A Remaining Experimental Results of Pruning Plasticity

We also studied pruning plasticity on structured pruning. In particular, we choose the filter pruning method used in Li et al. [32]. The pruning criterion is the absolute weight sum of each nonzero filter and the regeneration criterion is the absolute gradient sum of each zero filter. We first pre-train four sets of neural networks from scratch with various structured sparsity, including 0, 0.10, 0.50, and 0.70, noted as "Pre-trained Sparsity" in the figure title. To measure the plasticity of these pre-trained models, we choose four different pruning rates noted as "Pruning rate" to remove filters from these pre-trained models. The results of ResNet-20 and VGG-19 are shown as below.

Pre-trained Sparsity=0 Pre-trained Sparsity=0.10 Pre-trained Sparsity=0.50 Pre-trained Sparsity=0.70 tion [%] Plasticity 0 0 0 -20 -20 -20 -40 -40 -40 Pruning -60 -60 -60 9 [%] **Pruning Plasticity** ation 0 20 60 80 90 90 90 1110 1120 1120 1120 1150 1150 20 60 80 90 90 90 1110 1120 1130 1130 1150 1150 The number of epoch at which the model is pruned Pruning rate=0.1 - Pruning rate=0.3 ---- Pruning rate=0.5 --- Pruning rate=0.9

A.1 ResNet-20 on CIFAR-10 with Structured Filter Pruning

Figure 5: **Structured Pruning:** Pruning plasticity of under a 30-epochs continued training with and without connection regeneration for ResNet-20 on CIFAR-10. The vertical red lines refer to the points when the learning rate is decayed. The pruning method is uniform pruning.

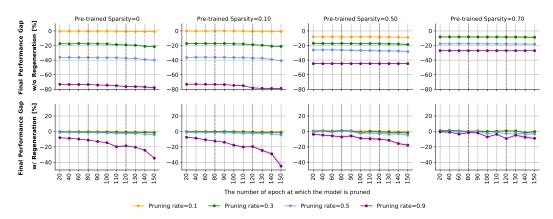


Figure 6: **Structured Pruning:** Final performance gap between the unpruned models and the pruned models for ResNet-20 on CIFAR-10. The vertical red lines refer to the points when the learning rate is decayed.

A.2 VGG-19 on CIFAR-10 with Structured Filter Pruning

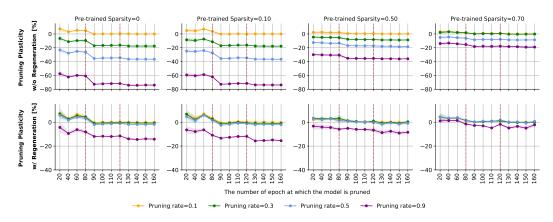


Figure 7: **Structured Pruning:** Pruning plasticity of under a 30-epochs continued training with and without connection regeneration for VGG-19 on CIFAR-10. The vertical red lines refer to the points when the learning rate is decayed. The pruning method is uniform pruning.

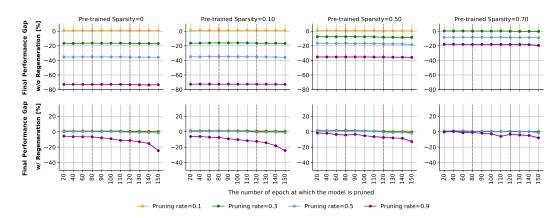


Figure 8: **Structured Pruning:** Final performance gap between the unpruned models and the pruned models for VGG-19 on CIFAR-10. The vertical red lines refer to the points when the learning rate is decayed.

A.3 ResNet-20 on CIFAR-10 with Unstructured Uniform Pruning

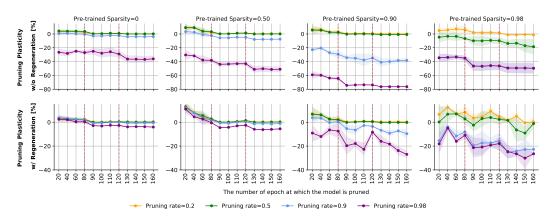


Figure 9: **Unstructured Pruning:** Pruning plasticity under a 30-epochs continued training with and without connection regeneration for ResNet-20 on CIFAR-10. The vertical red lines refer to the points when the learning rate is decayed.

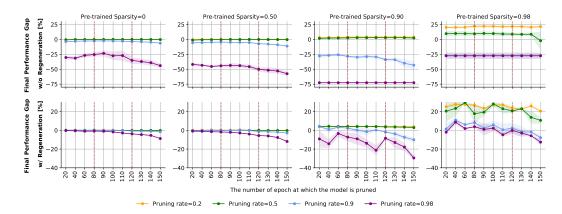


Figure 10: **Unstructured Pruning:** Final performance gap between the unpruned models and the pruned models for ResNet-20 on CIFAR-10. The vertical red lines refer to the points when the learning rate is decayed. The pruning method is uniform pruning.

A.4 VGG-19 on CIFAR-10 with Unstructured Global Pruning

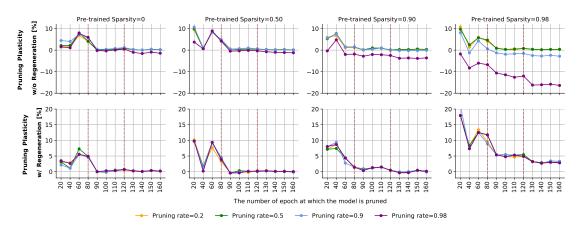


Figure 11: **Unstructured Pruning:** Pruning plasticity under a 30-epochs continued training with and without connection regeneration for VGG-19 on CIFAR-10. The vertical red lines refer to the points when the learning rate is decayed. The pruning method is global pruning.

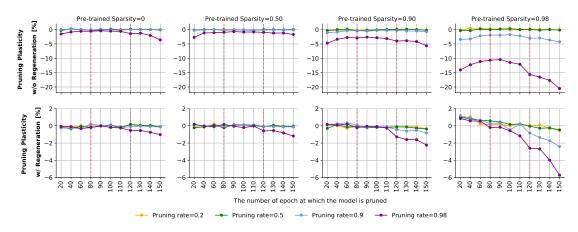


Figure 12: **Unstructured Pruning:** Final performance gap between the unpruned models and the pruned models for VGG-19 on CIFAR-10. The vertical red lines refer to the points when the learning rate is decayed. The pruning method is global pruning.

A.5 VGG-19 on CIFAR-10 with Unstructured Uniform Pruning

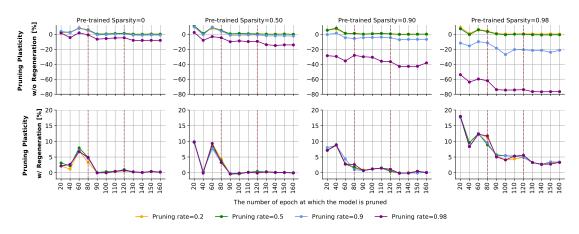


Figure 13: **Unstructured Pruning:** Pruning plasticity under a 30-epochs continued training with and without connection regeneration for VGG-19 on CIFAR-10. The vertical red lines refer to the points when the learning rate is decayed. The pruning method is uniform pruning.

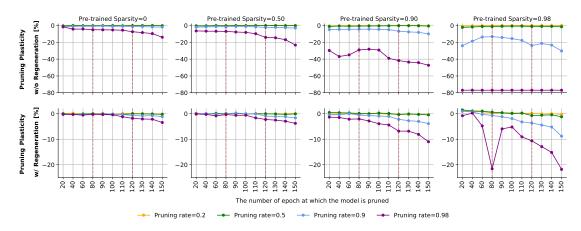


Figure 14: **Unstructured Pruning:** Final performance gap between the unpruned models and the pruned models for VGG-19 on CIFAR-10. The vertical red lines refer to the points when the learning rate is decayed. The pruning method is uniform pruning.

B Implementation Details of GraNet

In this appendix, we share in detail the pseudocode and implementation details of GraNet.

B.1 Algorithm

The pseudocode of GraNet is shared in Algorithm 1. The only difference between sparse-to-sparse training and dense-to-sparse training is the choices of initial sparsity s_i . For dense-to-sparse training, we need to set the initial sparsity of the model $s_i = 0$. To perform sparse-to-sparse training, we need to make sure the model is sparse at the beginning by setting the initial sparsity larger than 0, i.e., $s_i > 0$.

Algorithm 1	The	pseudocode	of	GraNet.
-------------	-----	------------	----	---------

Require: Model weights $W \in \mathbb{R}^d$, initial sparsity s_i , target sparsity s_f , gradual pruning starting point t_0 , gradual pruning end point t_f , gradual pruning frequency ΔT .

- 1: $W \leftarrow$ randomly initialize W with initial sparsity s_i
- 2: for each training step t do
- 3: training $W \leftarrow SGD(W)$
- 4: **if** $t_o \le t \le t_f$ and $(t \mod \Delta T) == 0$ then
- 5: gradual pruning with the pruning rate produced by Eq. 1
- 6: zero-cost neuroregeneration with Eq. 2 and Eq. 3
- 7: **end if**

```
8: end for
```

B.2 Hyperparameters

We share the hyperparameter choices in our experiments in Table 7.

Table 7: Experiment hyperparameters of GraNet used in this paper. Learning Rate (LR), Batch Size (BS), Epochs, Learning Rate Drop (LR Drop), Weight Decay (WD), Sparse Initialization (Sparse Init), Gradual Pruning Frequency (ΔT), Initial Sparsity (s_i), Starting Epoch of Gradual Pruning (t_0), End Epoch of Gradual Pruning (t_f), Initial Neuroregeneration Ratio (r), Neuroregeneration Ratio (r Sche), etc.

Model	Data	Methods	LR	BS	Epochs	LR Drop, Epochs	WD	Sparse Init		Gradual Pruning		Neuroregeneration		
									ΔT	s_i	t_0	t_f	r	r Sche
VGG-19	CIFAR-10/100	dense-to-sparse	0.1	128	160	10x, [80, 120]	5e-4	Dense	1000	0	0 epoch	110 epoch	0.5	Cosine
V00-19	CIFAR-10/100	sparse-to-sparse	0.1	128	160	10x, [80, 120]	5e-4	ERK	1000	0.5	0 epoch	80 epoch	0.5	Cosine
	CIFAR-10/100	dense-to-sparse	0.1	128	160	10x, [80, 120]	5e-4	Dense	1000	0	0 epoch	110 epoch	0.5	Cosine
ResNet-50	CIFAR-10/100	sparse-to-sparse	0.1	128	160	10x, [80, 120]	5e-4	ERK	1000	0.5	0 epoch	80 epoch	0.5	Cosine
Residet-30	ImageNet	dense-to-sparse	0.1	64	100	10x, [30, 60, 90]	1e-4	Dense	4000	0	0 epoch	30 epoch	0.5	Cosine
	ImageNet	sparse-to-sparse	0.1	64	100	10x, [30, 60, 90]	1e-4	ERK	4000	0.5	0 epoch	30 epoch	0.5	Cosine

B.3 Implementation

The implementation used in the paper is modified based on the open-source code of Sparse Momentum repository² introduced by [8]. We added VGG-19 with batchnorm from the GraSP repository³. The code for calculating the inference FLOPs of ResNet-50 on ImageNet is modified based on the open-source code provided in the rethinking-network-pruning repository⁴. For the training FLOPs, we follow the way of approximating the training FLOPs of RigL [9], where the FLOPs of the backward pass are around twice the ones of the forward pass.

²https://github.com/TimDettmers/sparse_learning

³https://github.com/alecwangcq/GraSP

⁴https://github.com/Eric-mingjie/rethinking-network-pruning/blob/master/imagenet/ weight-level/compute_flops.py

C Implementation Details of GMP

In this appendix, we share in detail the pseudocode and implementation details of GMP.

C.1 Algorithm

Gradual Magnitude Pruning (GMP), introduced in [77] and studied further in [13], gradually sparsifies the neural network during the training process until the desired sparsity is reached. The pruning rate of each pruning iteration is:

$$s_{t} = s_{f} + (s_{i} - s_{f}) \left(1 - \frac{t - t_{0}}{n\Delta t} \right)^{3} t \in \{t_{0}, t_{0} + \Delta t, ..., t_{0} + n\Delta t\}$$
(4)

The pseudocode of GMP is shown in Algorithm 2.

Algorithm 2 The pseudocode of GMP.

Require: Model weights $W \in \mathbb{R}^d$, initial sparsity s_i , target sparsity s_f , gradual pruning starting point t_0 , gradual pruning end point t_f , gradual pruning frequency ΔT .

- 1: $W \leftarrow$ randomly initialize W with initial sparsity s_i
- 2: for each training step t do
- 3: training $W \leftarrow SGD(W)$
- 4: if $t_o \leq t \leq t_f$ and $(t \mod \Delta T) == 0$ then
- 5: gradual pruning with the pruning rate produced by Eq. 1
- 6: **end if**
- 7: end for

C.2 Hyperparameters

To demonstrate the effectiveness of Zero-Cost Neuroregeneration, we reproduce GMP with our implementation for CIFAR-10/100 so that the only difference between GMP and GraNet is the Zero-Cost Neuroregeneration. Hence, all the hyperparameters of GMP on CIFAR-10/100 are the same as GraNet.

It is surprising that the number of training FLOPs required by GraNet is smaller than GMP reported in [13]. Since the authors of [13] did not share the specific hyperparameters that used to produce the results of GMP, we guess the pruning of GMP happens late in training. Thus, it makes sense that GraNet requires fewer training FLOPs than GMP, as the dense training time of GraNet is much shorter than GMP.

C.3 Implementation

We reproduce GMP only for the results of CIFAR-10/100 for a fair comparison with GraNet. The results of GMP with ResNet-50 on ImageNet are obtained directly from [13].

We also test our implemented GMP with ResNet-50 on ImageNet. However, the performance is much worse than the results in [13] as shown below.

		U			1	
Method	Top-1 Accuracy	FLOPs (Train)	FLOPs (Test)	TOP-1 Accuracy	FLOPs (Train)	FLOPs (Train)
Dense	76.8±0.09	1x (3.2e18)	1x (8.2e9)			
		S = 0.8			S = 0.9	
GMP [13] GMP (our implementation)	75.6 74.6	$\begin{array}{c} 0.56 \times \\ 0.34 imes \end{array}$	$\begin{array}{c} 0.23 \times \\ 0.28 \times \end{array}$	73.9 73.3	$\begin{array}{c} 0.51 \times \\ 0.23 imes \end{array}$	$\begin{array}{c} 0.10 \times \\ 0.16 \times \end{array}$

Table 8: Test accuracy of GMP ResNet-50 on ImageNet dataset with our own implementation.

We are aware that our GMP implementation has several differences from the original Tensorflow implementation used by [77, 13]. Firstly, since our implementation reset the weight values to zero once the weights are pruned, the pruned weights of GMP are also set to zero. However, in the original

GMP implementation, only the masks are set to zero and the weight values are kept, leading to a situation where the pruned weights can be regenerated back in a natural way. Secondly, the original GMP uses uniform pruning and keeps the first layer dense and the sparsity of the last layer no larger than 0.8. Same as GraNet, our implementation of GMP prune all the layers including the first layer and the last layer.

We also compare GMP and GraNet with uniform pruning as used in [13], as shown below. While the results with CIFAR-10 in unclear, GraNet outperforms GMP with CIFAR-100 consistently. As we expected, the performance using uniform pruning is generally worse than global pruning.

Table 9: Test accuracy of pruned VGG-19 and ResNet32 on CIFAR-10 and CIFAR-100 datasets using uniform pruning.

Dataset		CIFAR-10		CIFAR-100						
Pruning ratio	90%	95%	98%	90%	95%	98%				
VGG-19 (Dense)GMP [13]GraNet $(s_i = 0)$	93.85±0.05 93.28±0.04 93.12±0.03	92.76±0.10 92.88±0.08	91.64±0.18 91.87±0.06	$73.43 {\pm} 0.08 \\71.88 {\pm} 0.29 \\72.37 {\pm} 0.01$	71.02±0.27 71.48±0.25	66.16±0.23 70.14±0.18				
ResNet-50 (Dense)GMP [13]GraNet $(s_i = 0)$	94.75±0.01 94.08±0.14 94.19±0.23	94.20±0.24 94.16±0.26	93.66±0.44 93.64±0.25	78.23±0.18 77.30±0.27 77.57±0.12	- 76.77±0.02 77.15±0.18	75.38±0.24 76.17±0.15				

D ResNet-50 Learnt Budgets and Backbone Sparsities

Table 10 summarizes the final sparsity budgets for 90% sparse ResNet50 on ImageNet-1K obtained by various methods. Backbone represents the sparsity budgets for all the CNN layers without the last fully-connected layer. VD refers to Variational Dropout [45] and GS refers to iterative magnitude pruning using a global threshold for global sparsity [18].

Metric	Fully Dense	Fully Dense	Sparsity (%)								
Metric	Params	FLOPs	GraNet ($s_i = 0$)	GraNet ($s_i = 0.5$)	STR	Uniform	ERK	SNFS	VD	GS	
Overall	25502912	8178569216	89.99	89.98	90.23	90.00	90.07	90.06	90.27	89.54	
Backbone	23454912	8174272512	89.89	90.65	92.47	90.00	89.82	89.44	91.41	90.95	
Layer 1 - conv1	9408	118013952	53.50	40.60	59.80	90.00	58.00	2.50	31.39	35.11	
Layer 2 - layer1.0.conv1	4096	236027904	54.60	43.40	83.28	90.00	0.00	2.50	39.50	56.05	
Layer 3 - layer1.0.conv2	36864	231211008	78.80	64.50	89.48	90.00	82.00	2.50	67.87	75.04	
Layer 4 - layer1.0.conv3	16384	102760448	78.00	67.40	85.80	90.00	4.00	2.50	64.87	70.31	
Layer 5 - layer1.0.downsample.0	16384	102760448	79.30	72.90	83.34	90.00	4.00	2.50	60.38	66.88	
Layer 6 - layer1.1.conv1	16384	102760448	76.60	67.30	89.89	90.00	4.00	2.50	61.35	75.09	
Layer 7 - layer1.1.conv2	36864	231211008	76.70	62.10	90.60	90.00	82.00	2.50	64.38	80.42	
Layer 8 - layer1.1.conv3	16384	102760448	74.10	54.50	91.70	90.00	4.00	2.50	65.83	80.00	
Layer 9 - layer1.2.conv1	16384	102760448	72.20	58.80	88.07	90.00	4.00	2.50	68.75	75.21	
Layer 10 - layer1.2.conv2	36864	231211008	72.70	58.50	87.03	90.00	82.00	2.50	70.86	74.95	
Layer 11 - layer1.2.conv3	16384	102760448	73.20	57.30	90.99	90.00	4.00	2.50	54.05	79.28	
Layer 12 - layer2.0.conv1	32768	205520896	68.30	49.30	85.95	90.00	43.00	2.50	57.10	70.89	
Layer 13 - layer2.0.conv2	147456	231211008	77.50	69.10	93.91	90.00	91.00	62.90	78.65	85.39	
Layer 14 - layer2.0.conv3	65536	102760448	71.70	61.10	93.13	90.00	52.00	11.00	85.49	83.54	
Layer 15 - layer2.0.downsample.0	131072	205520896	90.30	86.80	94.96	90.00	71.00	66.10	79.96	88.36	
Layer 16 - layer2.1.conv1	65536	102760448	85.20	83.00	95.31	90.00	52.00	32.60	72.07	88.25	
Layer 17 - layer2.1.conv2	147456	231211008	85.30	81.10	91.50	90.00	91.00	61.60	84.41	85.37	
Layer 18 - layer2.1.conv3	65536	102760448	80.00	68.60	93.66	90.00	52.00	20.80	79.19	86.53	
Layer 19 - layer2.2.conv1	65536	102760448	82.60	80.70	94.61	90.00	52.00	29.10	73.94	86.40	
Layer 20 - layer2.2.conv2	147456	231211008	83.20	82.40	94.86	90.00	91.00	63.90	78.48	88.29	
Layer 21 - layer2.2.conv3	65536	102760448	79.30	76.40	93.38	90.00	52.00	22.90	78.09	85.87	
Layer 22 - layer2.3.conv1	65536	102760448	81.10	77.10	93.26	90.00	52.00	27.60	78.66	84.87	
Layer 23 - layer2.3.conv2	147456	231211008	82.10	83.40	93.21	90.00	91.00	65.30	84.38	87.14	
Layer 24 - layer2.3.conv3	65536	102760448	82.40	77.30	94.14	90.00	52.00	25.70	82.07	86.84	
Layer 25 - layer3.0.conv1	131072	205520896	72.80	61.00	88.85	90.00	71.00	48.70	66.56	78.40	
Layer 26 - layer3.0.conv2	589824	231211008	84.60	83.30	96.14	90.00	96.00	90.20	87.92	92.93	
Layer 27 - layer3.0.conv3	262144	102760448	78.00	69.70	93.19	90.00	76.00	73.30	92.19	86.19	
Layer 28 - layer3.0.downsample.0	524288	205520896	95.30	95.20	97.20	90.00	86.00	93.70	88.76	94.66	
Layer 29 - layer3.1.conv1	262144	102760448	91.30	91.40	95.36	90.00	76.00	81.10	91.79	93.60	
Layer 30 - layer3.1.conv2	589824	231211008	91.10	93.10	95.06	90.00	96.00	90.40	92.47	93.07	
Layer 31 - layer3.1.conv3	262144	102760448	85.10	81.50	94.84	90.00	76.00	78.10	88.88	90.54	
Layer 32 - layer3.2.conv1	262144	102760448	90.10	89.70	96.77	90.00	76.00	80.40	84.86	93.44	
Layer 33 - layer3.2.conv2	589824	231211008	90.10	93.40	95.59	90.00	96.00	90.80	91.50	93.73	
Layer 34 - layer3.2.conv3	262144	102760448	86.70	83.90	94.99	90.00	76.00	79.30	81.59	91.13	
Layer 35 - layer3.3.conv1	262144	102760448	89.20	91.00	96.08	90.00	76.00	80.70	76.64	93.18	
Layer 36 - layer3.3.conv2	589824	231211008	90.90	94.20	96.10	90.00	96.00	90.70	91.26	93.63	
Layer 37 - layer3.3.conv3	262144	102760448	88.50	87.50	94.94	90.00	76.00	79.00	85.46	91.63	
Layer 38 - layer3.4.conv1	262144	102760448	88.90	89.60	95.49	90.00	76.00	79.40	85.33	91.98	
Layer 39 - layer3.4.conv2	589824	231211008	92.20	94.70	95.66	90.00	96.00	91.00	91.57	94.21	
Layer 40 - layer3.4.conv3	262144	102760448	90.30	88.60	94.49	90.00	76.00	79.00	86.19	91.63	
Layer 41 - layer3.5.conv1	262144	102760448	88.30	87.50	95.09	90.00	76.00	78.30	84.64	90.72	
Layer 42 - layer3.5.conv2	589824	231211008	92.30	94.90	94.92	90.00	96.00	91.00	91.14	93.43	
Layer 43 - layer3.5.conv3	262144	102760448	89.20	87.90	93.14	90.00	76.00	78.20	84.09	89.56	
Layer 44 - layer4.0.conv1	524288	205520896	80.20	72.80	90.32	90.00	86.00	85.80	77.90	85.35	
Layer 45 - layer4.0.conv2	2359296	231211008	89.80	93.60	95.66	90.00	98.00	97.60	96.53	95.07	
Layer 46 - layer4.0.conv3	1048576	51380224	84.70	82.40	91.14	90.00	88.00	93.20	93.52	89.21	
Layer 47 - layer4.0.downsample.0	2097152	205520896	99.00	99.20	96.79	90.00	93.00	98.80	93.80	96.72	
Layer 48 - layer4.1.conv1	1048576	102760448	93.10	95.60	93.69	90.00	88.00	94.10	94.96	92.69	
Layer 49 - layer4.1.conv2	2359296	231211008	93.60	97.30	93.98	90.00	98.00	97.70	97.76	93.85	
Layer 50 - layer4.1.conv3	1048576	102760448	90.30	90.80	90.48	90.00	88.00	94.20	94.53	89.84	
Layer 51 - layer4.2.conv1	1048576	205520896	87.30	87.10	87.57	90.00	88.00	93.60	94.19	85.91	
Layer 52 - layer4.2.conv2	2359296	231211008	91.70	96.80	84.37	90.00	98.00	97.90	94.92	87.14	
Layer 53 - layer4.2.conv3	1048576	102760448	85.00	83.40	80.29	90.00	88.00	94.50	89.64	80.65	
Layer 54 - fc	2048000	4096000	91.30	82.40	64.50	90.00	93.00	97.10	77.17	73.43	

Table 10: ResNet-50 Learnt Budgets and Backbone Sparsities at Sparsity 0.9

E FLOPs Dynamics During Training with ResNet-50 on ImageNet

To have an overview of how the FLOPs of the pruned model evolves during training, we share the FLOPs dynamics (inference on single sample) of the pruned ResNet-50 during the course of training in Figure 15. While starting from a model with a higher number of FLOPs compared with GraNet ($s_i = 0.5$), GraNet ($s_i = 0$) is gradually sparsified towards a sparse structure with lower FLOPs.

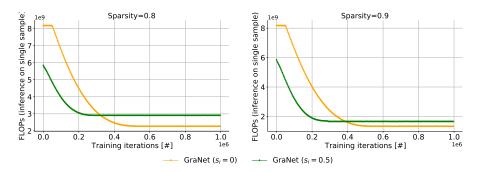


Figure 15: FLOPs dynamics (inference on single sample) of GraNet with ResNet-50 on ImageNet during training.