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Abstract
Evaluating the inherent difficulty of a given data-driven classification problem is
important for establishing absolute benchmarks and evaluating progress in the field.
To this end, a natural quantity to consider is the Bayes error, which measures the
optimal classification error theoretically achievable for a given data distribution.
While generally an intractable quantity, we show that we can compute the exact
Bayes error of generative models learned using normalizing flows. Our technique
relies on a fundamental result, which states that the Bayes error is invariant under
invertible transformation. Therefore, we can compute the exact Bayes error of the
learned flow models by computing it for Gaussian base distributions, which can be
done efficiently using Holmes-Diaconis-Ross integration. Moreover, we show that
by varying the temperature of the learned flow models, we can generate synthetic
datasets that closely resemble standard benchmark datasets, but with almost any
desired Bayes error. We use our approach to conduct a thorough investigation of
state-of-the-art classification models, and find that in some — but not all — cases,
these models are capable of obtaining accuracy very near optimal. Finally, we use
our method to evaluate the intrinsic "hardness" of standard benchmark datasets.

1 Introduction
Benchmark datasets and leaderboards are prevalent in machine learning’s common task framework
[8]; however, this approach inherently relies on relative measures of improvement. It may there-
fore be insightful to be able to evaluate state-of-the-art (SOTA) performance against the optimal
performance theoretically achievable by any model [34]. For supervised classification tasks, this
optimal performance is captured by the Bayes error rate which, were it tractable, would not only give
absolute benchmarks, rather than just comparing to previous classifiers, but also insights into dataset
hardness [14, 38] and which gaps between SOTA and optimal the community may fruitfully try to
close.

Suppose we have data generated as (X,Y ) ⇠ p, where X 2 Rd, Y 2 Y = {1, . . . ,K} is a label
and p is a distribution over Rd ⇥ Y . The Bayes classifier is the rule which assigns a label to an
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observation x via

y = CBayes(x) := argmax
j2Y

p(Y = j | X = x). (1)

The Bayes error is simply the probability that the Bayes classifier predicts incorrectly:

EBayes(p) := p(CBayes(X) 6= Y ). (2)

The Bayes classifier is optimal, in the sense it minimizes p(C(X) 6= Y ) over all possible classifiers
C : Rd ! Y . Therefore, the Bayes error is a natural measure of ‘hardness’ of a particular learning
task. Knowing EBayes should interest practitioners: it gives a natural benchmark for the performance
of any trained classifier. In particular, in the era of deep learning, where vast amounts of resources
are expended to develop improved models and architectures, it is of great interest to know whether
it is even theoretically possible to substantially lower the test errors of state-of-the-art models,
cf. [6].

Of course, obtaining the exact Bayes error will almost always be intractable for real-world classifi-
cation tasks, as it requires full knowledge of the distribution p. A variety of works have developed
estimators for the Bayes error, either based on upper and/or lower bounds [2] or exploiting exact
representations of the Bayes error [26, 24]. Most of these bounds and/or representations are in terms
of some type of distance or divergence between the class conditional distributions,

pj(x) := p(X = x | Y = j), (3)

and/or the marginal label distributions ⇡j := p(Y = j). For example, there are exact representations
of the Bayes error in terms of a particular f -divergence [26], and in a special case in terms of the
total variation distance [24]. More generally, there are lower and upper bounds known for the Bayes
error in terms of the Bhattacharyya distance [2, 24], various f -divergences [20], the Henze-Penrose
(HP) divergence [22, 21], as well as others. Once one has chosen a desired representation and/or
bound in terms of some divergence, estimating the Bayes error reduces to the estimation of this
divergence. Unfortunately, for high-dimensional datasets, this estimation is highly inefficient. For
example, most estimators of f -divergences rely on some type of "-ball approach, which requires a
number of samples on the order of (1/")d in d dimensions [26, 30]. In particular, for large benchmark
image datasets used in deep learning, this approach is inadequate to obtain meaningful results.

Here, we take a different approach: rather than computing an approximate Bayes error of the exact
distribution (which, as we argue above, is intractable in high dimensions), we propose to compute the
exact Bayes error of an approximate distribution. The basics of our approach are as follows.

• We show that when the class-conditional distributions are Gaussian qj(z) = N (z;µj ,⌃),
we can efficiently compute the Bayes error using a variant of Holmes-Diaconis-Ross inte-
gration proposed in [12].

• We use normalizing flows [28, 16, 9] to fit approximate distributions p̂j(x), by representing
the original features as x = T (z) for a learned invertible transformation T , where z ⇠
qj(z) = N (z;µj ,⌃), for learned parameters µj ,⌃.

• Lastly, we prove in Proposition 1 that the Bayes error is invariant under invertible transfor-
mation of the features, so computing the Bayes error of the approximants p̂j(x) can be done
exactly by computing it for the Gaussians qj(z).

Moreover, we show that by varying the temperature of a single flow model, we can obtain an entire
class of distributions with varying Bayes errors. This recipe allows us to compute the Bayes error
of a large variety of distributions, which we use to conduct a thorough empirical investigation of a
benchmark datasets and SOTA models, producing a library of trained flow models in the process.
By generating synthetic versions of standard benchmark datasets with known Bayes errors, and
training them on SOTA deep learning architectures, we are able to assess how well these models
perform compared to the Bayes error, and find that in some cases they indeed achieve errors very
near optimal. We then investigate our Bayes error estimates as a measure of objective difficulty of
benchmark classification tasks, and produce a ranking of these datasets based on their approximate
Bayes errors.

We should note one additional point before proceeding. In general the hardness of classification tasks
can be decomposed into two relatively independent components: i) hardness caused by the lack of
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Figure 1: We compare the Bayes error estimated using HDR integration [12] with the exact error in
the binary classification with equal covariance case given in (4). On the right we show the relative
error from numerical integration. Shaded region on both plots shows the range over 100 runs. We see
the integration routine gives highly accurate estimates. Here we use dimension d = 784, and take
µ1,µ2 to be randomly drawn unit vectors, and ⌃ = ⌧2I where ⌧ is the temperature.

samples, and ii) hardness caused by the internal data distribution p. The focus of this work is about
the latter: the hardness caused by p. Indeed, even if the Bayes error of a particular task is known to be
a particular value EBayes, it may be highly unlikely that this error is achievable given a model trained
on only N samples from p. The problem of finding the minimal error achievable from a given dataset
of size N has been called the optimal experimental design problem [31]. While this is not the focus
of the present work, an interesting direction for future work is to use our methodology to investigate
the relationship between N and the SOTA-Bayes error gap.

2 Computing the Bayes error of Gaussian conditional distributions
Throughout this section, we assume the class conditional distributions are Gaussian: qj(x) =
N (z;µj ,⌃j). In the simplest case of binary classification with K = 2 classes, equal covariance
⌃1 = ⌃2 = ⌃, and equal marginals ⇡1 = ⇡2 = 1

2 , the Bayes error can be computed analytically in
terms of the CDF of the standard Gaussian distribution, �(·), as:

EBayes = 1 � �
⇣

1
2k⌃�1/2(µ1 � µ2)k2

⌘
. (4)

When K > 2 and/or the covariances are different between classes, there is no closed-form expression
for the Bayes error. Instead, we work from the following representation:

EBayes = 1 �
KX

k=1

⇡k

Z Y

j 6=k

1(qj(z) < qk(z))N (dz;µk,⌃k). (5)

In the general case, the constraints qj(z) < qk(z) are quadratic, with qj(z) < qk(z) occurring if and
only if:

�(z � µj)
>⌃�1

j (z � µj) � log det⌃j < �(z � µk)
>⌃�1

k (z � µk) � log det⌃k. (6)

As far as we know, there is no efficient numerical integration scheme for computing Gaussian integrals
under general quadratic constraints of this form. However, if we further assume the covariances are
equal, ⌃j = ⌃ for all j = 1, . . . ,K, then the constraint (6) becomes linear, of the form

a>jkz+ bjk > 0, (7)

where ajk := 2⌃�1(µj � µk) and bjk := µ>
k ⌃

�1µk � µ>
j ⌃

�1µj . Thus expression (5) can be
written as

EBayes = 1 �
KX

k=1

⇡k

Z Y

j 6=k

1(a>jkz+ bjk > 0)N (dz;µk,⌃). (8)
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Computing integrals of this form is precisely the topic of the recent paper [12], which exploited
the particular form of the linear constraints and the Gaussian distribution to develop an efficient
integration scheme using a variant of the Holmes-Diaconis-Ross method [7]. This method is highly
efficient, even in high dimensions3. In Figure 1, we show the estimated Bayes error using this method
on a synthetic binary classification problem in d = 784 dimensions, where we can use closed-form
expression (4) to measure the accuracy of the integration. As we can see, it is highly accurate.

This method immediately allows us to investigate the behavior of large neural network models
on high-dimensional synthetic datasets with class conditional distributions qj(z) = N (z;µj ,⌃).
However, in the next section, we will see that we can use normalizing flows to estimate the Bayes
error of real-world datasets as well.

3 Normalizing flows and invariance of the Bayes error
Normalizing flows are a powerful technique for modeling high-dimensional distributions [28]. The
main idea is to represent the random variable x as a transformation T� (parameterized by �) of a vector
z sampled from some, usually simple, base distribution q(z; ) (parameterized by  ), i.e.

x = T�(z) where z ⇠ q(z; ). (9)

When the transformation T� is invertible, we can obtain the exact likelihood of x using a standard
change of variable formula:

p̂(x; ✓) = q(T�1
� (x); )

���det JT�(T
�1
� (x))

���
�1

, (10)

where ✓ = (�, ) and JT� is the Jacobian of the transformation T�. The parameters ✓ can be
optimized, for example, using the KL divergence:

L(✓) = DKL(p(x) k p̂(x; ✓)) ⇡ � 1

N

NX

i=1

log q(T�1
� (xi), ) + log

���det JT�1
�

(xi)
���+ const. (11)

This approach is easily extended to the case of learning class-conditional distributions by parameter-
izing multiple base distributions qj(z; j) and computing

p̂j(x; ✓) = qj(T
�1
� (x); j)

���det JT�(T
�1
� (x))

���
�1

. (12)

For example, we can take qj(z;µj ,⌃) = N (z;µj ,⌃), where we fit the parameters µj ,⌃ during
training. This is commonly done to learn class-conditional distributions, e.g. [16]. This is the
approach we take in the present work. In practice, the invertible transformation T� is parameterized
as a neural network, though special care must be taken to ensure the neural network is invertible
and has a tractable Jacobian determinant. Here, we use the Glow architecture [16] throughout our
experiments, as detailed in Section 4.

3.1 Invariance of the Bayes Error
Normalizing flow models are particularly convenient for our purposes, since we can prove the Bayes
error is invariant under invertible transformation. This is formalized as follows.

Proposition 1. Let (X,Y ) ⇠ p, X 2 Rd, Y 2 Y = {1, . . . ,K}, and let EBayes(p) be the associated

Bayes error of this distribution. Let T : Rd ! Rd
be an invertible map and denote q the associated

joint distribution of Z = T (X) and Y . Then EBayes(p) = EBayes(q).

Proof. For convenience, denote |A| as the absolute value determinant of a matrix A. Using the
representation derived in [26], we can write the Bayes error as

EBayes(p) = 1 � ⇡1 �
KX

k=2

Z
max

✓
0,⇡k � max

1ik�1
⇡i

pi(x)

pk(x)

◆
pk(x)dx. (13)

3Note that the integrals appearing in (8) are really only (K � 1)-dimensional integrals, since they only
depend on K � 1 variables of the form a>

jkx+ bjk.
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Then if z = T (x), we have that qk(z) = pk(T (z))|JT (z)|, and dx = |JT�1(z)|dz. Hence

EBayes(p) = 1 � ⇡1 �
KX

k=2

Z
max

✓
0,⇡k � max

1ik�1
⇡i

pi(x)

pk(x)

◆
pk(x)dx

= 1 � ⇡1 �
KX

k=2

Z
max

✓
0,⇡k � max

1ik�1
⇡i

qi(z)|JT (z)|
qk(z)|JT (z)|

◆
qk(z)|JT (z)||JT�1 |(z)dz.

By the Inverse Function Theorem, |JT�1(z)| = |JT (z)|�1, and so we get

EBayes(p) = 1 � ⇡1 �
KX

k=2

Z
max

✓
0,⇡k � max

1ik�1
⇡i

qi(z)|JT (z)|
qk(z)|JT (z)|

◆
qk(z)|JT (z)||JT (z)|�1dz

= 1 � ⇡1 �
KX

k=2

Z
max

✓
0,⇡k � max

1ik�1
⇡i

qi(z)

qk(z)

◆
qk(z)dz

= EBayes(q),

which completes the proof.

This result means that we can compute the exact Bayes error of the approximate distributions p̂j(x; ✓)
using the methods introduced in Section 2 with the Gaussian conditionals qj(z;µj ,⌃). If in addition
the flow model p̂j(x; ✓) is a good a approximation for the true class-conditional distribution pj(x),
then we expect to obtain a good estimate for the true Bayes error. In what follows, we will see
examples both of when this is and is not the case.

3.2 Varying the Bayes error using temperature
An important aspect of the normalizing flow approach is that we can in fact generate a whole family
of distributions from a single flow model. To do this, we can vary the temperature ⌧ of the model by
multiplying the covariance ⌃ of the base distribution by ⌧2 to get qj,⌧ (z) := N (z;µj , ⌧2⌃). The
same invertible map T� induces new conditional distributions,

p̂j,⌧ (x; ✓) = qj,⌧ (T
�1
� (x); j)

��det JT�(T
�1
✓ (x))

���1
, (14)

as well as the associated joint distribution p̂⌧ (y = j,x; ✓) = ⇡j p̂j,⌧ (x; ✓).

It can easily be seen that the Bayes error of p̂⌧ is increasing in ⌧ .

Proposition 2. The Bayes error of flow models is monotonically increasing in ⌧ . That is, for

0 < ⌧  ⌧ 0, we have that EBayes(p̂⌧ )  EBayes(p̂⌧ 0).

This fact means that we can easily generate datasets of varying difficulty by changing the temperature
⌧ . For example, in Figure 2 we show samples generated by a flow model (see Section 4 for
implementation details) trained on the Fashion-MNIST dataset at various values of temperature
and the associated Bayes error. As ⌧ ! 0+, the distribution p̂j,⌧ concentrate on the mode of the
distributions p̂j , making the classification tasks easy, whereas when ⌧ gets large, the distributions
p̂j,⌧ become more uniform, making classification more challenging. In practice, this can be used to
generate datasets with almost arbitrary Bayes error: for any prescribed error " in the range of the map
⌧ 7! EBayes(p̂⌧ ), we can numerically invert this map to find ⌧ for which EBayes(p̂⌧ ) = ".

4 Empirical investigation
4.1 Setup
Datasets and data preparation. We train flow models4 on a wide variety of standard benchmark
datasets: MNIST [19], Extended MNIST (EMNIST) [5], Fashion MNIST [36], CIFAR-10 [17],
CIFAR-100 [17], SVHN [23], and Kuzushiji-MNIST [4]. The EMNIST dataset has several different
splits, which include splits by digits, letters, merge, class, and balanced. The images in MNIST,
Fashion-MNIST, EMNIST, and Kuzushiji-MNIST are padded to 32-by-32 pixels.5

4Code can be found at https://github.com/salesforce/DataHardness.
5Glow implementation requires the input dimension to be power of 2.
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(a) ⌧=0.2, EBayes =1.11e-16 (b) ⌧=1.0, EBayes =3.36e-2

(c) ⌧=1.4, EBayes =1.07e-1 (d) ⌧=3.0, EBayes =4.06e-1

Figure 2: Generated Fashion-MNIST Samples with Different Temperatures

We remark that we observe our Bayes error estimator runs efficiently when the input is of dimension
32-by-32-by-3. However it is in general highly memory intensive to run the HDR integration routine
on significantly larger datasets, e.g. when the input size grows to 64-by-64-by-3. As a consequence,
in our experiments we only work on datasets of dimension no larger than 32-by-32-by-3.

Modeling and training. The normalizing flow model we use in our experiments is a pytorch
implementation [13] of Glow [16]. In all our the experiments, affine coupling layers are used, the
number of steps of the flow in each level K = 16, the number of levels L = 3, and number of
channels in hidden layers C = 512.

During training, we minimize the Negative Log Likelihood Loss (NLL)

NLL({xi, yi}) = � 1

N

NX

i=1

(log pyi(xi; ✓) + log ⇡yi) . (15)

As suggested in [16], we also add a classification loss to predict the class labels from the second-to-last
layer of the encoder with a weight of �. During the experiments we traversed configurations with
� = {0.01, 0.1, 1.0, 10}, and report the numbers produced by the model with the smallest NLL loss
on the test set. Note here even though we add the classification loss in the objective as a regularizer,
the model is selected based on the smallest NLL loss in the test set instead of the classification
loss or the total loss. The training and evaluation are done on a workstation with 2 NVIDIA V100
GPUs.

4.2 Evaluating SOTA models against generated datasets
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a Wide-ResNet-28-10, which attains nearly start of the accuracy on the original Fashion-MNIST
dataset [39]. The model used in MNIST is a popular ConvNet [1].
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Figure 4: Errors of various model architectures
(from old to modern) on a Synthetic Fashion-
MNIST dataset (⌧ = 1). We can see that for this
task, while accuracy has improved with modern
models, there is still a substantial gap between the
SOTA and Bayes optimal.

In this section, we use our trained flow mod-
els to generate synthetic versions of standard
benchmark datasets, for which the Bayes error
is known exactly. In particular, we generate
synthetic versions of the MNIST and Fashion-
MNIST datasets at varying temperatures. As
we saw in Section 3.2, varying the temperature
allows us to generate datasets with different dif-
ficulty. Here, we train a Wide-ResNet-28-10
model (i.e. a ResNet with depth 28 and width
multiple 10) [37, 35] on these datasets, and com-
pare the test error to the exact Bayes error for
these problems. This Wide-ResNet model (to-
gether with appropriate data augmentation) at-
tains nearly state-of-the-art accuracy on the orig-
inal Fashion-MNIST dataset [39], and so we
expect that our results here reflect roughly the
best accuracy presently attainable on these syn-
thetic datasets as well. To make the compari-
son fair, we use a training set size of 60,000 to
mimic the size of the original MNIST series of
datasets.

The Bayes errors as well as the test errors achieved by the Wide-ResNet or ConvNet models are
shown in Figure 3. As one would expect, the errors of trained models increase with temperature. It
can be observed that Wide-ResNet and ConvNet are able to achieve close-to-optimal performance
when the dataset is relatively easy, e.g., ⌧ < 1 for MNIST and ⌧ < 0.5 for Fashion-MNIST. The
gap becomes more significant when the dataset is harder, e.g. ⌧ > 1.5 for MNIST and ⌧ > 1 for
Fashion-MNIST.

For the Synthetic Fashion-MNIST dataset at temperature ⌧ = 1, in addition to the Wide-ResNet
(WRN-28) considered above, we also trained three other architectures: a simple linear classifier
(Linear), a 1-hidden layer ReLU network (MLP) with 500 hidden units, and a standard AlexNet
convolutional architecture [18]. The resulting test errors, as well as the Bayes error, are shown
in Figure 4. We see that while the development of modern architectures has led to substantial
improvement in the test error, there is still a reasonably large gap between the performance of the
SOTA Wide-ResNet and Bayes optimality. Nonetheless, it is valuable to know that, for this task, the
state-of-the-art has substantial room to be improved.
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Corpus #classes #samples NLL Bayes Error SOTA Error [29]
MNIST 10 60,000 8.00e2 1.07e-4 1.6e-3 [3]
EMNIST (digits) 10 280,000 8.61e2 1.21e-3 5.7e-3 [27]
SVHN 10 73,257 4.65e3 7.58e-3 9.9e-3 [3]
Kuzushiji-MNIST 10 60,000 1.37e3 8.03e-3 6.6e-3 [11]
CIFAR-10 10 50,000 7.43e3 2.46e-2 3e-3 [10]
Fashion-MNIST 10 60,000 1.75e3 3.36e-2 3.09e-2 [32]
EMNIST (letters) 26 145,600 9.15e2 4.37e-2 4.12e-2 [15]
CIFAR-100 100 50,000 7.48e3 4.59e-2 3.92e-2 [10]
EMNIST (balanced) 47 131,600 9.45e2 9.47e-2 8.95e-2 [15]
EMNIST (bymerge) 47 814,255 8.53e2 1.00e-1 1.90e-1 [5]
EMNIST (byclass) 62 814,255 8.76e2 1.64e-1 2.40e-1 [5]

Table 1: We evaluate the estimated Bayes error on image data sets and rank them by relative difficulty.
Comparisons with prediction performance of state-of-the-art neural network models shows that our
estimation is highly aligned with empirically observed performance.

4.3 Dataset Hardness Evaluation
A important application of our Bayes error estimator is to estimate the inherent hardness of a given
dataset, regardless of model. We run our estimator on several popular image classification corpora
and rank them based on our estimated Bayes error. The results are shown in Table 1. As a comparison
we also put the SOTA numbers in the table.

Before proceeding, we make two remarks. First, all of the Bayes errors reported here were computed
using temperature ⌧ = 1. This is for two main reasons: 1) setting ⌧ = 1 reflects the flow model
attaining the lowest testing NLL, and hence is in some sense the “best” approximation for the true
distribution, 2) in our experiments, the ordering of the hardness of classes is unchanged by varying
temperature, and so taking ⌧ = 1 is a reasonable default. Second, the reliability of the Bayes errors
reported here as a measure of inherent difficulty are dependent on the quality of the approximate
distribution p̂; if this distribution is not an adequate estimate of the true distribution p, then it is
possible that the Bayes errors do not accurately reflect the true difficulty of the original dataset.
Therefore, we also report the test NLL for each model as a metric to evaluate the quality of the
approximant p̂.

First, we observe that, by and large, the estimated Bayes errors align well with SOTA. In particular, if
we constrain the NLL loss to be smaller than 1000, then ranking by our estimated Bayes error aligns
exactly with SOTA.

Second, the NLL loss in MNIST, Fashion MNIST, EMNIST and Kuzushiji-MNIST is relatively
low, suggesting a good approximation by normalizing flow. However corpora such as CIFAR-10,
CIFAR-100, and SVHN may suffer from a lack of training samples. In general large NLL loss may be
due to either insufficient model capacity or lack of samples. In our experiments, we always observe
the Glow model is able to attain essentially zero error on the training corpus, so it is highly possible
the large NLL loss is caused by the lack of training samples.

Third, for datasets such as MNIST, EMNIST (digits, letters, balanced), SVHN, Fashion-MNIST,
Kuzushiji-MNIST, CIFAR-10, and CIFAR-100 the SOTA numbers are roughly the same order of
magnitude as the Bayes error. On the other hand, for EMNIST (bymerge and byclass) there is still
substantial gap between the SOTA and estimated Bayes errors. This is consistent with the fact that
there is little published literature about these two datasets; as a result models for them are not as
well-developed.

5 Limitations, Societal Impact, and Conclusion
In this work, we have proposed a new approach to benchmarking state-of-the-art models. Rather
than comparing trained models to each other, our approach leverages normalizing flows and a key
invariance result to be able to generate benchmark datasets closely mimicking standard benchmark
datasets, but with exactly controlled Bayes error. This allows us to evaluate the performance of
trained models on an absolute, rather than relative, scale. In addition, our approach naturally gives us
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a method to assess the relative hardness of classification tasks, by comparing their estimated Bayes
errors.

While our work has led to several interesting insights, there are also several limitations at present
that may be a fruitful source of future research. For one, it is possible that the Glow models we
employ here could be replaced with higher quality flow models, which would perhaps lead to better
benchmarks and better estimates of the hardness of classification tasks. To this end, it is possible that
the well-documented label noise in standard datasets contributes to our inability to learn higher-quality
flow models [25]. To the best of our knowledge, there has not been significant work using normalizing
flows to accurately estimate class-conditional distributions for NLP datasets; this in itself would be
an interesting direction for work. Second, a major limitation of our approach is that there isn’t an
immediately obvious way to assess how well the Bayes error of the approximate distribution EBayes(p̂)
estimates the true Bayes error EBayes(p). Theoretical results which bound the distance between these
two quantities, perhaps in terms of a divergence D(pkp̂), would be of great interest here.

As detailed in [34], there may be pernicious impacts of the common task framework and the so-called
Holy Grail performativity that it induces. For example, a singular focus by the community on the
leaderboard performance metrics without regard for any other performance criteria such as fairness
or respect for human autonomy. The work here may or may not exacerbate this problem, since
trying to approach fundamental Bayes limits is psychologically different than trying to do better than
SOTA. As detailed in [33], the shift from competing against others to a pursuit for the fundamental
limits of nature may encourage a wider and more diverse group of people to participate in ML
research, e.g. those with personality type that has less orientation to competition. It is still to be
investigated how to do this, but the ability to generate infinite data of a given target difficulty (yet
style of existing datasets) may be used to improve the robustness of classifiers and perhaps decrease
spurious correlations.
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