [X{L]Hz) 4Zk<dn X7 1c||L2
B2 - B2

P ([ x" -E[X7]|, > Ba/vn) <

Thus we have:

_ 2V ks, X0,

I{va | X" ~EXT)[, > B}, < /P (X" ~EX7]], > Ba/vn) < -

Thus we conclude that:
|47 (9(4™) = Elgn(Y")], gn (") = Elga(¥) | X"} | X*)

2/ St X7l \
< B [gn (Y )||L2 +

1

gn(}}n)

+ poBn
Lo

N.3 Proof of example

Proof: We remark that both g,, 1 and g, » are invariant under uniform perturbations. Indeed for all
z € R we have:

2

gn, I(Xln +$/f f Z X \/> - <-’I;z+Ln/2j - \jﬁ) = gn,l(Xlzn);

i<|n/2]

and

n, 2(X1n+x/\f (H ( i—l’/\F_ (i'n —CC/\/E>> _ 1) =gn,2(X1:n)~

n

Therefore both functions (g,,,1) and (gy, 2) satisfy (Hz). Moreover by a direct application of the chain
rule we can verify that both (g,,1) and (gn2) verify conditions (Hy) and (Hy). Hence Theorem|12]
implies that:

d]: (gn,l(Zn) - E(gn,l(zn”X)agn,l(Yl:n) - ]E(gn,l(Yl:n))) — Ov

dr (9n,2(Zn) - E(9n72(Zn)|X)7gn,2(Yl:n) - ]E(gn72(yltn)>) — 0.
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N.4 Proof of Theorem

Proof: The proof works by contradiction. Suppose that there is a measurable function Q,, :

Z1,. ..,y — Par(R) such that for all sequence of measures (v,,) € Hzozl ‘P,, the following holds:
|dr (Qu(X™), g0 (™) = Elgn (™) | X*)|| =50,

Ly

By hypothesis we know that there is a sequence of measures (pg ) € Xj2; Py, an € > 0 and and a
sequence of vectors (z,,) such that

(i.) limsup SUPj, (9, 0, + 2] ||In(9n)1/2z7%

vdn, < 005

(ii.) The following holds for (X™) "~ pz-

dr (o0 (27 + 52 ) <o, (374 22 )| 0 (X) - Bl (X)) > a9)

(ifi.) 0, + 2= € Q,,

By abuse of notations we denote py + =% the distribution of X + % for X' ~ py . We define

the following subset of distributions P;; := {p} ,pj + Z—\/%} and let X™ be i.i.d random variables
distributed according to u,, € P;;. We want to test if Hy : E(X}") = 0,, against the alternative
hypothesis H; : E(X{") = 6, + Z~. Using we know that it is possible to find a rejection region
R,, such that:

P(X™ € Ry|Hy) + P(X™ & R,,|Hy) — 0.

However by hypothesis the Kullback-Leibler divergence is smooth and according to the Taylor
expansion we know that

z 1 ~
KL(pp +22 00 ) = =—2T7,(6,)2n,
(pen + \/ﬁ’pe") on n (0n)2
where én € [0n, 0, + Z—\/%] Moreover by definition of the total variation distance and the inequality:

p() —a()lrv > 1 — Je KL@D (see Theorem we know that for all rejection region R,, we
have

P(X™ € Ry|Ho) + P(X"™ & R,|H))

%e—nKL<pgn+%7p3n)

> 16_% V zIIn(én)zn .
-2

Y

Therefore using (i) we obtain that lim inf,, P(X™ € R,,|Hy) + P(X™ & R,,|H1) > 0 and note there
is a contradiction. Hence we have successfully showed that the desired result holds. O

N.5 Proof of Theorem 1]

Proof: This is a direct consequence of using theorem [I0] for the random functions
Gn : Tim = Gn (x1 FE(XT) = X7, o+ E(XDP) — X");

which can be approximated by the following smooth functions:

P i = (xl FEXD) - X7, 1+ B(XT) — Xn).
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N.6 Proof of Theorem

Proof: By the triangle inequality we know that:

+ .

192(2") = Elga(Y") | X"]| < [E[gu(¥™) = gu(F™) | X"]

ga(Y") ~ E [gu(77) | X7

We bound successively each terms of the right-hand side. Firstly using theorem [I| we remark that for
all 6 > 0 we have

JDHE{%A?“)LX"}—EH%KZ")LXW

25]—>0.

1872

b We know that

Hence by combining this with the definition of

lim sup P( > tﬁf(X") +6) < B/2.

510

9a(2") ~E [gu(Y") | X"

Let N* ~ N(0,3,,) be a Gaussian vector with variance-covariance ¥,,. Using [19] we know that
there is a constant C' that does not depend on n such that the following holds:

Clog(dy)™® max(|| max; | XT)]|3,, 1)

n n n,k
sgp‘P{VﬁszxLXk——E(Xik)|2t]——PKfoLN’ \2t)’§ G

Combining this with hypothesis (H3) we obtain that:

g,n

P ([E [gn (¥ + X — E(X})) = ga (V™) | X*] | 2 117)

_ B2
< P{|ValX" - EX% > %
< B2+ o(1)
Therefore for all & > 0 we have

P (|9a(2") = Blgn(y™)] < (52X + 102 + 5)

< P (Jgn(2") = E(ga(7")| < 003(X") +6)

+ P ([E(gn(F™) = gu(Y™) | X7)| < £312)

< B+o(1);

N.7 Proof of Theorem

Proof: By the triangle inequality we know that:

+

90(2") = Elgu (V") | X"]| £ [E[ga(Y") = ga(¥") | X"]

ga(V") ~ E [9(7") | X"]

We bound successively each terms of the right-hand side. Firstly using theorem 8] we remark that for
all § > 0 we have

P [[E g™ | X"] ~Elga(2") | X7]

26]%().

1512

b We know that

Hence by combining this with the definition of

lim sup P( > tf,/f(X") + 5) < B/2.

440

9(2") ~E[g.(Y") | X]
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Let N ~ N(0,Id) be a Gaussian vector of dimension d,,. Using [19] we know that there is a
constant C' that does not depend on n such that the following holds:

C’log(dn)7/6 max (|| max; |X{L’j|||%4, 1)

sup‘P Vimax |Xp — E(X7,)| > t| — P(max|(S,N")y| Zt)’ <
p 2 ; £ /6

Moreover by hypothesis ¥, is an estimator of ¥,, verifying
sup ‘P(mkax (EalN™)il = £) = P(max (S N")i| > t)‘ < 0.
Combining this with hypothesis ( H3) we obtain that:
P ([E [gu (v + X" = E(X}) = ga(Y™) | X*] | 2 15/7)

) 82
< P Ilvalxn — B =

< B/2+0(1)
Therefore for all 6 > 0 we have
P (|9a(2") = Elgn(y™)] < (52X + 8502 + 9)
< P (Jgn(2") — E(ga(7")| < 03(X") +6)
+ P ([B(gn(Y™) = ga(Y") | X7)| < 8572)
< B+o(1);

N.8 Proof of Example 10|

2
Proof: Define the function: g,, : 1., — (ﬁ Yoi<n xl) . It is straightforward to check that (g, )
and (X™) satisfy conditions (Hp) and (H; ). Moreover for all z we note that:
x
E (g (Y™ + =) — g, (Y™
(3.0 S0 =)

Therefore (g,,) also satisfy conditions (Hs) with C;,, = 1 and @ = 2. The result is a direct
consequence of Theorem 2] ]

= 1‘2.

N.9 Proof of Theorem[14]

Proof: Firstly we prove that with high-probability X™ — E(X7) is in By, (7,). Indeed, using
Theorem 3]and Chebystchev inequality we know that there is a constant C' such that

_ 2
E <maxk ‘Xg - E(X{jk)‘ >

72

C'log(d,)? Hmaxkgkn ‘X{LkH
< 5 L2 0.
YT

Therefore with high-probability i :== X™ — E(X7) is in By, (7). Moreover, we note that:
P(lgn(Z" = f) = E(gn(Z" — ) | X)| 2 £2(X") | X") < o
We remark that Z" — ji = Z" therefore according to Theoremfor all 6 > 0 we have:
P(lgn(Y") = E(gn(Y")] 2 #5(X") +0) [ X" < a +o0n(1).

P mkax|)(:]? — E(X{L’k)| > ’yn} <

2

Which implies that asymptotically the confidence intervals [t’f (X™) — 6, t2(X™) + 6] has an
asymptotic coverage of at least 1 — 3. O
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N.10 Proof of Theorem

Proof: Denote

JHE(fa(Y™) = gu(Y ™))+ sup max (RES, Re, ByS)

€n := sup Exrep, (
vEP,

fn(Zn) - gn(Zn)
vEP,

Choose v € Q,,, and let X™ ~ v if t%(X™) is chosen such that:
P(|lgn(Z" + B(X]) = X) —E [go(Z" —E(X]) + X") | X"]| > t2(X™) | X") < a
then according to Theorem[I1]and Proposition [I|for all § > 0 we have
P (lgn(X") = Egn(X")]| = t5 +6) < a+ O(en).
But as E(X7) € A,, by definition of t2(X™) we know that: t2(X™) < ¢%". This directly implies
that
Py yuiia, (92 (Y") = Elga (Y]] 2 15"(X™) +6) < a + O(en).
As this holds for all v € A,, we get the desired result. ]

O Proofs from Appendix

0.1 Proof of example[3]

Proof: We will use Theorem We note that the condition (Hy) holds automatically as the functions
(gn) are three-times differentiable. Therefore to we only need to verify that (H7) holds. By the chain
rule we have:

Dign (Z5") = 2= ZX + = T
f J#l
and
i Xn - 1)]1(]9 Z 2) 1 i ]_ = \Np—2
82 » Zn’l’X — p(p - X7, 7Xn
niee Pp=Dp—=2I(p>3), 1 & 1 _3
Pgn(zmio) < 2= DO 23) (LS 1 s
Jn Vi = vn
Moreover, according to the Rosenthal inequality for martingales [35], there is a constant C' such that
1 n
%ZXi < Ol X1ll12p
i=1 12p

This implies that: R, = O(n™"/2), R,» = 0(n), & Ry,3 = O(n=3/?). Theorem|l]con-
cludes the proof. |

0.2 Proof of Example[d]

Proof: We define g,(X) = n][, (1 + %) Condition (Hp) holds automatically as g,, is
smooth. To obtain the desired result we only need to verify that (H7) holds. By the chain rule we
have:

X .
Dign( 27X WH x(1+—-); and 92gn(Z™) = 0.

Therefore we note that for condition (H;) to hold we only need to upper bound d;g,, (Z"*X").
Using the fact that the observations (X;) are assumed to be bounded we know that there is a constant

C' such that
|| H (1 + 7) Li2

2 e[ [Ts(0+ 2 )

I#£i

< H max )) ~ 6max(C,l)
1#1
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where to get (a) we exploited the conditional independence of the observations (Z*) and to obtain (b)
we used the fact that the observations (X;) are assumed to be bounded. This implies that (H) holds.
d

0.3 Proof of example§]

Proof: We want to used Theorem and Corollary Let (8,) € RY be a sequence satisfying: (i)
B — oo and (ii) B, = o(n'/*)

We define (f,, : R™ — R) as the following sequence of functions:
1 — .
fn(xlzn) = — log (1 + 6’6" \/1? Yicn ﬂfz) )
Bn

We note that the functions ( f,,) are three times differentiable functions and that the following holds:
log(2) log(2)
1£2(27) = 9n(27)] < =5

and  [[fa(Z") — g (Z")[| < ——.
Therefore the functions ( f,,) and (g,,) satisfy conditions (Hy). Moreover by the chain rule we have:

P

1 ;
Ofulorn) = 7=, Ofulor) = 2 B = S
This implies that condition (H;) also holds as R,; = O®n Y%, R,» =

o(n='?), & Rn,3=0(n""). Corollary and Theoremconclude the proof.
O

0.4 Proof of Example ]

Proof: For ease of notations for all element z € Z? we denote by (z1, z2) its coordinates. Moreover
we remark that the i.i.d random variables (X7';) are indexed by [n]? rather than [1n°]. As there is
a one-to-one mapping between those two sets, we note that the random variables (X fj) could be
indexed by [n?]. Therefore Theorem applies. However for ease of notations we keep the original
indexing.

We note that (g,,) is three times differentiable so (Hy) holds. Moreover by the chain rule we have:

LT zzm= X"y
1 Zm,e{_1,1}n Mgy Mgy €V

Bugn (227257 1= —
Zgn( ) n\/ﬁ Z e%m‘rzzn,z,){”m
me{—1,1}»
This implies that
<~ 1
Ougn(Z 2™ < —.
[02gn )HL12 = nvn
Using the chain rule we have:
1 T n,z, X" 1 T n.z X7
2 =m ZZ"*7 m =m ZZ"*" m
020 ( 227X e L Zmett iy (M s, ) e L [27'@{—1,1}" Mgy Mgy €7 2
zgn T nQ \}ﬁmTZZn’LWm n2 \/lzmTZZ”‘z’Wm
Zme{—l,l}" e Zme{—l,l}" e
This implies that
s 1
029, (227 )||L12 < —-
Finally by a last use of the chain rule we have
%mTZZ"’Z'Wm imTZZ"’z’Wm
B2 g0 (Z27%%) = 1 Dme(-11yn Mo Ma€ ™ [1 - [Zme{—lvl}" MMz rl
z9n '_n5/2 %m‘rzzn,z,ﬁm %m‘rzzn,z,xﬁm
Zme{—l,r}n € Zme{—l,l}" €

This implies that

sup |02 g0 (Z 2727

1
< 5/2"
welZp, XUl X" K

Ly
This implies that the desired result holds. The same can be proved for the centered bootstrap (Z;‘)
and (Y").

46



P Proofs from Appendix ]|

P.1  Proof of Proposition[5]

Proof: We note that we can suppose without loss of generality that E (X7*) = 0. Let (5,,) be a

sequence of reals satisfying: (i) 8, — oo and (ii) 8, = o( nt/t )

V4 log(pn)

To get the desired result we use Theorem In this goal we define (f,,) to be the following sequence
of function: ) )

f n (Z‘ l:n) =
B log(pn)
We remark that the functions ( f,,) are three times differentiable, and that they satisfy:

- ~ 1
fo(Z7) = gn(Z7)|| < 2=
’fn(Y )_gn(Y ) I SE

We prove that the conditions of Theoremhold. Using we know that hypothesis (Hy) is holding;
and we only need to prove that (H;) also holds. For ease of notations we write:

Blog(p,L) Ez<nw1 k

wk’(xlz ) = .
’ Zl<p“ 66 log(pn) 7 Zicn it

By the chain rule we remark that for all £; < p,, and all x;.,, € RP" we have
ai,kl fn(l‘l:n)

As Zkgpn wi (71.,) = 1 we obtain for all 7 < n that

Lia \fH Z ZILTZLX )‘

J<pn

<

1
ﬁwkl (I/ln)

1
<

L~ /0
This directly implies that R}, ; = O( 7 /6) Moreover by using the chain rule we obtain that:
n 1 n
) B log(pn)
n

"U sPn

B log(pn)

azkl’lwfn(xl:n) S kal (mlzn)wkg (xlzn) + I[(kl =

k1 (xlzn)

Therefore as Zkgpn wi(Z1.,) = 1 we have forall i < n

< 23, log(pn) '

HHaz ZmX” H
n

mM,Pn

this implies that R, , = O(f, log(pn)/v/n). Flnally, by another application of the chain rule we
have:

a?,klzgfn(xlzn)
Qkal (T1:0) Wiy (X1 ) Wiy (X1:00) + [L(ka = k3) + L(k1 = k3)
10 = ) o ) 4 101 = o = ) B ),
Therefore we obtain for all 7 < n that:
ze[Xn r;?]ﬁ[o v Ha?f" Z{L;x Ht,pn Lis — Eiﬁl%(pn)

This implies that R ,, = O(M) Finally by assumption we know that || sup;<,, X

nl /2
00, hence the assumption (H7) holds as well as the desired result.
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Q Proofs from Section 4]

Q.1 Proof of Proposition 2]

Proof: For simplicity we write ©,, := {0, k < p,,} and for all § € ©,, we denote
go(1:2,y1:2) = Ko(1,22) + Ko(y1,92) — Ko(21,92) — Ko(y1,22);

D,, := 4max H sup ng(Xl 1,X1 1 Hle , sup Z ALk
<Pn Pr<y,

Using Mercer’s theorem we note that there are orthonormal eigenfunctions (¢ ;) and positive
eigenvalues (A; ) such that:

Ko, (-, Z)\lkwlk V()

As we assumed that maxy, ) 5, A x < oo then there is a sequence (I,,) such that:
_ : 2 3y—1
max l; Al =0 (mln()\n, 1)*(BunpnD;) ) .

We show that we can suppose without loss of generality that the kernels (Kj, ) are of rank [,, or
less. In this goal, we denote K7 (-,-) the following kernels Kj (-,-) := > o) N xtir()Yik(’)
and shorthand B
HG(XM) o= Kg (XM, X)) + K5, (X5, X[%) — KG, (X, XP%) — K, (X%, XM,
1 H*O(X]\/f)
* n2 i,7<n
Po(XM) = . iy = . 0 2 :
T Dicn [ Lyn i (D = | Sy HY (X)) 4 A

* M
(P (XM)

wi(T1n) = Bupy, (X™)
k

Zk/gpn €

We prove that:

Z Z H 2 (XMywp(xM)|| =0

k< " ) <
<p ,j<n L
and that

Z Z *9k (ZzMywr(zMy]  —o.

k<pn ,j<n L
In this goal, we remark that:

sup [ sup ‘(Hﬁk (xXM) —HQ;)‘ < sup Y H(HZ?*C(XM) —H‘)’;)H
ij<n |[k<pn L, ISP La
(@) ,
M M M M
< 4 sup | sup |Kj (XM, X%) — Ko (XM, X))
,5<n |[k<pn L

< 4 sup || sup Zx\lk‘%k W’(XM)}

,7<n [|k<pn

1>, Ly
<4 A Yre(XM)?
Dn SUD I,k Sup  sup 1k(X50) I
E<pn i<n k<pn,leN 4
1>,
< dp,Dy, sup > Ak
k<pn >,
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where to get (a) we used the fact that X z]‘/{ has the same distribution than X %

We remark that the function o, @ (21,...,2p,) = D k<), H*e’“ (XM)% is Lipchitz
k' <pn
in the max norm: |0, () — on(y)| < Bnsupy<,, H*G’“ (XM ‘ )| maxg<p, |k — yi|. Therefore
coupling this with the triangle inequality we get that
k<p7, ,7<n L
1 On (M 0 M O (X M) M (M
<|| 32 L(msoon - m) e+l ST 00 () — i (i)
k<pn k<pn
i,j<n L, 3,j<n Ly

(a) 1 .
<n|| sup 2 Z (Hig"‘ (XM — HZ’;) + 2nf3, sup
k<pa |7 52, isj<n

sup H*H’“(XM)‘
k<pn

sup |pj, (X™)
k<pn

L L

The first term of (T7)) is bounded by:

1
n| sup |— Z (H;?’“(XM)—H;?’;.) < np, sup Z)‘”“_)O
k<p, | T i,j<n ’ ’ I k<pn 57,
- 1
Moreover we can bound the second term of (I7) using the triangular inequality, (I8) and the fact that
-1
TS DIDSV AT [ DA BPY I 0 (X)

i<n j<n ,7<n k<pn

<D,.
Ly

Indeed we have,

sup |pj, (X™) — po, (X™)]|
k<pn

2n3, sup

L,j<n ||k<pn

sup H*e" (X M) ‘H

Lo

S%ﬁnDn sup ig Z (H:?k(XM) — Hﬁ’;) 4 2)\571 D2 sup H BE Z ([ZHz*,?k (XM)]Q

k<pn i,j<n Lo i<n i<n (]8)
) - ([ e - [ oan] ),
i<n i,j<n ,j<n

2D, 8, 16D3
<4np,, sup g A 1+ n
k<pn >, wl An A

] —o0.

This implies directly that: HnTn( MY S A HI (XM ;;(XM)’L =
1

0. Following the exact same road map we can show
that|n T, (21) = Yrey, 3 X050 HiH(Z2Mip(21)| = 0.
1

Therefore we have

dr | nT,(Z™), Z > H(ZM)wi(Z2M) | X" - 0;
k<pn i,7<n L

dr | nT, (Y M) Z > H M wp (M) | X" — 0.
k<Pn ,5<n L
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Hence using theorem [5] we know that to establish the desired result it is sufficient to study the
asymptotics of -+ >, . H; *9’“ (ZM)wi (Z™). Hence we can suppose without loss of generality that
all the Kernels (Kj,) have ranks of [,, or less, and do so

As the distribution of X ]V{ is the same than the one of X7’ M they also have the same mean embedding.
Moreover we note that for all ¢ € R we have :

Hf’} = Z Ak [k (X)) — e (X09) ] [, K(XT) — Vi e(XFy)]

I<lp

= Z Ak [V e(XM) + ¢ = (hiw(XM) +¢)] (V1 e(X) 4+ ¢) = (vir(X]) +¢)].

1<l

Therefore as the test statistics 7, depends only on (H, f ’;) we can suppose without loss of generality
that

E(ue(X11)) = E(ui(X1%) =0, ¥V <lp, k < pp
We define X" := (X, ,)i.x to be random variables, defined as

Xk =hie(Xi) — e (X')-

We define the process X*™ := (X") and note that the observations (X;"") take value in

M, 1, (R). We remark that we could have taken the observations (X;"") to take value in RP»!» as

there is a one to one mapping from M, ;. (R) to RP»!». However for ease of notations we keep
them as defined. Let (Z;) and (Y;*) be defined in the following way:

= (Yur(ZM) —in(Z]y)) and V= (YY) — vk (YiY)).
We note that they form respectively a bootstrap sample and an 1ndependent copy of (X). Moreover

we remark that Z; 1|X "= %|X " therefore we can also assume with out loss of generality that
E(Zf.1X") = 0. We choose (g,) to be the following sequence of functions:

n(Z1m) zwk i Z)\lk( Z-T]lk>

j<n

ePntn k(@1:n)

where we have set wg(21.,) = W and
Prhn "

2
SNkt di<n xj,l,k)
2 M iak)? — o (O Ak (O i) ?)2 A+ An

hn,k(gjlzn) =

‘We remark that we have
gn(Zf:n) = nTn(ZM), gn(Yl*n) = nTn(YM), gn(Xf:n) = nTn(XM)-

It is therefore enough to study gn and (X75.,,). For ease of notations we write:

Tnk(T1m) = e Z/\l k Zz, LE)” — %(Z )\l,k(z 2i.1.)%)% + A
] i

and

Tk i= — g Tiiks Hop(zim): E Azk(\fE ﬂfgzk)-

J <n i<n
Moreover we note that we have

’ sup Z)‘llelk] HL120 < 2“ Sup Z)\lk("/}lk(X )] [wlk( )] )||L12o
= k<pni<i,

(b) "
< 4” sup KG;C(X%’X%)HLMD
k<pn
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where (a) and (b) come from the Cauchy-Schwarz inequality. Similarly we have:

(a) 2
sup E ALk |Xf,z,k‘ < sup E ALk sup E ALk ‘Xil,k‘
k<pn 1<l, Lo k<pn 1<l k<pn I<in Li2o
<2 [sup E ALk
k<pn 1<l,

where (a) comes from the Cauchy-Schwarz inequality. Therefore using Theorem 3] we note that there
is a constant C such that:

(20)

M yvM
sup Kek(X1,17X1,l)
k<pn

L1290

1 - .
H sup sup —H, ,(Z""7)
k<pn 2€[Xn,Z3]U[X" V] Vn " Lizo
(@ 2 1 1 ni
< ——|| su A X * 2 +2“ Sup —— A - Z*,n,z 2‘
n3/2Hk§fn§ LkIXT 1]l L0 kgppn ‘/ﬁz; l,k(\/ﬁ; ) .

®)
< Clog(pn)| sup Ko, (XL XD,
SPn

where (a) is a consequence of the triangle inequality and (b) of Theorem [3]and (T9). Similarly using
Theorem [3|and (20) we can establish that there is a constant C” such that:

1 .
H sup sup i Z /\l,kﬁ‘zl,k + Z Zi,l,kH
i>2

k<pn ze[X",Z7]U[X" V] <1, Lazo
' M yM
< C'log(pyn), | sup E ALk sup Kek(X1,1aX1,1)
k<pn E<pn
I<ln Li2o

To prove the desired result we use Theorem |8} We remark that the functions (h., 1) and (g,,) are three
times differentiable. This implies that (Hy) hold. We check that (H7) also holds. In this goal we
first check that the partial derivatives of (h,, ;) are bounded. For ease of notations for a function f;,
we shorthand:

ai,k:,lfn(xlzn) = awi’k,lfn(xl:n)v 81‘27k1;2711:2fn(x1:n) = 62 fn(l‘l:n)

Ti kb1 Ti,ko,lo
2 . 93
8i7k1:3711:3f”(m1:”) T arq',kl,h,ri,kz,Lzri.kS,Lg, f"(gjln)

In this goal, using the chain rule we note that for all ¥ < p,, and all [ < [,, we have:

~ >\l k . 7Hn k(T1:n
0 ke i0n i(T1m) i= n (12$1,k2 - 16$l,k%

and:
2 NrTik Hyy 10(21:0)0 110 n 1 (@1
O thr o (1.0) = AT Ho(P1n )i T 1)
n Un,k:(xl:n) O-'n,k(xlzn)

Therefore we obtain that there is a constant K such that:

n supz

k<pni<y,

Qa2 < K[ ]

L2

Using once again the chain rule we have that:

0i Wi (1:0) =BnOi ke ihn k(T1:m )i (21:0) (LK = k) — wi(21:0))
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as well as:
2 .
05 k1 9n (T1:n) =—= T AL ( f Z 1.0 )Wk(T1:0) Z Hp i (21:0) 05k iwir (T1:0,)
j<n k' <pn
Therefore, using and andas ), . oo Wh (z1.,) = 1 we obtain that there is a constant K5 that
do not depend on n such that B

O Z*,z,X
sup || [0 1.9 )Hv,pnxln .
*lX” w0, X

< Busup || sup |—=H, x(2" M \sup Zﬂazkzhnkz |

i<n |l k<p, f k<D Laa
Xn
+sup || sup Z Ak ( Z zeh H

i<n " k<p, 1<i,, ‘ f Jibk )‘ Lia

< Ky f, IOg(pn)D4
Vnmin(AZ,1) -

This implies that R ; : (M). Moreover all k1,11, k2, I using the chain rule we have:

n,1 "= n1/6 min(A2,1)
8121@1 o ilyo Pk (21.n) = 0if ky is distinct from ky. Moreover if k1 = ko we have:
~ A ﬁn x n —
8i,k112,l1:20'n,k(1'1:n) = % (24%[1’]@111(11 = l2) - 16%]1@1 = lz) - 16)\]62712%[17]@1%127]@1)

and by the Chain rule we have:

aZk l o 1 (331 ) _ 2)‘161711 [H(Zl = l2) xlmkla@kz,lza/nz(xl:n)}
1:2,01:27 TR mj )

—_— —_—
Non,k, (-rl:n n On,ky (xlzn)
o ai;kblzhmkz ($1:n> 8i,/€17l10-/7l-7k\1<x1271) _ Hn7k1 (xlin) azkl;mll:zg/"*k\l(xl:”)
—_— —_—
n On,ky (xl:n) n On,ky (-len)

Hn,kl (xlm) 8i,k17110/n,k\1 (xl;n)ai7k27l2o—/nyk\'l (Il:n)
= 3
n On,ky (mltn)

|

+ 2

Therefore there is a constant K3 such that:

‘sup Z

Maspn g, <,
By another application of the chain rule we have:
0i kroo l1a Wk (T1:0) =P (I(K' = k1) — wg, (71.))
X (07 1y ro o (10 )Wk (T1:m) + ik 1y Py (21:0) D5 g s Wk (T1:m))
~B1n0i ks 1y o ey (T1:0 )Wk (21:0) O e 1, Why (T1:1)

by the chain rule we also have that:

g K3D>
82 hn Z*.,Z,X 3n ]
7k1( 1:n ) Lis = max(}\%71)n2

i,k1:2,01:2

2 2
ai,khz,h:zgn(zl:n) :ﬁ/\kl,hﬂ(k’l = k2)wk1 (‘Tlin) +—= f khll \/7 Z Lj,l k1 0; ko, laWky (561 n)

i<n

fAkzlz \Fzﬂﬁjkzzz Oi ke 1y Why (T1:0)

i<n
F 2
+ Z Hn,k’ (mlzn)ai’klzg,llgwk’ (xlzn)
k'<pn
Therefore we know that there are constants K3 such that:

7
|12, (257 KD g

B

mpnXin |, — min(A%, 1)n
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2 7
This implies that R}, , = O(%) Finally using a similar line of reasoning we note that

Moreover all kq, 11, ko, l2, I3, k3 using the chain rule we have: 82,61:3711:3 P oy (1:0) = 0if Ky is
distinct from ks or from k3. Moreover if k1 = ko = k3 we have:

R Ayl _
02 1y O () = ZE (2410 = Iy = ls) = 320ty 1, T 0 = o)
— 16k, 00 (T Ll = 1o) + Ty i Ll = lg)))

and by the Chain rule we have:

a’ikI:S,ll:Shn’kl (xlin)

_ ala,kso-/nz(xlin) xll,k18i7k2,l20-/n,/€\1(x1:n) f{n,kl ($1:n>8i,k1,l10'/nz($1:n)
- — 2 — [2>\k1,l1 + 3 —
NOn ky (xl:n) On, k1 (xlzn) On,ky (xlzn)
~ - 2 — ]I(ll = 12)
~0i kg 1o H ko (T1:0) 05 1y 1 T by (T1:m) — Py (01:0) 05 1y 10Ok (T1:n) + 2k, 04 T)
2/\761,11 <8i»k2,lzm(xlin)l[(l2 = l3)
G b n

Non,k, (Ilzn)2

2 —
+ Tig 8i,k2;3,l2;30'n,k1 (ml:n)>

i knrs s Pkn (T1en) Diker 12 Tk (T1en)  Of ke 1y kst Trokr (T1:m)

. B o k2,l h k (xl: )
" m(xlzn) nm(mlm) ( i,k2,l2!'n ko n
i Ous oo (010)\ _ DKy (o G (1) Dbt T (21m)
_ Hn,kl (xltn) — - T k10,0100 k1 (:Elm) - n
Tk (:El:n) N0On,ky (‘Tli’ﬂ) On,ky (xl:n)

Ho g, (w1:0) (o — i s 1 T s (T1:0) 07 1y 4 13 O s (T1m)
R i7k1:3,l1:30—n,k1(x1:n) - —
Non,k, (xlzn) On,ky (xl:n)

Therefore there is a constant K3 such that:

’ sup sup Z
ks <pn 2€[ X, 27 JUIX ™V ) 5 <1,

By another application of the chain rule we have:

81'7k1;3,l1;3wk' (xlin) :ﬂn (H(k/ = kl) — Wk, (‘len))

X (aikl:s,ll:shn,kl(xlzn)wk’ (T1:m) + 8i2,k1;2711:2hn,k1 (1:n) 0 kg 1 Wi (T1:m)

KyDT
Li> — max(\3, 1)n3’

o3

i,k1:3,01:3

hn,kl (Z*,i,Z)

1:n

+ i ey iy Py (21:0) 07 g 135 Wh (T1m) + Ok, 1y ikt P (xl:n)ai,kz,lzwk'(ﬂfl:n))
_ﬂnai,kg,,lgwkl (xlzn)
X (81‘21]@1:2711:2 hn,kl (xlzn)wk’ (xlzn) - 8i,k1,l1 hn,kl (xlﬁn)ai,kQJQWkl (xlzn))

—Bnwir (T1:0)

X <3zkl,ll,i7k3713 P ey (21:0) 5 k1 Wi (T1:0) F O ey 1y Py (T1:0) 05 s 10 Wk (l’lm))

as well as:
a’ikl:Bgll:Sgn(xlin)
Tk = s = K)o () + (S )0 (@)
=Ny 1, LK1 = k2 = k3)0; ky 1wk (T1:m, fts (o= S 250 )05 ke s ks (T1m

n 1 3,03 \/ﬁ 1 \/ﬁjgn J54:k1 2:3,02:3%k1
2k =k (ks = k

+ %)\m,ha@kz,lzwh (xlzn) + M)\Iw,lzaﬁkhhwkg (1'1:71)
2 1 )

+ ﬁkk%lz(ﬁsz;Lxj7k2712)8i’k1’ll’i’k3’l‘°’wk2 (ml:n)
2 1 )

+ 7)\163,13(7Zxj7k3,l)ai2,k1;2,l1:QWk3(zl:n) + Z H"vk/(zlm)az‘g,kl:g,lmwk/(171;n)
N \/ﬁjgn P
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Therefore we know that there are constants /4 such that:
K4D}®

07, 9n (2727 ——
max ze[)(’",gg?&x’",ﬁ*] 102,90 (21 )Ht’PnXln L1z — min(A8, 1)n2 fn
D1053
Therefore we have R}, 3 = O(m .
This implies that both (Hy) and (H{) hold and Theorem 8] guarantees that
Hd}' (nfn(ZM)vgn(YM) | Xn) . — 0.
]
R Proof of Proposition 3]
Proof: Let (Y;"*) be an independent copy of (X!*) and of (¥;").We shorthand
" ) o~ BnRE @1:n) B e )
wWp\T1:n—m,, ) ‘= — 7 s n-— Unp XILmn ;
Zk‘/gpn e ﬁnRﬁ (wl:n)
Op = @n(X{l:n)v 95 = Gn(XIL:man:i;il:n)-
The proof works in two  stage. In a first time we show that:
ﬁ Yicn—m, LY, On(YiL,, ))  has  approximately  the  same  distri-
bution  than ﬁ > <n-mn LY, OY (Y, ) and we show that
ﬁ Dicn—m, Ln(ZP ., On(Z],,.)) as approximately the same distribution than
ﬁ D icnmy, Ln(ZP O (Z} ). Then we notice that this implies that we only need to
show that the bootstrap method is consistent for -——13",_ _ L.(Y;%,, ,OY (Y1, ).

Firstlyy, ~we realize that as conditionally on (:)n and (:)}; the observations
(L’n ()ﬁ_mn,@};(ﬂﬁrmn)) — Ly, (Yiﬁmn’é"(yﬂmﬂ))po are independent and identically
distributed we have B

\/Var[nimn S L (Vi O ) — Lo (Vb 0007000

i<n—mo,

oY, @n}
2y

\/var [gn (X;;nﬂ, ég(y,:;n“)) L (mmn,én(mn“)) \én, ég]

Ly
Moreover by exploiting Taylor expansions we know that

Lo

H% L0 (Vs O (Vi 1) = £a (Vi 1200V 1)) |60 0]
L,y
<SS s (ol 0K ]| X O ) — O )|
1<d;,  0€Q({67, p<pn}) =
< Lud sup |[002(X, 1) = OF1 (X0, 1)
1<d), ' L

Xrifi<j

and shorthand
Yj" otherwise

We define (X' J ) as the following interpolating process: X" I = {
éZLJ = (:)n,l (X f,f) By the Effron-Stein inequality we have:

2
A n A n AJ n AJ—1 n
|60a(Xs, ) = XX ||, = 2[00 (K — 00 (X )|
Jzma+1 L@
A ~ 2
054X, 1) = 07 (X, )|

2

Lo

Lo



Moreover using the triangle inequality and the inequality (a + b)? < 2(a? + b?) we can upper-bound
the right-hand side as

2
He m +1) en 1( 7nn+1)’
Lo
2
Z 9[) X’:I’LL +1 ( TPL(X’I’T;L”JFII’I’L) _C‘)g(X:thle:nler?))
P<Pn Lo

2

Ly X,Lﬂp —Ly, Y,?,@p
<2/ 3 O, D () [ O =201 _ 1]
P<Pn Ly

+2 Z 0 m +1 lw (X:Tlln-ﬁ-l:n) Z wP (an+1 n) [enf;" [ﬁn'(X:’ég )=Lan (Yﬁl,@ﬁ N ]_:|

p<pn P <pn Lo
<8P aup 0200 IS [ [eacx ||| e e, coxp 0,
=T ma2 e, met e ol
B 272 280

<sglh it
By combining (ZI) and (22) we therefore obtain that:

%ar[ e 3 L (Vi O107)) — £ (Vi 0a0,)) [02 0]

i<n—my L,

— 0.

This implies that

(\/71—7 Z ‘C (ermnv éZ(Yﬁrm”)) \/71—7 Z ‘C (ermnvé (Yﬁrmn)))

i<n—mnp i<n—mp

Ly
— 0.
Using the same line of reasoning we also prove that
d ﬁn 1TMn ? 6 ZZL m Lﬂ/ i+m 7@ ZZL m
(F_ n<n2m” (Zims OF(Zm,)) s e Zm (285m0 O0n(22 J)) L
1

— 0.

Hence by using the fact that dr satisfies the triangle inequality (see Theorem[3) we observe that it is
enough to prove that the distribution of

ﬁ > i<n Ln (X[;m , @Y(Xf+m )) can be correctly approximated by the bootstrap method. We
note that the process (En ( itm G)Y(XZ”_H” ))) is exchangeable and that if we define the func-

tion: g, (1,...,2n) = ﬁ Zign z; then:
g (L0 (X2, O (X24,0))) )i % S Lo (X, OF (X240
i<n

Therefore we only need to check that (g,,) satisfy all the conditions of Theorem Firstly we note
that:
1

319n(331:n) = %7 aZgn(xl:n) =0 and a3gn(X1:n) =0.

Therefore we have
Ryi=n""% R,p=0, & Ru3=0.

s
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Therefore the conditions of Theorem [10 hold and

Y On (Vi)

T+mg,

dr (Ztm,.. X (22

= L b o)) e X

i<n—my i<n—mag

— 0.

We obtain the desired result by noting that d » satisfies the triangle inequality.

(Il
S Proof of Proposition [6]
For simplicity we write
T = || sup |05(X T, O VL
p<pn ' Lo
D= | e |9, £0 X5 008, XD ], V1.
Proof: For ease of notations, we shorthand:
O = 0 (XYL, 21 ). BR = BN,
We first notice using theorem [5]and theorem [f] that:
dr (Rey g (23510 ) — B (R (2050, ) | 6477, X7,
n,1 n,1 A/ m
Rsé’n (Yizn—mn) —E (Rsé’n (Yl:n—mn> | 671) | X L) L.
n. s n. ~ n,2 n
< |ldr (Regnz (Z1510,) = (R (2050, ) | 6777, X7)
n n (23)

s R s n, A n,2
aRéZ"? (le":Lnl—mn) - E(Ré5"2 (Y ul ) | @f )

lin—my,

Xn, Zn,2> ’

L,y
y n S n, Jal n,2
e (Reyzs O ) = B (R O, ) 1 627,

Ry, (VI )_E(Rsé;l(y"vl )|é;)\xn,ynvl)’

lL:in—m, Lin—my,

Ly
We upper-bound each term separately. In this goal, we define as (X) the process defined as
X =Ly (X] OZ"* (X" ). We remark that the sequence (X!) is an exchangeable sequence

i+my i+My
and we define:

Z = Lo (211,027 (ZY), Y = LY, 62" (vh).

We note that (Z]) and (Y) respectively form a bootstrap sample of (X);<n—m,, and a copy of (X})
that is conditionally on ©7 " independent. We define Fy ,, to be the following functions:

1
Fl,n(xl:nfmn) = ﬁ Z Z;.

i<n—my

Moreover we denote (X) the following random vectors X = (/.Zn (XD, OB (X T ))) -
’ " p<pn
We also define:

* n,2 N n,2 * n,2 N n,2
Z; = (ﬁn(Zier,,nGZ(Zi+m,,L))>p<p ;Y= (En(Yier”veﬁ(Yier”)))qu .

We remark that (Z7) and (Y;*) are respectively bootstrap samples and (conditionally) independent
copy of (X7).
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We define the following weight functions: w? : x"/""R — R as:

n s
en—mn Zignfm,n Ti,p

p —
wn(afl:n—mn) = —Pn_ 5~ -
L — 1 K n— T,
E p/Sp” en—mn 1<N—mn P

We define I3, : x;;RP» — R as the following random function:

1 n A1 n
FQ,n(‘Tl:nfmn) = Z ‘Cn }/z 717 Z 957,(}/1 )1)wﬁ($1:nfmn)

i<n—mp P<pn

—E| L, nn’l?zéfz(yinJ)wfz(xlIn*mn) | X"

P<pn

We remark that, condltlonally on X™ and Y™, the functions (F%,,) are independent from (Z}) and
(Y;*). Using (23) we note that if the following hold then the desired result also holds:

Hd}_ (F2;N(Zf:n7m")’ FQ;”(Y/lfnfmn) Xn)

Hd]: (Flﬂl(Zi:n—mn)?Fl-,n(}}ll:n—mn) | Xn)

— 0;

Ly

— 0.

Ly

To prove that those hold we use Theorem|§|extended to exchangeable sequences and random functions.
We notice that the functions (F5 ,,) and (F} ,) are three times differentiable (random) functions.
Therefore for both functions hypothesis (Hj) holds and to get the desired results we only need to
check that hypothesis (H7) also holds. For simplicity for all ¢ < 3 we write

1 . N
R 1) = e (040, 20 (V7 D 000V e (10 m,))
J Yo i j n\1j n m—my,
" Mn P<Pn
—E (050, La(Y Y 020 et (@rnm,)) | X))
P<Pn
We denote Q7 := {w}, i < p,} a maximal d’,n~3/4-packing of B it is well known that

d’,n/
Pn < (n3/42T + 1) . We remark that for all § € Bd,"' T there is an w* € QP such that
||w* — wH < d,T,. Indeed if this would not be the case then {w} | JQ” would also be a packing set

of B¢ d," T contradicting the fact that we assumed it to be maximal. We define the following random

functions: fi, ,.0(2) := 32 13

L, (z,0) . We note that for every 0,0" € Q5. p<p,y We have

Ly Bn T 0" — 0llar,

(n—my)

1 2
H , sSup |fl1:3,9(yln ) - fh:sﬁ(yln )|||Loc <
0,0 eQ{ép-, p<pn}

Using theorem 3| we observe that this implies that there are constant K, K’ such that:
max sup Z R" s (g
= lee (X, ZE ) UIX ™ Y] | j<n—m,

< d;L;(’i’;/j + K log(2T,n** + 1))

< K'd], L} log(n).

b2 (24)

Moreover we note that for all £ < 2 there is a constant C' such that

DNk (k0,25
Iln<ar)f Z R] e (Zl:n ) < OLn AT (25)
=" i<n—mn .
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A~ N ’

For ease of notations we write: @(mlzn,mn,y) =00 — 2 p<p, O (W] (T1:0—m, ). We
remark that for all p < p,, we have

8i,pF2,n(x1:n—mn)

i) XY B 07 Y Y 07 )

l<d/ j<mny P <pn j<my
_ 61’7, ,_7 n,1
= — wp Cll‘ln m” E E R xln (mln mn’Y )
1<d!, j<my,

Therefore as » . wh(21.,) = 1, using (25) we obtain that there is a constant C' that does not
depend on n such that

C
max ‘ ) (Zf’:l’xmn) < P Z L, ‘ meax ’0” (vyeh ”
=n UsPr || L n—"mmy 1<d’,
Moreover for all p < p,, we have 0,1 ,,(1:n—m,,) = \/niim Therefore we obtain that
10 X7 1
max A _—.
i ’ 5 ( 1.n—mn) Lis n—1m,

In addition, we remark that we have 92 Fy ,,(1.n,—m, ) = 0. Therefore the condition (H7) holds for
F1 .. For ease of notations we write WP P2 (21.,—s,,, ) := I(p1 = p2) — wP?(21.—m,, ). We have

82,171,172 F2 n(xlznfmn>

2,,yP1
:Mwm’m(iﬁzn—mn ) DD RY (@) (@, Y)Y

— 2
(n—my) 1<d!, j<mn,
2 pl( )
nWnt (Z1: n wh xl n ! 5
+ 7(1 = TS " Z Z Rll l2 xln nl (xl an” )elelQ(xlm’Y}n )
l1, ZQSd/ i<my
32 R (210002,
- ('fl — :n )20‘)51 (1'1:71777%)(")7’;2 (xlznfmn) Z Z R;LJ (l.lin)af:l(xlm7yvjn’1).
n I<d], j<mn

This combined with (23)) implies that there is a constant C such that:

Co 32
| < 2 IS LT+ Y Lty T T

max
Lo (n_m'n) lgd/ lSd”
Finally using the chain rule for all p1, ps, ps < p,, we have

3

W25

lin—my,

’m7p’ﬂ

83 F2,n(x1:nfmn)

1,P1:3
_ Bn Zlgd& Z]‘Smn Rlnd (xlzn)eg;fll ('Tl:na an’l)wﬁl (-Tl:n—mn) [
B (n —my)3

wff (xlzn—mn )wﬁz P3 (‘len—mn )

, 3wP1 -Tl
= wh (T1n—m, Jwp P (xl:n—mn)} - (n _771 7 Z Z Rh 1 (T1:0)0), 11(1‘1 ny Yn 1)

l1,l2<d), j<m,

X Q'Z W3 (xliTH ijn,l) [Wﬁg (l‘l:n—mn)Wﬁl’p2 (Ilzn—mn) + Wﬁs (1'1:n—mn)Wzl’p2 (xl:n—mn)}

3
BT @b (@1 m,) An.d N 1
) [ 35 Ao LT o) = 3 A0

n —

l1.3<d}, j<pn l1.2<d],
3,,p1 D2 P1,P3 D2,P3
Do R 1 UJ (xlznfmn )w (xlzn) [w (xlznfmn) +w (xlznfmn)]
X efjll (.1'1;»,“ Yn )954312 ($1;n7 Y']" )i| + - (nnf mn)S =

X Z Z R ’] xln 91’ (wl;n,}/}n’l)

I<dj, j<mn
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Therefore using (24) we establish that that there is a constant C's < co such that

max
i<n

max

i P (250 )
z€[X ™, ZTUX ™, YY)

lin—my,

t,pn

12

Csp3d L* log(n
S o 3( ) 1—}17” L717n+ szlzz,nn27"+ szl:g,nj—‘l2,nﬂ37n
(n—my)
" 1 <d, l2<dl, la:;3<dl,

This implies that hypothesis (H7) holds for F; ,,; which means that

de (F2an(Zf:n—mn ); FQ,"(?ﬁn_m" ) |X")

—0; (26)

1

We note that Fb , (Y, ) = RZ% (Yﬁ;}_mn).
Moreover, we remark that we have proved that the condition (H7) also holds for F} ,,. This implies

that we have

Hd]: (FLTL(Zi:n—mn)7Flyn(}}ll:n—nLn) | Xn) — 0.

L,
As F1 ,, is linear this gives us the desired result.

We now prove Proposition[7] Firstly using the same line of reasoning we can prove that

e (B(Ry g2 (20510 | 270, X7) B (R (V5L ) | YL X)X |
n n 1
— 0.
Secondly using (26) we note that we have:
| (B (P (Zi e Y™ X7 B (Fon (Vi Y™ X)X 0,
1

Therefore for all 6 > 0 we have:

lim inf P (|]E(R%5n,2 (V) Y™ X7) —B(Ry, (Yl ) | X7)] > th02(X7) +5) >1-a/2.

N0 l:in—my, l:in—my, b,n

Moreover let N™ ~ N(0,1d) be a Gaussian vector of dimension d,,. Using [19] we know that there
is a constant C' that does not depend on n such that the following holds:

sup ‘P [\/ﬁmkax |V —E(Y)| >t| - P(mkax (S N™)g| > t)‘
t

- Clog(dn)7/6 max(|| max; \Xﬁj| Hiy 1)
S 170

For ease of notation we write S; , := L(X], HAZ\,Z) and set € > 0. We note that conditionally on X"

the random variable |f] — ¥|Z is a Gaussian vector. Therefore using Appendix A of [12] we obtain
that:

P | max
P<pn

1

—E | max

€ P<pn

1 V2log(2p,)E(max /(8 - )2),.,)

€

IN

IN

(@)

< %\/2 log(?pn)E( max (22 — 22),,11,)

PSPn

< 1\/210g(2pn)\/E( max |f]2 — 22|p}p).
p_p'VL
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where to get (a) we exploited the fact that ¥ and ¥ are positive definite symmetric matrices. We
denote the variance of S; , as (Z;‘,’”)2 := Var (E(X{L, @1)). By the triangle inequality have:

E(max |22 — %2 )

p<p p,p p,p

< E [ max
P<pn | My —

Szm (Sip—9,)° = (=° "2 +%x} (Zm2 -2

By definition we note that:
|(om)2 =52 | <46, L),

Moreover using Theorem [3|we know that there is C' > 0 such that:

e (i ¥ (S8,
1 *,
<B (x| 3 (- iy s | -,

i<mp Jj#i
(2) C'log(pn)
- Jm,

where (a) uses Theorem 3] Therefore this implies that for all € > 0

[3(L})% + 2L} e, | + 4C 1og(py)v/min Ll €m,,

P <max

P<pPn

(- z)z‘ > e) 0.
P
This directly implies that

P <max|(zZ) | > t) P (max (22),
P<Pn P<Pn

>t>‘—>0.

P {\/ﬁmkax YV —E(Yy)| > fg/,?} < /24 o0,(1).

sup
t

Therefore we have

Finally by exploiting the smoothness properties of £,,, for every i € R we have

n,l n\ _ * H n,l n
Y™ X" = B(Fan(Y +T—7)ly X))

< Z E(’ Z Mpwp SUP E( Z R"’J Y”2+7)3P (Yn’Q-i-%,YiL”)

j<d’, p<pn i<n—mag

ST e 3 RO Dl 3 bl s 107,077+ Y
ne

E(‘E(Fg,n(Y*)

v

Jj<di, REOM] j<n"m, v p<pn
< 2T, Ly, dy, sup |y
p
Therefore this implies that
P(UE(RZ) (Vi) | X7) = E(Ry e (Y, ) | X7)] 2 2TnL;d;t§/n?)
< a/2+o0,(1)

We obtain in conclusion that for all 6 > 0 we have:
P (E(Reynz (Vi) | X7) € B(R i (2150, ) | 270 X") & (12(X") + 2T L, 572 4 6)
>1—a+o,(l).
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T Proofs from Appendix[A]
T.1 Proof of Theorem

Proof: The first step is to bound E {maxkgpn ﬁ Y oi<n ka] . Define (f, : R? — R) to be the
following sequence of functions:
log (ZKm elogPn) 75 Tisn ml)
fn L) = — .
(1) Tog(rn)
We observe that || f,(X™) — maxj<,, ﬁ Yoi<n X{kaLl < 1; and that the functions (f,,) are
infinitely differentiable. We denote, for all z € R, (X;""") and (X,*) the processes respecting

p Xrifi <l iy XP™if i £1

X" = ! ~ X% = !

! {O otherwise. ! {z otherwise

We first suppose that || maxg<,, X7, || L, < 1. Using the Taylor expansion we have:

[l ]| < L[l - ]|

i<n
<> [r[ &7 aifn(ffiﬁ)} |+ 3 B[ o X X7
i<n i<n

(X132,

+ZE[ sup <
i<n  2€[0,X7]

’>} 27
(@)

<n| > E[0, 0 FpX >]E<X1dlxld2>
dy,d2<pn

+n Z E[ sup }
di,da.da<n  2€[0,X7]
where to get (a) we used the fact that as o/(X}0) = J(XO ..., X" ) we have E(X?|X{°) = 0.
The next step is to upper-hand the right-hand side of (27). For ease of notations we write:
eIOg(pn) v Ezgn Tk

83

1,d1:3

Fﬁ X1 d2X1 ds

WE\T1. = .
k( 1.n) Zlgpn elog(p”)ﬁ Zign Ti

For all k1, k2 < p,, we obtain by the chain rule that

{ log(ph)wkl (xlzn)wkz (mlin) if ky 7& k2

62 n n < G
’L’kl’ka (371. ) 10g(pn) [wk (xl;n) + Wiy (1’1:n):| if kl = kg.

As Zk-<pn wg (21.,) = 1, this implies that

”‘ Z E {82‘2,d1,d2F5(X )}E(Xl dlxﬁdg)
d1,d2<pn

We now bound the second term of the right hand side of @) For all integers k1, k2, ks < py,, by the
chain rule, we obtain that:
log(pn)3/2
n3/2
IOg(pn)3/2

n3/2
1Og(pn>3/2

n3/2

< 2log(pn)-

Wiy (T1:0 )Wy (T1:0)Whs (T1:0) (14 L(k1 = k3) + 1(k2 = k3))
Wiy (T1:0) Wk, (T1:0) (L(k1 = k3) + (k2 = k3))

Wiy (T1:0) (Why (21:0)I(k1 = ko) + (k1 = k2 = k3))
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Therefore we obtain that

noy E(sup

d1,d2,d3<n z€[0,X7]

a0

31d13F'8n(X” ‘del L X1 dy

78%log(pn)?
e

Hence using (27) we establish that:

1 ” 710g(pn)2
E =S X || < 1+ [log(p) + k).
ggj\/ﬁ; B || <1+ [logen) + —5 =

By potentially renormalizing || maxg<p,,

X{‘k‘ || L, we obtain therefore than in general we have:

1 a0
B\ e 2 X
610g(pn)2>
max | X 1+ log(p,) + ——— ).
H prfl 1k ( g(pn) n

P

Lastly, according to the Rosenthal inequality for martingales [35], there are constants (C),) that do
not depend on d or (X) such that

sup ’Xl &
d1<pn

1 5 1 5
— X, —E — X! <20,
= L

L
» P

Therefore we get the desired results using the triangular inequality.

Finally, let (IF;) designates the filtration F; := o( X7,..., X i") then the following is an array of

martingale differences (E(gx »(X™)|F;) — E(gg,n(X™)|Fi—1)). The last point of Theoremfollows
directly from this observation. (]
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