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A Proof of the main results

This appendix presents the proof of the main technical result, Theorem 1. Throughout the whole
proof, we assume that the set of conditions from Sec. 2 is verified.

A.1 Required background

In this Section, we give an overview of the main concepts and tools on approximate message passing
algorithms which will be required for the proof.

We start with some definitions that commonly appear in the approximate message-passing literature,
see e.g. [33, 36, 37]. The main regularity class of functions we will use is that of pseudo-Lipschitz
functions, which roughly amounts to functions with polynomially bounded first derivatives. We
include the required scaling w.r.t. the dimensions in the definition for convenience.
Definition 1 (Pseudo-Lipschitz function). For k,K ∈ N∗ and any n,m ∈ N∗, a function
φ : Rn×K → Rm×K is called a pseudo-Lipschitz of order k if there exists a constant L(k,K)
such that for any x,y ∈ Rn×K ,

‖φ(x)− φ(y)‖F√
m

6 L(k,K)

(
1 +

(
‖x‖F√
n

)k−1

+

(
‖y‖F√
n

)k−1
)
‖x− y‖F√

n
(14)

where ‖•‖F denotes the Frobenius norm. Since K will be kept finite, it can be absorbed in any of the
constants.

For example, the function f : Rn → R,x 7→ 1
n‖x‖

2
2 is pseudo-Lipshitz of order 2.

Moreau envelopes and Bregman proximal operators — In our proof, we will also frequently
use the notions of Moreau envelopes and proximal operators, see e.g. [47, 48]. These elements of
convex analysis are often encountered in recent works on high-dimensional asymptotics of convex
problems, and more detailed analysis of their properties can be found for example in [12, 31]. For the
sake of brevity, we will only sketch the main properties of such mathematical objects, referring to the
cited literature for further details. In this proof, we will mainly use proximal operators acting on sets
of real matrices endowed with their canonical scalar product. Furthermore, proximals will be defined
with matrix valued parameters in the following way: for a given convex function f : Rd×K → R, a
given matrixX ∈ Rd×K and a given symmetric positive definite matrix V ∈ RK×K with bounded
spectral norm, we will consider operators of the type

argmin
T∈Rd×K

{
f(T ) +

1

2
tr
(
(T −X)V −1(T −X)>

)}
(15)

This operator can either be written as a standard proximal operator by factoring the matrix V −1 in
the arguments of the trace:

Proxf(•V 1/2)(XV
−1/2)V 1/2 ∈ Rd×K (16)

or as a Bregman proximal operator [64] defined with the Bregman distance induced by the strictly
convex, coercive function (for positive definite V )

X 7→ 1

2
tr(XV −1X>) (17)

which justifies the use of the Bregman resolvent

argmin
T∈Rd×K

{
f(T ) +

1

2
tr
(
(T −X)V −1(T −X)>

)}
= (Id + ∂f(•)V )

−1
(X) (18)
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Many of the usual or similar properties to that of standard proximal operators (i.e. firm non-
expansiveness, link with Moreau/Bregman envelopes,. . . ) hold for Bregman proximal operators
defined with the function (17), see e.g. [64, 65]. In particular, we will be using the equivalent notion
to firmly nonexpansive operators for Bregman proximity operators, called D-firm operators. Consider
the Bregman proximal defined with a differentiable, strictly convex, coercive function g : X → R,
where X is a given input Hilbert space. Let T be the associated Bregman proximal of a given convex
function f : X → R, i.e., for any x ∈ X

T (x) = argmin
y∈X

{f(x) +Dg(x,y)} (19)

Then T is D-firm, meaning it verifies

〈Tx− Ty,∇g(Tx)−∇g(Ty)〉 6 〈Tx− Ty,∇g(x)−∇g(y)〉 (20)

for any x,y in X .

Gaussian concentration — Gaussian concentration properties are at the root of this proof. Such
properties are reviewed in more detail, for example, in [12, 37]. We refer the interested reader to this
set of works for a detailed and complete discussion.

Notations — For any set of matrices {Ak ∈ Rnk×dk}k∈[K] we will use the following notation:
A1

A2 (∗)

(∗)
. . .

AK

 ≡ [Ak]
K
k=1 ∈ R(

∑K
k=1 nk)×(

∑K
k=1 dk) (21)

where the terms denoted by (∗) will be zero most of the time.
For a given function φ : Rd×K → Rd×K , we write :

φ(X) =

φ
1(X)

...
φd(X)

 ∈ Rd×K (22)

where each φi : Rd×K → RK . We then write the K ×K Jacobian

∂φi

∂Xj
(X) =


∂φi1(X)
∂Xj1

· · · ∂φi1(X)
∂XjK

...
. . .

...
∂φiK(X)
∂Xj1

· · · ∂φiK(X)
∂XjK

 ∈ RK×K (23)

For a given matrix Q ∈ RK×K , we write Z ∈ Rn×K ∼ N (0,Q⊗ In) to denote that the lines of
Z are sampled i.i.d. from N (0,Q). Note that this is equivalent to saying that Z = Z̃Q1/2 where

Z̃ ∈ Rn×K is an i.i.d. standard normal random matrix. The notation
P' denotes convergence in

probability.

Approximate message-passing — Approximate message-passing algorithms are a statistical
physics inspired family of iterations which can be used to solve high dimensional inference problems
[66]. One of the central objects in such algorithms are the so called state evolution equations, a
low-dimensional recursion equations which allow to exactly compute the high dimensional distri-
bution of the iterates of the sequence. In this proof we will use a specific form of matrix-valued
approximate message-passing iteration with non-separable non-linearities. In its full generality,
the validity of the state evolution equations in this case is an extension of the works of [36, 37]
included in [67]. Consider a sequence Gaussian matricesA(n) ∈ Rn×d with i.i.d. Gaussian entries,
Aij(n) ∼ N (0, 1/d). For each n, d ∈ N, consider two sequences of pseudo-Lipschitz functions

{ht : Rn×K → Rn×K}t∈N {et : Rd×K → Rd×K}t∈N (24)

initialized on u0 ∈ Rd×K in such a way that the limit

lim
d→∞

1

d

∥∥e0(u0)>e0(u0)
∥∥

F
(25)

2



exists and it is finite, and recursively define:

ut+1 = A>ht(v
t)− et(ut)〈h′t〉> (26)

vt = Aet(u
t)− ht−1(vt−1)〈e′t〉> (27)

where the dimension of the iterates are ut ∈ Rd×K and vt ∈ Rn×K . The terms in brackets are
defined as:

〈h′t〉 =
1

d

n∑
i=1

∂hit
∂vi

(vt) ∈ RK×K 〈e′t〉 =
1

d

d∑
i=1

∂eit
∂ui

(ut) ∈ RK×K (28)

We define now the state evolution recursion on two sequences of matrices {Qr,s}s,r>0 and
{Q̂r,s}s,r>1 initialized withQ0,0 = limd→∞

1
de0(u0)>e0(u0):

Qt+1,s = Qs,t+1 = lim
d→∞

1

d
E
[
es(Ẑ

s)>et+1(Ẑt+1)
]
∈ RK×K (29)

Q̂t+1,s+1 = Q̂s+1,t+1 = lim
d→∞

1

d
E
[
hs(Z

s)>ht(Z
t)
]
∈ RK×K (30)

where (Z0, . . . ,Zt−1) ∼ N (0, {Qr,s}06r,s6t−1⊗In), (Ẑ1, . . . , Ẑt) ∼ N (0, {Q̂r,s}16r,s6t⊗Id).
Then the following holds
Theorem 4. In the setting of the previous paragraph, for any sequence of pseudo-Lipschitz functions
φn : (Rn×K × Rd×K)t → R, for n, d→∞:

φn(u0,v0,u1,v1, . . . ,vt−1,ut)
P' E

[
φn

(
u0,Z0, Ẑ1,Z1, . . . ,Zt−1, Ẑt

)]
(31)

where (Z0, . . . ,Zt−1) ∼ N (0, {Qr,s}06r,s6t−1⊗In), (Ẑ1, . . . , Ẑt) ∼ N (0, {Q̂r,s}16r,s6t⊗In).

Spatial coupling As a final premise to our proof, we give the intuition on how to handle a specific
form of block random matrix in an AMP sequence. Consider the iteration (26), but this time with a
Gaussian matrix defined as:

A =


A1

A2 (0)

(0)
. . .

AK

 ∈ Rn×Kd (32)

whereAk ∈ Rnk×d and
∑K
k=1 nk = n, which leads to the following form for the products between

matrices and non-linearities:

A>ht(v
t) =


A>1 h1,t(v

t)
A>2 h2,t(v

t)
...

A>KhK,t(v
t)

 ∈ RKd×K Aet(ut) =


A1e1,t(u

t)
A2e2,t(u

t)
...

AKeK,t(u
t)

 ∈ Rn×K (33)

where the blocks hk,t(vt) ∈ Rnk×K , ek,t(ut) ∈ Rd×K may depend on their full arguments or only
the corresponding blocks depending on their separability. This iteration can be embedded as a subset
of the iterates of a larger sequence defined with the full version of the matrixA and non-linearities
defined as:

et : RKd×K
2

→ RKd×K
2

generates


e1,t (•)

e2,t (•) (0)

(0)
. . .

eK,t (•)

 ∈ RKd×K
2

(34)

ht : Rn×K
2

→ Rn×K
2

generates


h1,t (•)

h2,t (•) (0)

(0)
. . .

hK,t (•)

 ∈ Rn×K
2

(35)
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The original iteration is recovered on the block diagonal of the variables of the iteration. This new
setting, however, introduces a richer correlation structure, since each block will be described by a
different K ×K covariance according to the state evolution equations. Formally, the new covariance
will be a K2×K2 block diagonal matrix. Also, the shape of the Onsager term changes from a matrix
of size K ×K to one of size K2 ×K2 with a K × (K ×K) block diagonal structure.

A.2 Reformulation of the problem

We start by reformulating problem (2) in a way that can be treated efficiently using an AMP iteration.
With respect to the main part of this paper, we will consider the estimator W ∈ Rd×K instead of
RK×d. The normalized (so that the cost does not diverge with the dimension) problem (2) then reads:

min
W∈Rd×K ,b∈RK

1

d

(
L

(
Y ,

1√
d
XW + b

)
+ r(W )

)
(36)

where we have introduced the function L : Rn×K × Rn×K → R acting as(
Y ,

1√
d
XW + b

)
7→

n∑
ν=1

`

(
yν ,

Wxν√
d

+ b

)
, (37)

the matrix Y ∈ Rn×K of concatenated one-hot encoded labels, and the matrix of concatenated means
M ∈ RK×d (in the main we took the transposeM ∈ Rd×K). Until further notice, we will drop the
scaling 1

d for convenience and study the problem

min
W∈Rd×K ,b∈RK

L

(
Y ,

1√
d
XW + b

)
+ r(W ) (38)

We will write Lk the application of ` on each row of a sub-block in Rnk×K . Without loss of generality,
we can assume that the samples are grouped by clusters in the data matrix, giving the following form
forX ∈ Rn×d, separating the mean part YM and centered Gaussian part :

X = YM + Z̃Σ ∈ Rn×d (39)

where we have introduced the block-diagonal matrix Z̃ and the Kd× d full-column-rank matrix Σ

Z̃ =


Z1

Z2 (0)

(0)
. . .

ZK

 ∈ Rn×Kd Σ =


Σ

1/2
1

Σ
1/2
2
...

Σ
1/2
K

 ∈ RKd×d. (40)

Here (Z1, . . . ,ZK) ∈ Rn1×d × · · · × RnK×d are independent, i.i.d. standard normal matrices.

The product between the data matrix and the weightsW ∈ Rd×K then reads:

XW = YMW + Z̃ΣW =

 Y1MW +Z1Σ
1/2
1 W

...
YKMW +ZKΣ

1/2
K W

 ∈ Rn×K (41)

where each Yk ∈ Rnk×d is a nk copy of the same label vector. Defining now W̃ = ΣW , observe
that

W̃ = ΣW =⇒ W = Σ+W̃ , (42)
where

Σ+ ≡

(
K∑
k=1

Σk

)−1

Σ> (43)

is the pseudo-inverse of the matrix Σ. The optimization problem (2) is thus equivalent to

inf
W̃∈RKd×K
b∈RK

K∑
k=1

Lk

(
1√
d
YkMW +

1√
d
ZkW̃k, b

)
+ r

(
Σ+W̃

)
(44)
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Introducing the order parameterm = 1√
d
MW ∈ RK×K , we reformulate Eq.(44) as a constrained

optimization problem :

inf
m,W̃ ,b

K∑
k=1

Lk

(
1√
d
Ykm+

1√
d
ZkW̃k

)
+ r

(
Σ+W̃

)
(45)

s.t.
1√
d
MΣ+W̃ = m

whose Lagrangian form, with dual parameters m̂ ∈ RK×K , reads

inf
m,W̃ ,b

sup
m̂

K∑
k=1

Lk

(
Ykm+

1√
d
ZkW̃k

)
+r
(
Σ+W̃

)
+tr

(
m̂>

(
m− 1√

d
MΣ+W̃

))
. (46)

This is a proper, closed, convex, strictly feasible optimization problem, thus strong duality holds and
we can invert the order of the inf-sup to focus on the minimization problem in W̃ for fixedm, m̂, b:

inf
W̃∈RKd×K

L̃

(
1√
d
Z̃W̃

)
+ r̃(W̃ ) (47)

where we defined the loss term

L̃ : Rn×K → R

1√
d
Z̃W̃ 7→

K∑
k=1

Lk

(
Ykm+

1√
d
ZkW̃k

)
=

K∑
k=1

nk∑
i=1

`

([
Ykm+

1√
d
ZkW̃k

]
i

) (48a)

and the regularisation term

r̃ : RKd×K → R

W̃ 7→ r
(
Σ+W̃

)
+ tr

(
m̂>

(
m− 1√

d
MΣ+W̃

)) (48b)

where Σ>W̃ =
∑K
k=1 Σ

1/2
k Wk and Z̃ = [Zk]

K
k=1 ∈ Rn×Kd is an i.i.d. standard normal block

diagonal matrix as in Eq. (40).

A.3 Finding the AMP sequence

We now need to find an AMP iteration relating to W̃ that solve the optimization problem in Eq. (47).
Although this section is not written as a formal proof, all steps are rigorous. The aim is to give
the reader the core intuition on how the AMP iteration is found, otherwise the solution may feel
“parachuted”. The reader uninterested in the underlying intuition may directly skip to the next section.
In order to find the appropriate sequence two key points must be considered :

• the fixed point of the sequence has to match the optimality condition of Eq. (47);
• the update rule of the sequence should have the form Eq. (26) for the state evolution

equations to hold.

These two points completely determine the form of the iteration. In the subsequent derivation, we
absorb the scaling 1√

d
in the matrix Z̃, such that the Zk ∈ Rnk×d have i.i.d. N (0, 1/d) elements.

Resolvent of the loss term — Going back to problem Eq. (47), its optimality condition will look
like :

Z̃>∂L̃(ZW̃ ) + ∂r̃(W̃ ) = 0 ⇐⇒


Z>1

Z>2 (0)

(0)
. . .

Z>K




∂L̃1(Z1W̃1)

∂L̃2(Z2W̃2))
...

∂L̃K(ZKW̃K))

+ ∂r̃(W̃ ) = 0

(49)
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where each Zk ∈ Rnk×d, and the subdifferential of L̃ is separable across blocks of size nk × d,
and ∂r̃(W̃ ) ∈ RKd×K . Following the intuition of spatial coupling, we introduce the full matrix
Z ∈ Rn×Kd, with i.i.d. N (0, 1/d) entries. The optimality condition can then be written on the
diagonal of a Kd×K2 matrix:

Z>


∂L̃1(Z1W̃1)

∂L̃2(Z2W̃2) (0)

(0)
. . .

∂L̃K(ZKW̃K)



+


∂r̃(W̃ )1

∂r̃(W̃ )2 (0)

(0)
. . .

∂r̃(W̃ )K

 = 0 (50)

where ∂r̃(W̃ )k represents the k-th block of the subdifferential of r̃ which is non-separable across the
blocks of W̃ . To make the resolvents/proximals appear, we add the argument of the subdifferentials
on both sides weighted by a (symmetric) positive definite matrix Sk ∈ RK×K which will be used to
allow for Onsager correction while respecting the fixed point condition. Using the notation defined in
section A.1[
Z>k ∂L̃k(ZkW̃k)

]K
k=1

+
[
∂r̃(W̃ )

]K
k=1

= 0

⇐⇒
[
Z>k ∂L̃k(ZkW̃k) +Z>k ZkW̃kS

−1
k

]K
k=1

+
[
∂r̃(W̃ )

]K
k=1

=
[
Z>k ZkW̃kS

−1
k

]K
k=1

(51)

for a given set of positive definite matrices {Sk}k∈[K]. Again, the reason for introducing different Sk
on each block is to match the expected structure of the Onsager term. We can introduce the resolvent,
formally Bregman resolvent/proximal operator:

Uk ≡ ∂L̃k(ZkW̃k)Sk +ZkW̃k ⇐⇒ ZkW̃k = RL̃k,Sk
(Uk) (52)

where

RL̃k,Sk
(Uk)=(Id+∂L̃k(•)Sk)−1(Uk)

= argmin
T∈Rnk×K

{
L̃k(T )+

1

2
tr
(
(T−Uk)S−1

k (T−Uk)>
)}

= argmin
T∈Rnk×K

{
Lk(T )+

1

2
tr
(
(T−(Ykm+Uk))S−1

k (T−(Ykm+Uk))>
)}
−Ykm.

(53)

In the previous expressions ∂L̃k ∈ Rnk×K and Vk ∈ RK×K . The following formulation of the
optimality condition is reached:[

Z>k UkS
−1
k

]K
k=1

+
[
∂r̃(W̃ )k

]K
k=1

=
[
Z>k RL̃k,Sk

(Uk)S−1
k

]K
k=1

⇐⇒
[
Z>k

(
Uk −RL̃k,Sk

(Uk)
)
S−1
k

]K
k=1

+
[
∂r̃(W̃ )k

]K
k=1

= 0 (54)

Resolvent of the regularization term Determining the block decomposition of the subdifferential
of the regularization term is less simple. We would like a block expression in the flavour of:[

∂r̃(W̃ )k

]K
k=1

+
[
W̃kŜ

−1
k

]K
k=1

=
[
W̃kŜ

−1
k

]K
k=1

(55)

At this point it becomes clear that we cannot consider the resolvent as acting on W̃ ∈ RKd×K
otherwise there could be only one Ŝ ∈ RK×K and there would be a mismatch with the expected form
of the Onsager terms. As specified by the definitions Eq.(48), the subdifferential of r̃ is acting on the
whole block diagonal matrix [W̃k]Kk=1, by way of summation due to the action of the pseudo-inverse
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Σ+. We can thus consider its proximal acting on Rd×K2

as [W̃1W̃2...W̃K ] (note that we could
have also worked directly with a block diagonal matrix in RKd×K2

). Proceeding in this way, we
can directly write our expression as an application parametrized by another set of positive definite
matrices {Ŝk}k∈[K].

Û =
(

Id + ∂r̃(•)Ŝ
)

(W̃ ) W̃ = Rr̃,Ŝ(Û) (56)

where

Rr̃,Ŝ(Û) =
(

Id + ∂r̃(•)Ŝ
)−1

(Û)

= argmin
T∈Rd×K2

{
r̃(T ) +

1

2
tr
(

(T − Û)Ŝ−1(T − Û)>
)} (57)

where Ŝ ∈ RK2×K2

block diagonal, and Û ∈ Rd×K2

. This would lead to the equivalent optimality
condition for the regularization part:

Û Ŝ−1 = Rr̃,Ŝ(Û)Ŝ−1 ⇐⇒
[
ÛkŜ

−1
k

]K
k=1

=
[
Rr̃,Ŝ,k(Û)Ŝ−1

k

]K
k=1

(58)

We now need to figure out the block structure of this resolvent since we want to spread it across a
block diagonal matrix. Let C =

∑K
k=1 Σk, so that Σ+ = C−1Σ>, and the blocks Tk ∈ Rd×K are

the solution to the minimization problem

min
{Tk}k∈[K]∈(Rd×K)K

r(C−1
K∑
k=1

Σ
1/2
k Tk) +

1

2
tr
(

(T − Û)Ŝ−1(T − Û>)
)

+ tr

(
m̂>

(
m− 1√

d
MΣ+T

))
(59)

Let T̃ = C−1
∑K
k=1 Σ

1/2
k Tk ∈ Rd×K , and the equivalent reformulation as a constraint optimization

problem:

min
Tk∈[K]∈Rd×K

T̃∈Rd×K

r(T̃ ) +
1

2
tr
(

(T − Û)Ŝ−1(T − Û>)
)

+ tr

(
m̂>

(
m− 1√

d
MT̃

))
(60)

s.t. T̃ = C−1
K∑
k=1

Σ
1/2
k Tk

This is a feasible convex problem under convex constraint with a strongly convex term, it thus has a
unique solution and strong duality holds. Introducing the Lagrange multiplier λ ∈ Rd×K , we get the
equivalent representation:

min
Tk∈[K]∈Rd×K

T̃∈Rd×K

max
λ∈Rd×K

r(T̃ ) +

K∑
k=1

tr
(

(Tk − Ûk)Ŝ−1
k (Tk − Ûk)>

)

+ tr

(
λ>

(
T̃ −C−1

K∑
k=1

Σ
1/2
k Tk

))
+ tr

(
m̂>

(
m− 1√

d
MT̃

))
.

(61)

The optimality condition for this problem reads:

∂T̃ : ∂r(T̃ ) + λ− 1√
d
M>m̂ = 0 (62)

∂T : (Tk −Uk)Ŝ−1
k = Σ

1/2
k C−1λ ∀k ∈ [K] (63)

∂λ : T̃ = C−1
K∑
k=1

Σ
1/2
k Tk (64)
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Using the gradient condition on T , we get

K∑
k=1

Σ
1/2
k (Tk − Ûk)Ŝ−1

k = λ (65)

The constraint T̃ = C−1
∑K
k=1 Σ

1/2
k Tk is solved by Tk = Σ

1/2
k T̃ which gives the solution for λ

λ =

K∑
k=1

Σ
1/2
k (Σ

1/2
k T̃ − Ûk)Ŝ−1

k =

K∑
k=1

ΣkT̃ Ŝ
−1
k −

K∑
k=1

Σ
1/2
k ÛkŜ

−1
k (66)

and prescribes the following form for T̃ , as solution to the problem

∂r(T̃ ) +

K∑
k=1

ΣkT̃ Ŝ
−1
k −

K∑
k=1

Σ
1/2
k ÛkŜ

−1
k −

1√
d
M>m̂ = 0

⇐⇒ argmin
T̃

r(T̃ ) +
1

2

K∑
k=1

ΣkT̃ Ŝ
−1
k T̃ −

(
K∑
k=1

Σ
1/2
k ÛkŜ

−1
k +

1√
d
M>m̂

)
T̃ (67)

We then recover T from T = ΣT̃ . Thus, defining the function

η : Rd×K
2

→ Rd×K

Û 7→ argmin
T̃

r(T̃ ) +
1

2

K∑
k=1

ΣkT̃ Ŝ
−1
k T̃ −

(
K∑
k=1

Σ
1/2
k ÛkŜ

−1
k +

1√
d
M>m̂

)
T̃ (68)

the block decomposition of the resolvent for the regularizer reads:

Rr̃,Ŝ,k(Û) = Σ
1/2
k η(Û) (69)

Matching the optimality condition with the AMP fixed point The global optimality condition
then reads: [

Z>k

(
RL̃k,Sk

(Uk)−Uk
)
S−1
k

]K
k=1

=
[
(Ûk −Rr̃,Ŝ,k(Û))Ŝ−1

k

]K
k=1

(70)[
ZkRr̃,Ŝ,k(Û)

]K
k=1

=
[
RL̃k,Sk

(Uk)
]K
k=1

(71)

where both equations should be satisfied. We can now define update functions based on the previously
obtained block decomposition. The fixed point of the matrix-valued AMP Eq.(26) reads:

Id + e(u)〈h′〉> = Z>h(v) (72)

Id + h(v)〈e′〉> = Ze(u) (73)

Matching this fixed point with the optimality condition Eq.(70) suggests the following mapping:

hk(Uk) =
(
RL̃k,Sk

(Uk)−Uk
)
S−1
k ,

ek(Û) = Rr̃,Ŝ,k(Û Ŝ),

Sk = 〈e′k〉,
Ŝk = −〈h′k〉−1,

(74)

where we redefined Û ≡ Û Ŝ in (56), and the subscripts on the non-linearities are block indexes.
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A.4 Proof of Theorem 1 using the AMP sequence

Following the analysis carried out in the previous section, define the following two sequences of
non-linearities, for fixed values of the parameters m̂,m, b and any u ∈ Rd×K2

,v ∈ Rn×K :

et : RKd×K
2

→ RKd×K
2

u 7→


e1,t (u)

e2,t (u) (0)

(0)
. . .

eK,t (u)

 ∈ RKd×K
2

(75)

ht : Rn×K
2

→ Rn×K
2

v 7→


h1,t (v1)

h2,t (v2) (0)

(0)
. . .

hK,tt (vK)

 ∈ Rn×K
2

(76)

where Yk ∈ Rnk×K and

hk,t : Rnk×K → Rnk×K

vk 7→
(
RL̃k,V k,t

(vk)− vk
)

(V k,t)−1

=

(
argmin
T∈Rnk×K

{
L̃k(T ) +

1

2
tr
(
(T − vk)(Vk,t)

−1(T − vk)>
)}
− vk

)
(Vk,t)

−1

=
(

ProxLk(•(Vk,t)1/2)((Ykm+ vk)(Vk,t)
−1/2)(Vk,t)

1/2 − (Ykm+ vk)
)

(Vk,t)
−1 (77)

ek,t : Rd×K
2

→ Rd×K

u 7→ Σ
1/2
k argmin

T̃∈Rd×K
r(T̃ ) +

1

2

K∑
k=1

ΣkT̃ V̂k,tT̃ −

(
K∑
k=1

Σ
1/2
k uk +

1√
d
M>m̂

)
T̃

= Σ
1/2
k η(u(V̂ t)−1) (78)

where (Vt, V̂t) ∈ RK2×K2

, are defined as the block diagonal matrices [Vk,t]k∈[K] ,
[
V̂k,t

]
k∈[K]

such

that

Vk,t = 〈(ek,t−1)′〉 V̂k,t = −〈(hk,t)′〉 (79)

using the notation from Eq. (28). Now define the following sequence, initialized with

u0,h−1 ≡ 0, V̂0 (80)

such that lim
d→∞

1

d

∥∥e0(u0)>e0(u0)
∥∥

F
< +∞ and V̂0 ∈ S++

K

and recursively define

ut+1 = Z>ht(v
t)− et(ut)〈h′t〉> (81)

vt = Zet(u
t)− ht−1(vt−1)〈e′t〉> (82)

where Z ∈ Rn×Kd has i.i.d. N (0, 1/d) elements, and in the Jacobians defining V̂ ,V , we used the
notation from Eq. (23).

State evolution equations The results from section A.3 show that the functions et,ht are proximals
operators, and thus are Lipschitz continuous for all t ∈ N, along with their block restrictions.
Therefore the conditions of Theorem 4 are verified and we have the following lemma:
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Lemma 5. Consider the sequence defined by Eq.(81), for any fixedm, m̂, b. For any sequences of
pseudo-Lipschitz functions φ1,n : Rd×K2 → R, φ2,n : Rn×K2 → R, for any t ∈ N∗:

φ1,n(ut1, . . . ,u
t
K)

P' E
[
φ1,n(H1(Q̂1,t)

1/2, . . . ,HK(Q̂K,t)
1/2)

]
(83)

φ2,n(vt1, . . . ,v
t
K)

P' E
[
φ1,n(G1(Q1,t)

1/2, . . . ,GK(QK,t)
1/2)

]
(84)

where the matricesHk ∈ Rd×K ,Gk ∈ Rnk×K are independent matrices with i.i.d. standard normal
elements, and at each time step t > 1

Qk,t = lim
d→+∞

1

d
E
[
ek,t({Hk(Q̂k,t)

1/2(V̂k,t)
−1}k∈[K])

>ek,t({Hk(Q̂k,t)
1/2(V̂k,t)

−1}k∈[K])
]

(85)

∈ RK×K

Q̂k,t = lim
d→+∞

1

d
E
[
hk,t−1(Gk(Qk,t−1)1/2)>hk,t−1(Gk(Qk,t−1)1/2)

]
∈ RK×K (86)

Vk,t = lim
d→+∞

1

d

d∑
i=1

∂ek,t−1({Hk(Q̂k,t−1)1/2}k∈[K])

∂(Hk(Q̂k,t−1)1/2)i
∈ RK×K (87)

V̂k,t = − lim
d→+∞

1

d

nk∑
i=1

∂hk,t(Gk(Qk,t)
1/2)

∂(Gk(Qk,t)1/2)i
∈ RK×K (88)

where the sequence is initialized with V̂0, e0,Q0,0 = limd→∞
1
d

∥∥e0(u0)>e0(u0)
∥∥

F
.

Proof. Lemma 5 is a consequence of Theorem 4 whose assumptions have been verified in the
paragraph.

Note that in Lemma 5, we have directly written the block decomposition of the state evolution
corresponding to the iteration Eq. (81), which involves the block diagonal matricesQt, Q̂t,Vt, V̂t
which are all in RK2×K2

. Using the notations introduced in section A.1

V = [Vk]
K
k=1 V̂ =

[
V̂k

]K
k=1

Q = [Qk]
K
k=1 Q̂ =

[
Q̂k

]K
k=1

(89)

Also note that we do not use the full state evolution giving the correlations across all time steps, but
only use those at equal times t.

Trajectories and fixed point of the AMP sequence Now that we have a sequence with state
evolution equations, the following two lemmas link the fixed points of this iteration to any optimal
solution of problem Eq.(47).

Lemma 6. Consider any fixed point V , V̂ ,Q, Q̂ of the state evolution equations from Lemma 5. For
any fixed point u∗,v∗ of iteration Eq.(81), the quantity

Rr̃,V̂ −1(u∗V̂ −1) =
(

Id + ∂r̃(•)V̂ ¯1
)

(u∗V̂ −1) (90)

is an optimal solution W̃ ? of problem Eq.( 47). Furthermore

RL̃,V (v∗) = (Id + ∂L̃(•)V )(v∗) = ZW̃ ? (91)

where the block decompositions of each resolvents have been explicitly calculated in section A.3.

Proof. Lemma 6 is a direct consequence of the analysis carried out in section A.3.

At this point we know the fixed points of the AMP iteration correspond to the optimal solutions of
problem Eq.(47). Note that the resolvents/proximals linking the fixed point of the AMP iteration
with the solutions of Eq.(47) are Lipschitz continuous, making them acceptable transforms for state
evolution observables. However this does not guarantee that the optimal solution is characterized by
the fixed point of the state evolution equations. Indeed, we need to show that a converging trajectory
can be systematically found for any instance of the problem Eq.(47). This is the purpose of the
following lemma.
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Lemma 7. Consider iteration Eq.(81), where the parametersQ, Q̂,V , V̂ are initialized at any fixed
point of the state evolution equations of Lemma 5. For any sequence initialized with V̂0 = V̂ and u0

such that
lim
d→∞

1

d
e0(u0)>e0(u0) = Q (92)

the following holds

lim
t→∞

lim
d→∞

1√
d

∥∥ut − u?∥∥
F

= 0 lim
t→∞

lim
d→∞

1√
d

∥∥vt − v?∥∥
F

= 0 (93)

Proof. The proof of Lemma 7 is deferred to subsection A.7.

Note that the G defined here is not the same as the G in the replica computation. Combining the
lemmas 5, 6 and 7 with the pseudo-Lipschitz property, we have reached the following lemma

Lemma 8. For any fixed m, m̂, b, consider the fixed point (Q, Q̂,V , V̂ ) of the state evolution
equations from Lemma. 5. Then, for any sequences of pseudo-Lipschitz functions φ1,n : Rd×K2 →
R, φ2,n : Rn×K → R, for n, d→∞

φ1,n(W̃ ?)
P' E

[
φ1,n

(
Rr̃,V̂ (HQ̂1/2V̂ −1)

)]
(94)

φ2,n(ZW̃ ?)
P' E

[
φ2,n

(
RL̃,V (GQ1/2)

)]
(95)

where we remind that G = [Gk]
K
k=1 ,H = [Hk]

K
k=1 are block diagonal i.i.d. standard normal

matrices as in Lemma 5, and Q = [Qk]
K
k=1 Q̂ =

[
Q̂k

]K
k=1

are the K2 × K2 block diagonal
covariances.

Proof. Lemma 8 is a consequence of Lemmas 5,6,7 and applying the pseudo-Lipschitz property
along with the fact that the iterates of the AMP have bounded norm using the state evolution and that
the estimator also has bounded norm (feasibility assumption). Note that, for a generically non-strictly
convex problem, being close to the zero gradient condition does not guarantee being close to the
estimator. This is further discussed in Appendix A.5.

Note that the resolvents are implicitly acting on the block diagonals of their arguments. At this point
we are quite close to Theorem 1(details for the exact matching will be given later), but we are missing
the equations onm, m̂, b.

Fixed point equations form, m̂, b We drop the dependence on the bias term b as its solution is
very similar to the one for m, m̂. To obtain the equations for m, m̂, we go back to the complete
optimization problem

inf
m,W̃ ,b

sup
m̂

L(Ykm+ZkW̃k) + r
(
Σ+W̃

)
+ tr

(
m̂>

(
m− 1√

d
MΣ+W̃

))
(96)

where we can use strong duality to write the equivalent form

inf
m,b

sup
m̂

L(Ykm+ZkW̃
?
k ) + r

(
Σ+W̃

)
+ tr

(
m̂>

(
m− 1√

d
MΣ+W̃ ?

))
(97)

The gradients w.r.t. m, m̂ then read:

∂m̂ = m− 1√
d
MΣ+W̃ ? (98)

∂m = m̂+ ∂mL(Ym+ZW̃ ?) (99)
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Uniform convergence of derivatives and conditions for the dominated convergence theorem are
verified using similar arguments as in [12, Lemma 12]. We can thus invert limits and derivatives,
and expectations and derivatives. To facilitate taking the derivative ∂m, we use Lemma 8 (assuming
the normalized loss function is pseudo-Lipschitz, which is a very loose assumption verified by most
machine learning losses) to obtain, reintroducing the scaling 1/d

1

d
L(Ym+ZW̃ ?)

P−−−→
d→∞

1

d
E
[
L(Ym+RL̃,V (GQ1/2))

]
(100)

Using the block decomposition from Eq.(53), the blocks (RL̃,V (GQ1/2))k ∈ Rnk×K are given by:

argmin
T∈Rnk×K

{
Lk(T )+

1

2
tr
(

(T−(Ykm+GkQ
1/2
k ))V −1

k (T−(Ykm+GkQ
1/2
k ))>

)}
−Ykm (101)

Using a block diagonal representation, we can write:

1

d
L(Ym+RL̃,V (GQ1/2)) =

1

d
L(RL,V (Ym+GQ1/2))

=
1

d
ML,V (Ym+GQ1/2)−

1

2d
tr
(

(RL,V (Ym+GQ1/2)−(Ym+GQ1/2))V −1(RL,V (Ym+GQ1/2)−(Ym+GQ1/2))>
)

(102)

where we have introduced the Bregman-envelope [65] with respect to the distance Eq. (17)

ML,V (Ym+GQ1/2) =

min
T

{
L(T ) +

1

2
tr
(

(T − (Ym+GQ1/2))V −1(T − (Ym+GQ1/2))>
)}

(103)

Then, using the state evolution equations from Lemma 5 and Stein’s lemma, we can write:

1

d
L(Ym+RL̃,V (GQ1/2)) =

1

d
ML,V (Ym+GQ1/2)− 1

2
tr(V >Q) (104)

Taking the gradient w.r.t.m using the expression for the derivative of a Bregman envelope [65], we
get:

∂mL(Ym+RL̃,V (GQ1/2)) =
1

d
Y >

(
Ym+GQ1/2 −RL,V (Ym+GQ1/2)

)
V −1 (105)

which prescribes, using Lemma 8

m̂
P' 1

d
Y >

(
RL,V (Ym+GQ1/2)− Ym+GQ1/2

)
V −1 (106)

For m, we use the block decomposition from Eq.(67), which simplifies the pseudo-inverse Σ+ in
Eq. (98) to give, using Lemma 8 again

m
P' 1√

d
Mη(HQ̂1/2V̂ −1) (107)

where the function η acts on the block diagonal and is defined by Eq.(68). Using those results and the
definition of W̃ , the solutionW ? and the quantityXW ∗ are characterized, in the pseudo-Lipschitz
sense of Theorem 1, by the fixed point of the system of equations (the first four equations are meant
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for all 1 6 k 6 K):

Qk = lim
d→+∞

1

d
E
[
ek({Hk(Q̂k)1/2V̂ −1

k }k∈[K])
>ek({Hk(Q̂k)1/2V̂ −1

k }k∈[K])
]
∈ RK×K (108)

Q̂k = lim
d→+∞

1

d
E
[
hk(GkQ

1/2
k )>hk(GkQ

1/2
k )

]
∈ RK×K (109)

Vk = lim
d→+∞

1

d

d∑
i=1

E

[
∂ek({Hk(Q̂k)1/2}k∈[K])

∂(Hk(Q̂k)1/2)i

]
∈ RK×K (110)

V̂k = − lim
d→+∞

1

d

nk∑
i=1

E
[
∂hk,t(Gk(Qk,t)

1/2)

∂(Gk(Qk)1/2)i

]
∈ RK×K (111)

m =
1√
d
E
[
Mη(HQ̂1/2V̂ −1)

]
∈ RK×K (112)

m̂ =
1

d
Y >

(
RL,V (Ym+GQ1/2)− Ym+GQ1/2

)
V −1 ∈ RK×K (113)

Using the explicit form of the different functions given in section A.3 and Stein’s lemma for the
derivatives, these equations match those of Theorem 1. This completes the proof.

A.5 On the strict convexity assumption

If the optimization problem defining W ? is strictly convex, there is only one minimizer and the
provided proof is enough. Additionally it is shown in [68] that for any loss function that is strictly
convex in its argument and penalized with the `1 norm, provided the data is sampled from a continuous
distribution, the solution is unique with probability one regardless of the rank of the design matrix.
Thus finding a point verifying the optimality condition of (47) is also enough to complete the proof.
For generic convex (non-strictly) problems a more careful analysis could be performed in the same
spirit as the one of [51]. Empirically the result still holds.

A.6 On the uniqueness of the solution to the fixed point equations (108)

It is possible to reconstruct Bregman envelopes on problem (47) for the loss and regularization as we
have done for the loss in the previous section. We can then show that the fixed point equations (108)
are the optimality condition of a convex-concave problem involving both Bregman envelopes and
linear combinations of the order parameters. In the same spirit as [12, 49], this problem should be
asymptotically strictly convex. This is supported by the simulations presented in the experiments
sections but left as an assumption in the main paper.

A.7 Proof of Lemma 7

This proof follows a similar argument to the one used to control the trajectory of the AMP studied in
[50]. Note that, because of the way the AMP is initialized using the fixed point of the state evolution
equations, for any t > 1 the following holds:

lim
d→+∞

1

d
E
[
e(ut)>e(ut)

]
= Q ∈ RK

2×K2

(114)

lim
d→+∞

1

d
E
[
h(vt)>h(vt)

]
= Q̂ ∈ RK

2×K2

(115)

where

e(ut) = (Id+ ∂r̃(•)V̂ −1)−1(utV̂ −1) h(vt) =

((
Id+ ∂L̃(•)V

)−1

(vt)− vt
)
V −1 (116)

then the limit we are looking for reads:

lim
d→∞

1

d

∥∥ut − ut−1
∥∥2

F
= lim
d→∞

2(Q̂− 1

d
tr((ut)>ut−1)

lim
d→∞

1

d

∥∥vt − vt−1
∥∥2

F
= 2(Q− 1

d
tr((vt)>vt−1) (117)
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We thus need to study the correlation between successive iterates. At each time step, denote (Ĉt,Ct)

in RK2×K2

the correlation matrices between iterates at times t, t− 1 describing the Gaussian fields
respectively associated to ut,vt i.e.,

lim
d→∞

1

d
tr((ut)>ut−1 = Ĉt lim

d→∞

1

d
tr((vt)>vt−1 = Ct (118)

we can then write the block diagonal Gaussian fields Ẑt, Ẑt−1,Zt,Zt−1 in RKd×K2

and in the
following way

Ẑt ∼H(Ĉt)
1/2 +H

′
(Q̂− Ĉt)1/2 (119)

Ẑt−1 ∼H(Ĉt)
1/2 +H

′′
(Q̂− Ĉt)1/2 (120)

Zt ∼ G(Ct)
1/2 +G

′
(Q−Ct)1/2 (121)

Zt−1 ∼ G(Ct)
1/2 +G

′′
(Q−Ct)1/2 (122)

where the matricesH,H ′,H ′′ are in RKd×K2

,G,G′,G′′ are in Rn×K2

and all have i.i.d. standard
normal elements. The recursion describing the evolution of these correlations then reads :

Ct+1 =
1

d
E
[
e(HĈ

1/2
t +H

′
(Q̂− Ĉt)1/2)>e(HĈ

1/2
t +H

′′
(Q̂− Ĉt)1/2)

]
(123)

Ĉt =
1

d
E
[
h(GC

1/2
t +G

′
(Q−Ct)1/2)>h(GC

1/2
t +G

′′
(Q−Ct)1/2)

]
(124)

Integrating out the independentH
′
,H

′′
first, we get

Ct+1 =

∫
RKd×K2

dµ(H)I(H)>I(H) (125)

where I(H) =
∫
RKd×K2 dµ(H

′
)e(HĈ

1/2
t +H

′
(Q̂−Ĉt)1/2). SoCt is symmetric positive definite,

assuming the resolvents aren’t trivial. The same argument applied to Ĉt shows it is also symmetric
positive definite. From [64], the operators

(Id+ ∂r̃(•)V̂ −1)−1(•)
(
Id+ ∂L̃(•)V

)−1

(•) (126)

are D-firm w.r.t. the Bregman distances induced by the differentiable, strictly convex functions
1
2 tr(XV̂ X>) and 1

2 tr(XV −1X>) respectively. Recall

e(ut) = (Id+ ∂r̃(•)V̂ −1)−1(utV̂ −1) h(vt) =

((
Id+ ∂L̃(•)V

)−1

(vt)− vt
)
V −1 (127)

Then, using the definition of D-firm

〈e(Ẑt)− e(Ẑt−1),
(
e(Ẑt)− e(Ẑt−1)

)
V̂ 〉 6 〈e(Ẑt)− e(Ẑt−1), (Ẑt − Ẑt−1)V̂ −1V̂ 〉 (128)

then, adding the normalization by 1
d , using the representation Eq.(119-122), taking expectations and

applying the matrix form of Stein’s lemma, see for example [67] Lemma 12, we get:

tr((Q−Ct+1)V̂ ) 6 tr((Q̂− Ĉt)V ) (129)

Using a similar argument on h, we get

tr((Q̂− Ĉt)V ) 6 tr((Q−Ct)V̂ ) (130)

and
tr(Ct+1V̂ ) > tr(CtV̂ ) (131)

thus the sequence tr(Ct+1V̂ ) is a bounded (above) monotone (increasing) sequence, and therefore
converges. Since V̂ is positive definite and given the iteration defining Ct+1 from Ct, any fixed
point of this iteration is a fixed point of tr(CtV̂ ). Assuming there is only one fixed point to the set of
self-consistent equations Eq.(8) (see previous section), the proof is complete. (A similar argument
can be carried out on Ĉt).
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B Replica computation

B.1 Setting of the problem

In this Section we give a full derivation of the results in Theorem 1 and Theorem 2 by means of
the replica approach, a standard method developed in the realm of statistical physics of disordered
systems [69]. In the general computation, we will consider the classification problem of K clusters,
assuming a dataset {(xν ,yν)}ν∈[n] of n independent datapoints where, as in the main text, the labels
y takes value in a set of K elements, yν ∈ {ek}k, with ek ∈ RL. The elements of the dataset are
independently generated by a mixture density in the form

P (x,y) =

K∑
k=1

I(y = ek)ρkN (x |µk,Σk ) ,

K∑
k=1

ρk = 1. (132)

We will perform our classification task searching for a set of parameters (W ?, b?) that will allow us
to construct an estimator. The parameters will be chosen by minimising an empirical risk function in
the form

R(W , b) ≡
n∑
ν=1

`

(
yν ,

Wxν√
d

+ b

)
+ λr(W ), (133)

i.e., they are given by
(W ?, b?) ≡ argmin

W∈RL×d, b∈RL
R(W , b). (134)

We will say thatW ∈ RL×d and b ∈ RL are the weights and bias to be learned respectively, ` is a
convex loss function with respect to its second argument, and r is a regularisation function whose
strength is tuned by the parameter λ ≥ 0. Finally, we will assume that a classifier ϕ : RL → {ek}k
is given, such that, once (W ?, b?) are obtained, a new point x is assigned to the label

x 7→ ϕ

(
W ?x√

d
+ b?

)
∈ {ek}k. (135)

The described setting is slightly more general than the one given in Theorem 1. As a consequence of
the fact that we choose L-dimensional labels, the order parameters that appear in the computation
are L dimensional vectors or L× L matrices. A typical “high-dimensional encoding” is the one-hot
encoding convention adopted in Theorem 1, where L = K and {ek}k ⊂ RK is the canonical basis
of RK . In this case, the adopted classifier is

ϕ(x) ≡ ŷ(x), ŷk(x) = I(max
κ

xκ = xk). (136)

Assuming scalar labels {ek}k ∈ R, we deal with scalar order parameters. For example, in the case
of binary classification (K = 2) it is common to adopt L = 1 and {e1, e2} = {+1,−1}. In this case
ϕ(x) = sign(x), see also Section C.2.

B.2 Gibbs minimisation

The problem stated in Section 1 is formulated as an optimisation problem. We can tackle such
optimisation problem introducing a Gibbs measure over the weights (W , b), namely

µβ(W , b) ∝ e−βR(W ,b) = e−βr(W )︸ ︷︷ ︸
Pw(W )

n∏
ν=1

exp

[
−β`

(
yν ,

Wxν√
d

+ b

)]
︸ ︷︷ ︸

Py(y|W ,b)

. (137)

The parameter β > 0 is introduced for convenience: in the β → +∞ limit, the Gibbs measure
concentrates on the values (W ?, b?) which minimize the empirical riskR(W , b) and are therefore
the goal of the learning process. The functions Py and Pw can be interpreted as a (unnormalised)
likelihood and prior distribution respectively. Our analysis will go through the computation of the
average free energy density associated to such Gibbs measure, i.e.,

fβ = − lim
n,d→+∞
n/d=α

E{(x,y)}

[
lnZβ
dβ

]
, (138)
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where E{(x,y)}[•] is the average over the training dataset, and we have introduced the partition
function

Zβ ≡
∫
e−βR(W ,b)dW (139)

To perform the computation of such quantity, we use the so-called replica method, i.e., we compute

− lim
n,d→+∞
n/d=α

E{(x,y)}

[
lnZβ
dβ

]
= lim
n,d→+∞
n/d=α

lim
s→0

1− E{(x,y)}[Zsβ ]

sdβ
, (140)

B.3 Replica approach

We proceed in our calculation considering the bias vector assuming no prior on b, which will play a
role of an extra parameter. The equations for the bias b will be derived extremising with respect to it
the final result for the free energy. We need to evaluate

E{(x,y)}[Zsβ ] =

s∏
a=1

∫
dW aPw(W a)

(∑
k

ρkEx|y=ek

[
s∏

a=1

Py

(
ek

∣∣∣∣W ax√
d

+ b

)])n
. (141)

Let us take the inner average introducing a new variable η,

Ex|y=ek

[
s∏

a=1

Py

(
ek

∣∣∣∣W ax√
d

+ b

)]
=

s∏
a=1

∫
dηaPy(ek|ηa)Ex

[
s∏

a=1

δ

(
ηa − W

ax√
d

+ b

)]

=

s∏
a=1

∫
dηaPy(ek|ηa)N

(
η
∣∣∣W aµk√

d
− b; W

aΣkW
b>

d

)
. (142)

We can write then

E{(x,y)}[Zsβ ] =

=

n∏
a=1

∫
dW aPw(W a)

(∑
k

ρk

s∏
a=1

∫
dηaPy(ek|ηa)N

(
η;
W aµk
d

+ b;
W aΣkW

b>

d

))n

=

 K∏
k=1

∏
a≤b

∫∫
dQab

k dQ̂ab
k

(2π)L2/2

(∏
k

∏
a

∫
dma

kdm̂a
k

(2π)L/2

)
e−dβΦ(s)

. (143)

where we introduced the order parameters

Qab
k =

W aΣkW
b>

d
∈ RL×L, a, b = 1, . . . , s, (144)

ma
k =

W aµk√
d
∈ RL, a = 1, . . . , s, (145)

and the replicated free-energy

βΦ(s)(Q,m, Q̂, m̂, b) =

K∑
k=1

∑
a

m̂a>
k ma

k +

K∑
k=1

∑
a≤b

tr
[
Q̂ab>
k Qab

k

]

− 1

d
ln

s∏
a=1

∫
Pw(W a)dW a

∏
k

∏
a≤b

etr[Q̂ab>k W aΣkW
b>]
∏
a

e
√
dm̂a>

k W aµk


− α ln

∑
k

ρk

s∏
a=1

∫
dηaPy(ek|ηa)N

(
η
∣∣ma

k + b,Qab
k

)
. (146)

At this point, the free energy fβ should be computed extremisizing with respect to all the order
parameters by virtue of the Laplace approximation (in addition to b),

fβ = lim
s→0

Extr
{m,Q,m̂,Q̂},b

Φ(s)(Q,m, Q̂, m̂, b)

s
. (147)

However, the convexity of the problem allows us to make an important simplification.
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Replica symmetric ansatz — Before taking the s→ 0 limit we make the assumptions

Qaa
k =

{
Rk, a = b

Qk a 6= b

ma
k = mk

Q̂aa
k =

{
− 1

2Rk, a = b

Q̂k a 6= b

m̂a
k = m̂k ∀a

(148)

This ansatz is justified by the fact that we are assuming ` and r to be convex, and λ > 0. In this case,
the problem admit one solution only that, therefore, coincide with the replica symmetric solution, in
which overlaps between two replicas do not depend on the chosen replicas. By means of the replica
symmetric hypotesis, we can write

Qab
k 7→ Qk ≡ Is,s ⊗ (Rk −Qk) + 1s ⊗Qk. (149)

The inverse matrix is therefore

Q−1
k = 1s ⊗ (Rk −Qk)−1 − Is,s ⊗ [(Rk + (s− 1)Qk)−1Qk(Rk −Qk)−1], (150)

whereas

detQk = det(Rk −Qk)
s−1

det(Rk + (s− 1)Qk)

= 1 + s ln det(Rk −Qk) + s tr
[
(Rk −Qk)−1Qk

]
+ o(s).

(151)

If we denote Vk ≡ Rk −Qk

ln
∑
k

ρk

s∏
a=1

∫
dηaPy(ek|ηa)N

(
η
∣∣ma

k + b,Qab
k

)
= s

∑
k

ρkEξ ln

(∫
dηPy(ek|η)√

det(2πVk)
e−

1
2 (η−mk−b−Q1/2

k ξ)>V −1
k (η−b−mk−Q1/2

k ξ)

)
+ o(s)

= s
∑
k

ρkEξ
[
lnZ

(
ek,mk + b+Q

1/2
k ξ,Vk

)]
+ o(s), (152)

with ξ ∼ N (0, IL) is a normally distributed vector and we have introduced the function

Z (ek,m,V ) ≡
∫

dηPy(ek|η)√
det(2πV )

e−
1
2 (η−m)>V −1(η−m) (153)

On the other hand, denoting by V̂k = R̂k + Q̂k,

1

d
ln

s∏
a=1

∫ Pw(W a)dW a
∏
k

e−
1
2 tr[V̂ >k W

aΣk(W a)>]+
√
dm̂>kW

aµk
∏
b,k

e
1
2 tr[Q̂kW aΣk(W b)>]

=

=
s

d
EΞln

∫ Pw(W )dW
∏
k

exp

− tr
[
V̂ >k WΣkW

>
]

2
+
√
dm̂>kWµk+Ξk�

√
Q̂k⊗Σk�W


+ o(s). (154)

In the expression above we have used the tensorial product Q̂⊗Σ = (Q̂kk′Σij)ki,k′j′ . Given a matrix
B ∈ RL×d and the tensors A,A′ ∈ RL×d ⊗ RL×d, we denote (B � A)ki ≡

∑
k′i′ Bk′i′Ak′i′ ki ∈

RL×d, (A�B)ki ≡
∑
k′i′ Aki k′i′Bk′i′ ∈ RL×d and (A� A′)ki k′i′ =

∑
κj Aki κjAκj k′i′ . In this

way, we define
√
A as the tensor such that A =

√
A�
√
A. Finally, we have also introduced a set of

k matrices Ξk ∈ RL×d with i.i.d. random Gaussian entries with zero mean and variance 1, and the
average over them EΞ[•]. Therefore, the (replicated) replica symmetric free-energy is given by

lim
s→0

β

s
Φ

(s)
RS =

K∑
k=1

m̂>kmk +
1

2

K∑
k=1

tr
[
V̂ >k Qk

]
− 1

2

K∑
k=1

tr
[
Q̂>k Vk

]
− 1

2

K∑
k=1

tr
[
V̂ >k Vk

]
− αβΨout(m,Q,V )− βΨw(m̂, Q̂, V̂ )

(155)
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where we have defined two contributions

Ψout(m,Q,V ) ≡ β−1
∑
k

ρkEξk lnZ (ek,ωk,Vk) (156)

Ψw(m̂, Q̂, V̂ ) ≡ 1

βd
Eξ ln

(∫
Pw(W )dW

∏
k

e−
tr[V̂>k WΣkW>]

2 +
√
dm̂>kWµk+Ξk�

√
Q̂k⊗Σk�W

)
(157)

and introduced, for future convenience,

ωk ≡mk + b+Q
1/2
k ξk. (158)

Note that we have separated the contribution coming from the chosen loss (the so-called channel part
Ψout) from the contribution depending on the regularisation (the prior part Ψw). To write down the
saddle-point equations in the β → +∞ limit, let us first rescale our order parameters as m̂k 7→ βm̂k,
Q̂k 7→ β2Q̂k, V̂k 7→ βV̂k and Vk 7→ β−1Vk. For β → +∞ the channel part is

Ψout(m,Q,V ) = −
∑
k

ρkEξ
[
M

`(ek,V
1/2
k •)

(
V
−1/2
k ωk

)]
. (159)

Here and in the following the quantity

Mf(•)(u) ≡ min
v∈domain(v)

[
1

2
‖v − u‖2F + f(v)

]
(160)

is the Moreau envelope of f : domain(v)→ R, whereas ‖ • ‖F is the Frobenius norm. We can write
the contribution Ψout in terms of a proximal

hk=V
1/2
k Prox

`(ek,V
1/2
k •)(V

−1/2
k ωk)≡V 1/2

k arg min
u∈RL

[
1

2
‖u−V −1/2

k ωk‖2F+`(ek,V
1/2
k u)

]
.

(161)
as

Ψout(m,Q,V ) = −
∑
k

ρkEξ
[

1

2
‖V −1/2

k hk − V −1/2
k ωk‖2F + `(ek,hk)

]
(162)

A similar expression can be obtained for Ψw. Defining

A =

(∑
k

V̂k ⊗Σk

)−1

, B =
√
d
∑
k

µkm̂
>
k +

∑
k

Ξk �
√
Q̂k ⊗Σk. (163)

Ψw can be written as

Ψw(m̂, Q̂, V̂ ) =
1

2d
Eξ [B � A�B]

+
1

βd
Eξ ln

[∫
dW exp

(
−β

2
‖A−1/2 �W − A1/2 �B‖2F − βr(W )

)]
. (164)

It follows that, for β → +∞,

Ψw(m̂, Q̂, V̂ ) =
1

2d
Eξ [B � A�B]− 1

d
Eξ
[
Mr(A1/2�•)(A

1/2 �B)
]
. (165)

As before, let us introduce the proximal

G = A1/2 � Proxr(A1/2�•)(A
1/2 �B) ∈ RL×d (166)

We can rewrite the prior contribution Ψw as

Ψw(m̂, Q̂, V̂ ) =
1

2d
EΞ [B � A�B]− 1

d
EΞ

[
‖A−1/2 �G− A1/2 �B‖2F

2
+ r(G)

]
. (167)
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The parallelism between the two contributions is evident, aside from the different dimensionality
of the involved objects. The replica symmetric free energy in the β → +∞ limit is computed
extremising with respect to the introduced order parameters,

fRS = Extr
m,Q,V ,b

m̂,Q̂,V̂

[
K∑
k=1

m̂>kmk +
1

2

K∑
k=1

tr
[
V̂ >k Qk

]
− 1

2

K∑
k=1

tr
[
Q̂>k Vk

]

−1

2

K∑
k=1

tr
[
V̂ >k Vk

]
− αΨout(m,Q,V )−Ψw(m̂, Q̂, V̂ )

]
. (168)

To do so, we have to write down a set of saddle-point equations and solve them.

Saddle-point equations — The saddle-point equations are derived straightforwardly from the
obtained free energy extremising with respect to all parameters. A first set of equations is obtained
from Ψout as1

Q̂k = αρkEξ
[
fkf

>
k

]
, (169a)

V̂k = −αρkQ−1/2
k Eξ

[
fkξ

>] , (169b)

m̂k = αρkEξ [fk] , (169c)

b =
∑
k

ρkEξ [hk −mk]⇐⇒
∑
k

ρkEξ [Vkfk] = 0. (169d)

where for brevity we have denoted

fk ≡ V −1
k (hk − ωk). (170)

Similarly, the saddle-point equations from Ψout are

Vk =
1

d
EΞ

[(
G�

(
Q̂k ⊗Σk

)−1/2

� (Ik ⊗Σk)

)
Ξ>k

]
(171a)

Qk =
1

d
Eξ
[
GΣkG

>] (171b)

mk =
1√
d
Eξ [Gµk] . (171c)

To obtain the replica symmetric free energy, therefore, the given set of equation has to be solved, and
the result then plugged in Eq. (168). No further simplification can be obtained in the most general
setting. We will explore however some simple (but important) applications in Appendix C. Before
going on, however, it is important to express the relevant quantities for learning, i.e., the training and
generalization errors, in terms of the obtained order parameters.

B.4 Training and test errors

The order parameters introduced to solve the problem allow us to reach our ultimate goal of computing
the average errors of the learning process. We will start from the estimation of the training loss. The
complication in computing this quantity is that the order parameters found in the learning process are,
of course, correlated with the dataset used for the learning itself. We need to compute

ε` ≡
1

n

n∑
ν=1

`

(
yν ,

W ?xν√
d

+ b?
)

(172)

in the n→ +∞ limit. Denoting for brevity `k(x) ≡ `(ek,x), the best way to proceed is to observe
that E{(yν ,xν)}ν [R(W ?, b?)] = − limβ→+∞ E{(yν ,xν)}ν [∂β lnZβ ] = λE{(yν ,xν)}ν [r(W ?)] + ε`,
where

ε` = − lim
β→+∞

∂β(βΨout) = lim
β→+∞

∑
k

ρk

∫
`k(η)

e−
β
2 (η−m?

k)>V ?k
−1(η−m?

k)−β`k(η)√
det(2πβ−1V ?)Z(ek,ω?k, β

−1V ?
k )

dη.

(173)

1To obtain the equation for V̂ it is convenient to use Stein’s lemma, so that E[∂ξfk] = E[fkξ>].
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In the β → +∞ limit, the integral concentrates on the minimizer of the exponent, that is, by definition,
the proximal hk. In conclusion, ε` =

∑
k ρkE[`(hk)]. By means of the same concentration result,

the training error is

εt =
1

n

n∑
ν=1

I
(
ϕ

(
W ?xν√

d
+ b?

)
6= yν

)
n→+∞−−−−−→

K∑
k=1

ρkEξ [I(ϕ(hk) 6= ek)] . (174)

The expressions above hold in general, but, as anticipated, important simplifications can occur in
the set of saddle-point equations (169) and (171) depending on the choice of the loss ` and of the
regularization function r.

The generalisation (or test) error can be written instead as

εg = Eynew,xnew

[
I
(
ϕ

(
W ?xnew

√
d

+ b?
)
6= ynew

)]
. (175)

This expression can be rewritten as

εg =
∑
k

ρk

∫
I(ϕ(η) = ek)Exnew

[
δ

(
η − W

?xnew

√
d

− b?
)]

dη (176)

Once again, we write

Exnew

[
δ

(
η − W

?xnew

√
d

− b?
)]

d→+∞−−−−−→ N (η|m?
k + b?,Q?

k) (177)

so that

εg =

K∑
k=1

ρkEξ
[
I
(
ϕ
(
m?
k +Q?

k
1/2ξ + b?

)
6= ek

)]
. (178)

This can be easily computed numerically once that the order parameters are given.

B.5 A note on the numerical integration of the saddle-point equations

To estimate εg, εt and ε` we first need to find the fixed-point solutions of the saddle-point equations
(169) and (171). The simplest numerical strategy consists in updating, in a self-consistent way, the
order parameters until their variation according to, e.g., the Frobenius norm is smaller than a given
threshold value (that we adopted to be 10−5). In the simplest setting, i.e., the one discussed in
Corollary 3, the update of (mk,Qk,Vk)k∈[K] is performed explicitly using eq. (11), where Eσ,µ[•]
is a shorthand for the sum over the eigenvalues and eigenvectors of the assigned covariance matrices.
The update of (m̂k, Q̂k, V̂k)k∈[K] (right hand side of eq. (8)) is more involved, as it requires the
computation of the proximal followed by a Gaussian average. Such average has been performed using
a Monte Carlo strategy, i.e., by solving the equation for the proximal for a large number (104−105) of
instances of ξ and averaging the solution. We remark that in the case of the square loss, the proximal
can be computed analytically and the integration can be performed explicitly, highly simplifying the
fixed-point equations (see below eq. (191)). We have found that in practice fluctuations due to the
adopted Monte Carlo pool were small enough to be negligible compared with the outcomes of direct
numerical experiments.

The convergence to the the correct fixed point is guaranteed (in principle) by the convexity of the
problem. However, a few delicate aspects have to be taken into account in the update process
described above.

1. The update requires the computation of the proximalsG and hk. Such computations can
be performed analytically in some specific cases only (for example, in the case of ridge
regression). The existence of a unique solution is guaranteed by the strong convexity of
the problem defining the proximal. In our study of the cross-entropy loss function, for
example, we computed the proximals hk numerically solving Eq. (194). In this problem,
however, additional numerical instabilities emerged in the λ → 0 limit, due the fact that
the discontinuity in the gradient appear, see Eq. (198). We solved this issue performing
an annealing in λ, i.e., solving for the proximal for decreasing values of the regularization
strength.
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2. The numerical solution of the saddle-point equations might suffer numerical instabilities
due to the operations of inversion involved, see, e.g., the equation for V̂k in (169), which
requires the inversion of Qk. It is convenient, in such cases, to rewrite the equation in an
equivalent form which is numerically more stable. For example, in the aforementioned
equation, we can observe that fk satisfies the equation fk + ∂x`k(Vkfk + ωk) = 0 so that
∂ωkfk = −(IK + ∂2

x`k(Vkfk + ωk)Vk)−1∂2
x`k(Vkfk + ωk). Using Stein’s lemma,

V̂k = −αρkEξ [∂ξfk] = αρkEξ
[(

IK + ∂2
x`k(Vkfk + ωk)Vk

)−1
∂2
x`k(Vkfk + ωk)

]
.

(179)
We found this equation numerically more stable than the one given in (169) when dealing
with the cross-entropy loss.

Our implementation can be found at [58].
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C Some relevant particular cases

In this Appendix, we will specify the saddle-point equations for the multiclass classification problem
for different choices of the loss function ` and of the regularisation function r. From the analysis
developed in the previous Appendices, it is clear that the choices of ` and r impact separately the
set of equations (169) and (171) respectively. Once the order parameters are found, it is possible to
estimate the training and generalisation errors as, for example, in Section B.4.

C.1 The case of `2 regularization

In this Section we consider the relevant case of quadratic regularization, r(W ) = 1/2‖W ‖2F. In this
case the computation of Ψw can be performed explicitly via a Gaussian integration,

1

β
Ψw(m̂, Q̂, V̂ ) =

1

2d
tr lnS−K lnβ

2β
+

1

2
tr

[
S�

(∑
kk′

m̂km̂
>
k′ ⊗ µkµ>k′ +

1

d

∑
k

Q̂k ⊗Σk

)]
.

(180)
Here we have introduced, for notation compactness,

S ≡

(
λIK ⊗ Id +

∑
κ

V̂κ ⊗Σκ

)−1

. (181)

This form of Ψw allows us to write in a simpler way the set of eqs. (171), that can be re-written as

Qk = trd

[
(IK ⊗Σk)� S�

(∑
kk′

m̂km̂
>
k′ ⊗ µkµ>κ′ +

1

d

∑
κ

Q̂κ ⊗Σκ

)
� S

]
mk =

∑
k′

trd
[
S�

(
m̂k′ ⊗ µk′µ>k

)]
Vk =

1

d
trd [(IK ⊗Σk)� S] .

(182)

In the previous equations, by trd we denoted the trace with respect to the components living in the
d-dimensional space of the dataset.

Jointly diagonal covariances — Suppose now that Σk =
∑
i σ

k
i viv

>
i for all k, i.e., the covari-

ance matrices share the same basis of eigenvectors {vi}i. Then, denoting µki ≡
√
dµ>k vi

Qk=
1

d

d∑
i=1

σki

(
λIK+

∑
κ

σκi V̂κ

)−1(∑
kk′

µki µ
k′

i m̂km̂
>
k′+
∑
κ

σκi Q̂κ

)(
λIK+

∑
κ

σκi V̂κ

)−1

mk=
1

d

d∑
i=1

∑
k′

µki µ
k′

i

(
λIK+

∑
κ

σκi V̂κ

)−1

m̂k′

Vk=
1

d

d∑
i=1

σki

(
λIK+

∑
κ

σκi V̂κ

)−1

.

(183)

Introducing the joint density

1

d

d∑
i=1

K∏
κ=1

δ(σκ − σκi )δ(µκ − µκi )
d→+∞−−−−−→ ρ(σ,µ), (184)
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then we can write the saddle-point equations given in Corollary 3

Qk=Eσ,µ

σk(λIK+
∑
κ

σκV̂κ

)−1(∑
kk′

µkµk
′
m̂km̂

>
k′+
∑
κ

σκQ̂κ

)(
λIK+

∑
κ

σκV̂κ

)−1


mk=Eσ,µ

µk(λIK+
∑
κ

σκV̂κ

)−1∑
κ

µκm̂κ


Vk=Eσ,µ

σk(λIK+
∑
κ

σκV̂κ

)−1
.

(185)
where the expectations Eσ,µ are taken with respect to the joint distribution ρ.

C.1.1 Uniform covariances

Let us consider the simpler case Σk ≡ ∆Id, with ∆ > 0. In this case, the saddle-point equations can
take a more compact form that is particularly suitable for a numerical solution. Moreover, for reasons
of symmetry we can write

Qk ≡ Q, Vk ≡ V , Q̂k ≡
1

K∆
Q̂k, V̂k ≡

1

K∆
V̂ , ∀k. (186)

Let us define the following K ×K matrices

• M ∈ RK×K (resp. M̂ ∈ RK×K) is the matrix obtained concatenenating the vectors mk

(resp. m̂k);
• Θ =

(
µ>k µk′

)
kk′

is the Gram matrix of the means;

• F ∈ RK×K is the matrix obtained concatenenating the vectors fk;
• H ∈ RK×K is the matrix obtained concatenenating the vectors hk;
• Π = diag(ρk) ∈ RK×K is a diagonal matrix with elements Πkk′ = δkk′ρk.

The saddle-point equations then can be rewritten as

Q=∆
(
λIK+V̂

)−1(
Q̂+M̂ΘM̂>

)(
λIK+V̂

)−1

M=
(
λIK+V̂

)−1

M̂Θ

V =∆
(
λIK+V̂

)−1

,

Q̂=α∆EΞ

[
FΠF>

]
V̂ =−α∆Q−1/2EΞ

[
FΠΞ>

]
M̂=αEΞ[FΠ]

b=EΞ[(H−M)Π1K ].

(187)

Here and in the following 1K is the vector of K components all equal to 1. These expressions are
particularly suitable for a numerical implementation, because involve matrix multiplications and
inversions of K-dimensional objects only.

Quadratic loss — If we consider a quadratic loss `(y,x) = 1
2 (y − x)

2, then an explicit formula
for the proximal can be found, namely

fk = (IK + V )−1(eK − ωk) (188)
so that the second set of saddle-point equations (187) can be written as

Q̂=α(IK+V )−1
[
(IK−M−b⊗1K)Π(IK−M−b⊗1K)>+Q

]
(IK+V )−1

M̂=α(IK+V )−1(IK−M−b⊗1K)Π

V̂ =α∆(IK+V )−1.

(189)

Observe at this point that we can explicitly solve for V using the equation for it in eqs. (187). In
particular, V satisfies the equation λV 2 + (α + λ −∆)V = ∆IK . Being V positive definite, it
follows that it is diagonal, V = V IK with diagonal element

V =
∆(1− α)− λ+

√
(∆− α∆− λ)2 + 4∆λ

2λ
, V̂ =

α∆

1 + V
, (190)
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so that

Q=
∆

(λ+∆V̂ )2

(
Q̂+M̂ΘM̂>

)
M=

M̂Θ

λ+∆V̂
,

b=(IK−M)Π1K ,

Q̂=
α
[
(IK−M−b⊗1K)Π(IK−M−b⊗1K)>+Q

]
(1+V )2

M̂=−α(IK−M−b⊗1K)Π

1+V
.

(191)

In the λ→ 0 limit, for α < 1 it is convenient to rescale Q̂ 7→ λ2Q̂ and M̂ 7→ λM̂, so that

Q=∆(1−α)2
(
Q̂+M̂ΘM̂>

)
,

M=(1−α)M̂Θ,

b=(IK−M)Π1K ,

Q̂=
α
[
(IK−M−b⊗1K)Π(IK−M−b⊗1K)>+Q

]
∆2(1−α)2

,

M̂=−α(IK−M−b⊗1K)Π

∆(1−α)
.

(192)

Cross-entropy loss — We consider now the relevant case of the cross entropy loss

`(y,x) = −
K∑
k=1

yk ln
exk∑K
κ=1 e

xκ
. (193)

If y ∈ {ek}k∈[K], the loss can be written in the form `(y,x) = −y>x+ ln
∑
κ e

xκ . If we introduce
the softmax function soft : RK → RK

∂x`(y,x) = −y + soft(x), softk(x) ≡ exp (xk)∑
κ exp (xκ)

(194)

the proximal equation for the cross-entropy loss is the solution of the equations:

V −1(hk − ωk)− ek + soft(hk) = 0⇐⇒ fk = ek − soft(V fk + ωk) ∀k ∈ [K], (195)

having only one solution for which, however, there is no closed-form expression. The equation can
be solved numerically, and in this way we obtained the results in Section 3.2.

The saddle-point equations can be written rescaling Q 7→ λ−2Q, V 7→ λ−1V , M 7→ λ−1M,
b 7→ λ−1b, V̂ 7→ λV̂ . They become

Q = ∆
(
IK + V̂

)−1 (
Q̂+ M̂ΘM̂>

)(
IK + V̂

)−1

,

M =
(
IK + V̂

)−1

M̂Θ

V = ∆
(
IK + V̂

)−1

,

Q̂ = α∆EΞ

[
FΠF>

]
,

V̂ = −α∆Q−1/2EΞ

[
FΠΞ>

]
,

M̂ = αEΞ [FΠ] ,

b = EΞ [(H −M)Π] ,

(196)

so that the dependence on λ disappears everywhere except in the equation for the proximal fk

fk = arg min
x

[
1

2
x>V x+ λ`

(
ek,

V x+ ωk
λ

)]
, (197)

which, in the λ→ 0 limit, becomes

fk = arg min
x

[
1

2
x>V x+ min

µ
{(eµ − ek)>(V x+ ωk)}

]
. (198)

Note that in this limit, minimising the cross-entropy loss yields precisely the max-margin estimator
[70].

C.2 TheK = 2 case with scalar labels

The formulas for the K = 2 case can be derived directly from the general analysis given above
imposing L = 1. In particular, let us assume that the two clusters are labeled with e1 = +1 and
e2 = −1. Using as classifier

ϕ(x) = sign(x) (199)
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the expression of the average errors is

εg =
∑
k∈[2]

ρkEξ[θ
(
(−1)kω?k

)
] =

∑
k∈[2]

ρk
2

erfc

(
(−1)k−1m

?
k + b?√

2q?k

)
,

εt =
∑
k∈[2]

ρkEξ[θ
(
(−1)kh?k

)
],

ε` =
∑
k∈[2]

ρkEξ[`((−1)k, h?k)].

(200)

We will further explore this case, considering some special cases in the following.

C.2.1 Example: `1 regularization

In this Section we derive the saddle-point equations for the the case in which the two cluster have
opposite means µ1 = −µ2 ≡ µ, and the same diagonal covariance matrix, Σ1 = Σ2 ≡ Σ, with
Σij = σiδij and σi > 0. In this case, for symmetry reasons, the overlaps simplify and we have:

V1 = V2 ≡ V, q1 = q2 ≡ q, m+ = −m− ≡ m, (201)

V̂+ = V̂− ≡
1

2
V̂ , q̂+ = q̂− ≡

1

2
q̂, m̂+ = −m̂− ≡

1

2
m̂. (202)

We define
1

d

d∑
i=1

δ(σ − σi)δ(µ−
√
dµi)

d→+∞−−−−−→ p(σ, µ) (203)

joint distribution of the covariance diagonal elements and of the mean elements. We will denote
Eµ,σ[•] the average with respect to this measure. We will focus in particular on the form of the saddle-
point equations obtained from the prior contribution assuming `1 regularization, i.e., r(w) =

∑
i |wi|,

and let us introduce the corresponding soft-thresholding operator:
Proxλ|·|(x) = sign(x) max{|x| − λ, 0}. (204)

Observe that Proxαλ|·|(αx) = αProxλ|·|(x) for α > 0. Its derivative given by Prox′λ|·|(x) =

θ(|x| > λ). The saddle point equations from the prior part simply read:

V =
1

V̂
Eµ,σ,ξ

[
Prox′ λ

σV̂
|·|

(
m̂µ+

√
q̂σξ

V̂ σ

)]
, (205)

q = Eµ,σ,ξ

[
σ

(
Prox λ

σV̂
|·|

(
m̂µ+

√
q̂σξ

V̂ σ

))2
]
, (206)

m = Eµ,σ,ξ
[
µProx λ

σV̂
|·|

(
m̂µ+

√
q̂σξ

V̂ σ

)]
. (207)

The averages over ξ can be performed explicitely using the simple expression of the proximal in this
case. If we define the auxiliary functions

φ0
±(v, u, λ) ≡ 1

2
erfc

(
λ± v√

2u

)
φ1
±(u, v, λ) =

√
u

2π
e−

(v±λ)2

2u − v ± λ
2

erfc

(
λ± v√

2u

)
,

φ2
±(v, u, λ) = −

√
u

2π
e−

(λ±v)2

2u (λ± v) +
u+ (λ± v)

2

2
erfc

(
λ± v√

2u

)
.

(208)

then

V =
1

V̂
Eµ,σ

[
φ0

+(µm̂, σq̂, λ) + φ0
−(µm̂, σq̂, λ)

]
q = Eµ,σ

[
φ2

+(µm̂, σq̂, λ) + φ2
−(µm̂, σq̂, λ)

σV̂ 2

]
,

m = Eµ,σ
[
µφ1
−(µm̂, σq, λ)− µφ1

+(µm̂, σq, λ)

σV̂

]
.

(209)
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Gaussian means, homogenous covariances — If p(µ, σ) = N (µ|0, 1)δ(σ −∆), i.e., the means
have i.i.d. Gaussian entries and Σ = ∆Id, then

V =
1

V̂
Ez
[

erfc
(
λ+ m̂z√

2∆q̂

)]
,

q =
1

∆V̂ 2

− e
− 1

2
λ2

m̂2+∆q̂√
2π(m̂2 + ∆q̂)

2(∆q̂)2λ

m̂2 + ∆q̂
+ Ez

[
(λ+ m̂z)

2 erfc
(
λ+ m̂z√

2∆q̂

)] ,

m =
1

∆V̂

 e
− 1

2
λ2

m̂2+∆q̂√
2π(m̂2 + ∆q̂)

2∆q̂m̂λ

m̂2 + ∆q̂
+ Ez∼N (0,1)

[
(λ+ m̂z) z erfc

(
λ+ m̂z√

2∆q̂

)] ,

(210)

with z ∼ N (0, 1).

Covariance correlated with sparse means — In Section 3.1 we considered the case of sparse
means correlated with the covariance matrices. In particular, we considered

p(σ, µ) = pN (µ|0, 1)δ(σ −∆1) + (1− p)δ(µ)δ(σ −∆0). (211)

The saddle-point equations are therefore

V =
1

V̂

[
pEµ

[
erfc

(
λ+ m̂µ√

2∆1q̂

)]
+ (1− p)erfc

(
λ√

2∆0q̂

)]
(212)

q =
p

∆1V̂ 2

− e
− 1

2
λ2

m̂2+∆1 q̂√
2π(m̂2 + ∆1q̂)

2(∆1q̂)
2λ

m̂2 + ∆1q̂
+ Ez

[
(λ+ m̂z)

2 erfc
(
λ+ m̂z√

2∆1q̂

)]
− λ(1− p)

√
∆0q̂

2π
e−

λ2

2∆0q +
1− p

2
(∆0q̂ + λ2)erfc

(
λ√

2∆0q̂

) (213)

m =
p

∆1V̂

 e
− 1

2
λ2

m̂2+∆1 q̂√
2π(m̂2 + ∆1q̂)

2∆1q̂m̂λ

m̂2 + ∆1q̂
+ Ez

[
(λ+ m̂z) z erfc

(
λ+ m̂z√

2∆1q̂

)] . (214)

In Section 3.1 we compare the performance obtained adopting an `1 regularization with the corre-
sponding one obtained using `2, r(w) =

∑
i w

2
i . For the sake of completeness, we give here the

expression of the saddle-point equations in that case as well. In this case, the prior term Ψw can be
written explicitly after a Gaussian integration as

Ψw(m̂, Q̂, V̂ ) = − 1

2d
tr ln

(
λId + V̂Σ

)
+

1

2
tr

[(
λId + V̂Σ

)−1
(
m̂2
kµµ

> +
q̂

d
Σ

)]
. (215)

In the setting given by eq. (211) the saddle point equations are then

q = p
m̂2∆1 + q̂∆2

1

(λ+ V̂∆1)2
+

(1− p)q̂∆2
0

(λ+ V̂∆0)2
(216a)

V = p
∆1

λ+ V̂∆1

+
(1− p)∆0

λ+ V̂∆0

(216b)

m =
m̂p

λ+ V̂∆1

. (216c)
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D Bayes optimal error

In this Appendix, we derive a formula for the Bayes optimal classification error in the case of
K clusters with the same covariance Σk = ∆Id in the large d limit, assuming that a dataset
{(xν ,yν)}ν∈[n] of correctly labeled points is available. As usual, we will assume n/d = α finite.
The distribution of a pair (y,x) is given by

p(y,x|M) =
∑
k

yk
ρk exp

(
− 1

2∆ ‖x− µk‖
2
)

(2π∆)
d
2

. (217)

whereM ∈ Rd×K is the matrix of concatenated means µk estimated from the dataset, so that

p(M |{yν ,xν}ν) ∝ p({xν}ν |M , {yν}ν)Pµ(M)

∝ Pµ(M)

n∏
ν=1

∑
k

yνk exp

(
− 1

2∆
‖xν − µk‖2

)
.

(218)

We will assume in the following the distribution

Pµ(M) =
exp

(
−d2 tr[MΘ−1M>]

)
(2π)

Kd
2 d−K/2|Θ|1/2

(219)

where Θ ∈ RK×K is a given positive definite covariance matrix. In this way

E
[
M>M

]
= Θ. (220)

The conditional distribution for the label y0 of a new point x0,

p(y0|x0, {yν ,xν}ν) ∝ EM |{yν ,xν}ν [p(y,x|M)]

=

∫
dMPµ(M)

∑
k

y0
kρk exp

(
−
∥∥x0 − µk

∥∥2

2∆

)
n∏
ν=1

∑
k

yνk exp

(
−‖x

ν − µk‖2

2∆

)
. (221)

If n = (nk)k is the vector of the number of examples nk in the class k, then

p(y0|x0, {yν ,xν}ν) ∝
∫

dMPµ(M)

K∏
k=1

[
ρ
y0
k

k exp

(
−

n∑
ν=0

yνk ‖xν − µk‖
2

2∆

)]

= exp

[∑
k

y0
k

(
ln ρk −

‖x‖2

2∆

)
− 1

2
ln det

(
1 +

1

d∆
diag(n+ y0)Θ

)]

× exp

 1

2∆
tr

( n∑
ν=0

yν ⊗ xν
)> (

d∆Θ−1 + diag(n+ y)
)−1

(
n∑
ν=0

yν ⊗ xν
) . (222)

In the following we will denote by ? the true label of x. Let Π = diag(ρk). Then we can write the
previous expression as

p(y0|x0, {yν ,xν}ν) ∝ exp

[∑
k

yk

(
ln ρk −

‖x0‖2

2∆

)
− 1

2
ln det

(
1 +

1

∆
αΠΘ

)]

× exp

 1

2∆
tr

(1

d

n∑
ν=0

yν ⊗ xν
)> (

∆Θ−1 + αΠ
)−1

(
n∑
ν=0

yν ⊗ xν
) (223)

Observe now that

1

d∆
x0

n∑
ν=1

yνkx
ν n,d→+∞−−−−−−→ αρk

Θ?,k + ηkZk
∆

, ηk ≡

√
∆

(
1 +

∆

αρk

)
, Zk ∼ N (0, 1),

(224)
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so that, defining the vector a? = (ak)k∈[K] with elements

a?k ≡ αρk
Θ?,k + ηkZk

∆
, (225)

and neglecting the y0-independent contributions, the expression above can be rewritten as

p(y0|x0, {yν ,xν}ν) ∝ exp

[∑
k

y0
k ln ρk +

(
a? +

1

2
y0

)> (
∆Θ−1 + αΠ

)−1
y0

]
(226)

where we have also used the fact that ‖x0‖2 = d∆ + O(1). This means that the Bayes optimal
generalization error is

εBO
g =

∑
k

ρkP

[
arg max

κ

(
ln ρκ +

(
ak +

1

2
eκ

)> (
∆Θ−1 + αΠ

)−1
eκ

)
6= k

]
. (227)

If Θ = IK and the clusters have same weights, ρk ≡ 1/K ⇔ Π = 1/KIK , then ηk ≡ η and

εBO
g = P

[
1

η
< max
κ∈[K−1]

Zκ + Z

]
, (228)

that is the formula given in [20].
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E Experiments with real data

In this Appendix we discuss the experiments of Section 3.3 with real data sets.

Numerical details — Consider a real data set {(xν , yν)}ntot
ν=1 with ntot samples which we assume

are independent. As a pre-processing step we center, normalise and flatten the inputs xν into d-
dimensional vectors. For both the MNIST [61] and Fashion-MNIST [62] data sets used in the
experiments we have normalised the inputs by 255, such that components xνi ∈ [0, 1]. In what follows
we focus on binary classification tasks and encode the labels as yν ∈ {−1, 1}. For example, for the
MNIST and Fashion-MNIST data sets we have d = 784 and ntot = 7× 104, and we split the inputs
into two classes depending on the task of interest, e.g. odd vs. even digits and clothes vs. accessories
items, respectively. Define the empirical distribution over the data set:

P̂ (x, y) =
1

ntot

ntot∑
ν=1

δ(x− xν)δ(y − yν) (229)

The question we want to answer is: how well can we approximate the learning curves (εg, εt) on a
given ERM classification task by approximating P̂ with a Gaussian mixture distribution? To answer
this question, we consider a Gaussian mixture distribution P2 as defined in Eq. (1) with the same
means and covariances as P̂ :

µ̂k =
1

ntot

ntot∑
ν=1

xν I (xν ∈ Ck) , Σ̂k =
1

ntot

ntot∑
ν=1

(xν − µk)(xν − µk)> I (xν ∈ Ck) (230)

for k ∈ {+,−} labelling the two clusters. Similarly, the class probabilities ρk are also estimated
from the full data set:

ρ̂k =
1

ntot

ntot∑
ν=1

I (xν ∈ Ck) . (231)

The parameters (µ̂k, Σ̂k, ρ̂k) completely characterise the approximating Gaussian mixture distribu-
tion P2, and together with Theorem 1 can be used to compute the theoretical learning curves (εg, εt)
as in Fig. 5 of the main. Note that this discussion can be easily generalised to the case in which a
non-linear feature map ϕ : Rd → Rp is applied to the data prior to fitting. The only difference is
that the empirical distribution P̂ is defined over the features {(vν , yν)}ntot

ν=1 where vν = ϕ(xν), and
the Gaussian mixture approximation P2 is defined with respect to the empirical features distribution.
Figure 6 of the main manuscript shows an example where a random feature map v = erf (Fx) with
F ∈ Rp×d a random Gaussian projection applied to MNIST and fashion MNIST before the fitting
with different ratios γ = p/d.

The theoretical learning curves are then compared with two sets of finite instance simulations. First,
we simulate the learning problem on synthetic data sampled from the approximating Gaussian mixture
distribution P2, and the learning curves are computed by averaging over 10 instances of the problem.
Second, we simulate the learning problem on the real data set. The real data set is split into training
and test sets, and for a given sample complexity α = n/d we sub-sample n = αd points from the
training set. The averaged learning curves are computed over different instances of the sub-sampling,
with replacement.

Discussion — As expected, we find good agreement between theory and simulations with synthetic
data drawn from the approximating Gaussian mixture distribution P2, even for relatively small input
dimensions (e.g. d = 784 for MNIST). Surprisingly, we have found that in many cases the Gaussian
mixture is a good approximation to the real data curves, see Figs. 5 and 6 for examples of logistic
regression on input space and with random features. Figure 7 shows an example where the feature
map ϕ is given by removing the last layer of the following fully-connected 2-layer neural network
pre-trained on the full MNIST odd vs. even data set:

Sequential(
(0): Linear(in_features=784 , out_features=784 , bias=False)
(1): ReLU()
(2): Linear(in_features=784 , out_features=1, bias=False)
(3): Tanh()

)
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with the training performed by minimising the square loss with the Adam optimiser and random
initialisation. However, we have also found cases in which the approximation is not as sharp, see
blue curves in Fig. 10. Understanding the factors determining the quality of the approximation in real
data sets is an interesting question we expect to address in future work.
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Figure 7: Generalisation error and training loss for logistic regression on MNIST with a feature map
ϕ obtained by training 2-layer fully connected neural network, with `2 penalty and fixed λ = 0.05.
The different curves show the performance at different stages of training.

Multiclass vs. binary approximation – In the cases previously discussed, we have considered
a K = 2 cluster approximation P2 to the empirical data distribution P̂ . However, the data sets
considered here (MNIST and Fashion-MNIST) are originally composed of 10 classes, and therefore
we should ask the question of whether a K = 10 cluster approximation P10 where we fit the means
and covariances of each original class is any different from the approximation studied above. In
principle, these two approximations can have very different statistical properties. For instance, from
Theorem 2 it follows that the generalisation and training errors of Gaussian mixtures only depend
on the statistics of the local field λ = Wx conditioned on the labels, which in the binary setting
considered here is y ∈ {+,−}. Conditioned on y = ±, this local field is simply a Gaussian random
variable under P2, while it is a multi-modal random variable under P10. Therefore, there is a priori
no reason for these two approximations to give the same learning curves.

As an example, consider a K = 4 Gaussian mixture distribution with a common variance Σk = ∆Id
and with means:

µ1 = e1 + e2, µ2 = e1 − e2, µ3 = −e1 + e2, µ4 = −e1 − e2 (232)

where ei ∈ Rd is the canonical basis vector of Rd, with entries eij = δij . We consider two label
assignments: a) a realisable case in which clusters 1 and 2 are assigned label +1, and clusters 3 and 4
are assigned −1 and b) a non-realisable case in which clusters 1 and 4 are assigned +1 and clusters
2 and 3 are assigned −1 (XOR function), see Fig. 8 (top) for an illustration. Now consider a dual
K = 2 Gaussian mixture model with means and covariances (µ±,Σ±) chosen to match the class
means and covariances of the K = 4 mixture, see Fig. 8 (bottom) for an illustration. In Fig. 9 we
compare the learning curves of the K = 4 model with the K = 2 counterpart with matched class
means and covariances. While in the realisable case a) both have identical performance under the
error bars, in the non-realisable case b) the performance in are significantly different.

Indeed, a similar behaviour can be observed in the real data experiments. Fig. 10 compares the real
learning curves of a MNIST 5v5 binary classification task (classifying five first digits vs. five last)
with the two different Gaussian mixture approximations: P10 where we fit the means and covariances
of each individual cluster and P2, where we fit only the class-wise means and covariances. While
both approximations capture the high-level behaviour of the learning curves, P10 is closer to the real
learning curve than P2.
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Figure 8: Two dimensional projection of the setting described in eq. (232). (Left) Realisable case,
(Right) Non-realisable case (XOR function).
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Figure 9: (Left) Generalisation and (right) training errors as a function of the sample complexity
for logistic regression with `2 penalty and λ = 10−4 for the four models pictured in Fig. 8. Points
denote the separable model (bottom curve), and triangles denote the non-realisable xor model (top
curves). We have chosen a balanced scenario with ∆ = 0.5.

Note on numerical instabilities — When dealing with means and covariance matrices estimated
from real data sets, we have observed that for small regularisation strength λ� 1 the self-consistent
equations from Theorem 1 can develop spurious fixed points corresponding to negative values of the
overlap parameters q± = W>Σ±W – which is clearly not possible since Σ± is a positive-definite
matrix. This is observed across different scenarios, and is independent of the choice of loss or the
particular way the equations are solved. In fact, the minimum value of λ below which the spurious
fixed point develop seems to depend only on the conditioning number of the covariance matrices.
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Figure 10: Generalisation error and training loss for logistic regression on the task of classifying
{0, 1, 2, 3, 4} vs {5, 6, 7, 8, 9} digits of MNIST, as a function of the sample complexity for fixed
`2 penalty λ = 0.1. The blue curves show the 2-Gaussian cluster approximation P2 (solid for
theory, points for finite size simulations), while the orange points show the 10-Gaussian cluster
approximation P10, which lies systematically below. The green points denote simulations on the true
data set.
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