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Abstract

Learning distributed representation of source code requires modelling its syntax
and semantics. Recent state-of-the-art models leverage highly structured source
code representations, such as the syntax trees and paths therein. In this paper, we
investigate two representative path encoding methods shown in previous research
work and integrate them into the attention module of Transformer. We draw
inspiration from the ideas of positional encoding and modify them to incorporate
these path encoding. Specifically, we encode both the pairwise path between
tokens of source code and the path from the leaf node to the tree root for each
token in the syntax tree. We explore the interaction between these two kinds of
paths by integrating them into the unified Transformer framework. The detailed
empirical study for path encoding methods also leads to our novel state-of-the-
art representation model TPTrans, which finally outperforms strong baselines.
Extensive experiments and ablation studies on code summarization across four
different languages demonstrate the effectiveness of our approaches. We release
our code at https://github.com/AwdHanPeng/TPTrans.

1 Introduction

Machine learning for source code aims at building models that learn semantic embedding of programs.
The initial representation of source code relied on sequential models adopted from natural language
processing, such as n-gram language model [Hindle et al., 2016, Hellendoorn and Devanbu, 2017],
Recurrent Neural Networks (RNNs) [Wei et al., 2019] and so on. However, source code is more
logical than natural languages, rich in structured information such as Abstract Syntax Tree (AST).
Therefore, these previous works struggle to capture the structural complexity of source code.

Some works leverage the program AST to model source code structure and linearize the graph by
traversing it. Code2seq [Alon et al., 2018] represents source code as a set of pairwise paths over
AST where each path is compressed to a vector using LSTMs [Hochreiter and Schmidhuber, 1997].
Code2seq obtains state-of-the-art for code representation using only AST information, demonstrating
the effectiveness of path encoding. [Kim et al., 2020] leveraged another kind of path from the leaf
node to the root of AST by traversing up its ancestors and then coupled the representation of paths
with the source code.

On the other hand, several works also leverage structured graph neural networks for modelling source
code directly. [Allamanis et al., 2017] used Gated Graph Neural Network (GGNN) to embed the
semantically meaningful relationships in the code. [Zhou et al., 2019] proposed a novel graph neural
network with composite programming representation for vulnerability identification. However, GNNs
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Figure 1: Example of (a) a python code snippet and (b) the syntax tree of it. The relative path across
the syntax tree between tokens for and result represents the relationship between them, showing the
pattern of for loop in the code snippet. Meanwhile, the absolute path for token result starts at the leaf
node and ends at the tree root, which reveals the behaviour of assignment for this token.

typically rely on synchronous message passing, requiring message passing iterations to aggregate
information [Allamanis et al., 2017, Fernandes et al., 2018]. Besides, primarily for computational
reasons, GNNs for programs usually compute few message-passing iterations. For these reasons, the
representation of GNNs tends to be local and struggle to leverage long-range interactions.

On the contrary, Transformer [Vaswani et al., 2017] allows global information flow at each step
but lacks the ability to model the structural complexity of source code. Recently, some works
have explored introducing structural inductive bias in Transformer to access the global structural
representation of source codes. [Hellendoorn et al., 2019] proposed Graph Relation Embedding
Attention Transformer (GREAT), which extends [Shaw et al., 2018] and biases Transformer with
relational information from graph edge types. After that, [Zügner et al., 2021] proposed Code
Transformer based on XLNet [Yang et al., 2019], which computes pairwise distances on AST and
integrate multiple relations into the attention module.

In this paper, we pursue the research line of combining Transformer with additional structure
information of source code. Our first starting point is the structural model of Code2seq [Alon et al.,
2018], which obtains state-of-the-art of code summarization using only pairwise path information
in AST. However, Code2seq lacks the modelling of context, which leads us to explore combining
path representation with source code context. The other starting point is Code Transformer [Zügner
et al., 2021], which counts node distances cross AST to capture source code structure. However, the
different nodes combinations of paths contain plenty of structure information, which is overlooked by
only encoding distances.

To overcome the drawback shown in previous works, we adopt the ideas of encoding path to represent
source code and integrate them to bias the attention module of Transformer. Specifically, we encode
the path between source code tokens across AST and the path from leaf node to tree root for each
token. Then we draw inspiration from both relative and absolute positional encoding methods in
the NLP field and modify them to integrate path encodings into Transformer. These paths introduce
inductive bias into the attention module of Transformer, powering it to know the structure of source
codes. For clarity, we name the first path as the relative path and the last one as the absolute path
(see Fig1), since much similarities between path and position on relative or absolute encoding exist.

Intuitively, the relative path represents the structural relationship between tokens and shows specific
patterns of code block such as For loop, etc. Meanwhile, the absolute path complements the structural
information for each token and reveals the program behaviour on it, such as Assignment and Call,
etc. Both two kinds of paths contain plenty of structural information of code syntax. Actually, lots
of works have introduced these paths into many novel models [Kim et al., 2020, Alon et al., 2018,
2020]. However, to our best knowledge, the feature relationship between these two paths for code
representation learning is still not completely studied. In this paper, we integrate these paths into the
unified Transformer framework to analyze each effectiveness and their relationship. The detailed
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empirical study also leads to our novel code representation model TPTrans, which means encoding
the Tree Path into the Transformer. We show the effectiveness of our approaches on the code
summarization task across four different languages datasets, in which the model predicts a method’s
name based on its body. Our model finally outperforms solid baselines and obtains state-of-the-art on
most datasets. The contributions of this paper are summarized as follows:

1. We propose TPTRANS which integrates path encoding in Transformer, powers it to know
the structure of source code, and our model significantly outperforms existing baselines.

2. We present the empirical study to investigate the relationship between two kinds of path
encoding methods proposed in previous works, shedding light on this line of future work.

2 Related work

Representation learning for source code The growing availability of open-source code creates
opportunities for machine learning from big code. Early research works learned language model on
raw text data for code [Dam et al., 2016, Wang et al., 2016, Allamanis et al., 2016, Iyer et al., 2016],
providing evidence for the naturalness assumption [Hindle et al., 2016]. These models treat codes as
sequences rather than trees and struggle to model the structural complexity of source code. After
that, some works leveraged structural information to model source code. [Mou et al., 2016] proposed
tree-based convolutional neural networks to represent source code. [Alon et al., 2018, 2019] treated
source code as weighted combination of pairwise paths in abstract syntax trees. Several works also
use structured graphical models to represent structural aspects of source code directly. For example,
[Allamanis et al., 2017] proposed GGNN to represent program graphs consisting of AST together
with control-flow and data-flow edges. After that, [Hellendoorn et al., 2019, Zügner et al., 2021]
proposed to bias the self-attention computation of Transformer given the underlying graph structure.
In this paper, we explore integrating path representation of syntax tree into Transformer, powering it
to capture the structure of code snippets.

Structural representation of languages It has been proved that modelling the language structure
helps to represent the compositional aspects of natural language [Socher et al., 2011] and improves
the generalization of models [Chen et al., 2016]. Several works [Shen et al., 2018, Shiv and Quirk,
2019] proposed new architectures for modeling tree structures, including in the domain of natural
languages processing [Wang et al., 2019] and code representation learning [Hellendoorn et al., 2019,
Zügner et al., 2021]. We pursue this research line and show the benefits of integrating tree structure
as inductive bias.

Positional encoding for Transformer The absolute positional encoding used in Transformer has
been proved inefficient to model the order information of sequence. [Shaw et al., 2018] firstly
proposed to leverage relative positional encoding to Transformer. After that, Transformer-XL [Dai
et al., 2019] re-parameterized the self attention of Transformer to integrate relative positional encoding
and T5 [Raffel et al., 2019] simplified the vector representation of relative positions in [Shaw et al.,
2018] to scalars. Recently, several works also tried to enhance positional encodings in Transformer
to integrate structural inductive bias. For example, [Shiv and Quirk, 2019] extended the sequential
positional encoding to tree-based positional encoding in Transformer, and [Zügner et al., 2021]
modified the relative positional encoding of Transformer-XL to incorporate multiple relations in
tree structural. In this paper, we adopt the idea to modify positional encodings of Transformer and
introduce structural bias of path information in the syntax tree for self-attention computing.

3 Approaches

Self-attention is one of the key components of Transformer. The attention module can be formulated
as querying a dictionary with key-value pairs. The matrix form equation for attention with a single
head is

Attention(Q,K, V ) = softmax(
QKT

√
d

)V, (1)

where d is the dimension of the hidden representations, and Q(Query), K(Key), V (Value) are
specified as the hidden representations of the previous layer. For simplicity, we omit the index of
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layer, denote x = (x1, x2 · · · , xn) and z = (z1, z2 · · · , zn) as the input and output of self-attention
module in the same layer respectively, where n is the sequence length. Then Eq.1 can be rewritten as

zi =

n∑
j=1

exp (αij)∑n
j′=1 exp (αij′)

(xjW
V ), where αij =

1√
d
(xiW

Q)(xjW
K)T , (2)

where WQ ∈ Rd×dk , WK ∈ Rd×dk , WV ∈ Rd×dv and we set dk = dv = d. Eq.2 is oblivious
to structured input since it views input as unordered vector sets. In the NLP field, several works
[Shaw et al., 2018, Ke et al., 2020, Raffel et al., 2019, Dai et al., 2019] propose different ways to bias
Transformer towards sequential inputs by incorporating positional information into the self-attention
module. Generally, there are two categories of positional encoding methods for self-attention:
absolute positional encoding and relative positional encoding.

The original Transformer [Vaswani et al., 2017] use absolute positional encoding to represent positions.
Given a sentence, a real-valued vector pi ∈ Rd will be added to the word embedding wi at position i,
and the sum vector will be used as the input to Transformer. [Ke et al., 2020] further proposed TUPE
to untie the correlations between absolute positions and words and directly model the relationship
between a pair of words or positions using different projection matrices, that is

αij =
1√
2d

(xiW
Q)(xjW

K)T +
1√
2d

(piU
Q)(pjU

K)T , (3)

where UQ, UK ∈ Rd×d are projection matrices for positional embedding and scaling term
√
2d is

used to retain the magnitude of αij .

Using different pi helps Transformer distinguish the words at different positions i. However, the
absolute positional encoding is not effective in capturing the relative word orders. Therefore, [Shaw
et al., 2018] proposed the relative positional encoding, that is

zi =

n∑
j=1

exp (αij)∑n
j′=1 exp (αij′)

(xjW
V + aVij), where αij =

1√
d
(xiW

Q)(xjW
K + aKij )

T (4)

where aVij , a
K
ij ∈ Rd are learnable parameters and can be viewed as the relative position embedding

between position i and j. Eq.4 extends self-attention to consider the pairwise positional relationship
and models it as a directed edge between head and tail word entities [Shaw et al., 2018], which
means the tail entity should be close to the embedding of the head entity plus vector depending on
the relationship [Bordes et al., 2013].

We draw inspiration from the ideas of encoding absolute and relative positional information and
modify Eq.3 and Eq.4 to incorporate path information in the syntax tree of source code.

3.1 Integrating path encodings in attention module

A syntax tree uniquely represents a source code snippet in the given language and grammar. In a
syntax tree, the leaves are called terminals, and the non-leaf nodes are called nonterminals. [Alon
et al., 2018, 2019] used AST to represent a source code snippet. They considered pairwise paths
between terminals, representing them as sequences of the terminal and nonterminal nodes in AST.
[Kim et al., 2020] used another kind of path from the terminal to AST root by traversing up its
ancestors, and then coupled paths representation with tokens and fed the sum representation into
Transformer.

We adopt the above methods of leveraging paths and integrate them into the self-attention module of
the unified Transformer framework. We name the path between terminals as the relative path and
the path from terminal to root as the absolute path. Technically, we modify the positional encoding
methods in the NLP field to integrate path encoding into Transformer, which shows natural analogies
from the positional to path encoding ways as follows.

All kinds of paths are composed of nonterminals from a limited vocabulary of syntax grammar. We
use a learned embedding matrix to convert nonterminals to vectors first.
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Relative path encoding The embed vectors of a relative path are first fed into a sequence encoder.
We use a bi-directional GRU [Cho et al., 2014] to encode the path and use the final state to represent
it, that is

rij = GRUr(Pathxi→xj
), (5)

where Pathxi→xj
is the nonterminal vector sequence of the relative path between tokens xi and xj ,

and rij ∈ Rd is the final vector representation of this path. Specifically, Pathxi→xj is a vector list
[n0, n1, . . . , nm], where m is the path length and each n is the embedding vector of each nonterminal
node which is looked up from the embedding matrix of node type.

The pairwise path across the syntax tree reveals the structural relationship between two code tokens.
Similarly, Eq.4 models the positional relationship between two words, so it is natural to modify
the Eq.4 to integrate path encoding rij into self-attention module. We firstly integrate rij into the
Query-Key product, that is

αij =
1√
d
[(xiW

Q)(xjW
K + rijW

K
r︸ ︷︷ ︸

1

)T ], (6)

and then we integrate rij into the weighted sum of Value, that is

zi =

n∑
j=1

exp (αij)∑n
j′=1 exp (αij′)

(xjW
V + rijW

V
r︸ ︷︷ ︸

2

), (7)

where WK
r ,WV

r ∈ Rd×d are projection matrices of Key and Value for rij , respectively. For clarity,
we label the modifications for Key and Value as 1 and 2, respectively.

Absolute path encoding The embed vectors of an absolute path are fed into another bi-directional
GRU [Cho et al., 2014], that is

ai = GRUa(Pathxi→root), (8)

where Pathxi→root is the nonterminals vectors sequence of the absolute path from tokens xi to the
syntax tree root, and ai ∈ Rd is the final vector representation of this path.

The absolute path for each source code token can be viewed as a directed edge connecting the terminal
with the tree root, which means the absolute path can calibrate the coordinates for each terminal in
the special structural space that assigns the tree root as the origin. So it is natural to modify the
absolute positional encoding in Eq.3 to integrate path vectors into the self-attention module, that is

αij =
1√
d
[(xiW

Q)(xjW
K)T + (aiW

Q
a )(ajW

K
a )T ], (9)

where WQ
a ,W

K
a ∈ Rd×d are projection matrices of Query and Key for absolute path representation,

respectively.2

We think it is meaningful to investigate the feature interaction between absolute and relative paths
and focus on both of them instead of overlooking either. So we further combine the relative and
absolute path encoding shown in previous paragraphs and merge Eq.6 and Eq.9 as

αij =
1√
d
[(xiW

Q)(xjW
K + rijW

K
r︸ ︷︷ ︸

1

)T + (aiW
Q
a )(ajW

K
a )T ]. (10)

In the paragraphs above, we propose several modifications to integrate paths into self-attention. To
sum up, we combine them and propose two versions of models. We firstly name the method of
only relative path encoding as TPTRANS (Eq.6 + Eq.7). Then, to analyze the relationship between
the relative and absolute path encoding further, we name the method of combining both of them as
TPTRANS-α (Eq.10 + Eq.7).

2We tried the method adding path representation with token directly like [Kim et al., 2020] but no improve-
ment, which we think is similar to the conclusion of untying correlations in TUPE. Besides, we tried to keep the
scaling term

√
2d in Eq.3 but no improvement.
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4 Experiment setup

Code summarization is one of the most popular tasks in code representation learning. Given a
function body, this task is to predict the function name. As observed by [Allamanis et al., 2016,
Alon et al., 2019], code summarization is a good benchmark for code representation learning, as the
method body typically forms complete logical units and the method name tends to be descriptive and
precise. In this task, our approaches jointly learn code contexts and path representation in AST and
predict the target method name as a sequence of sub-tokens. We measure precision, recall, and F1
score over target sequences in the case insensitive like [Alon et al., 2018, Zügner et al., 2021].

Datasets To show the effectiveness of our approaches across different source code languages,
we experiment on four datasets introduced in the CodeSearchNet (CSN) Challenge [Husain et al.,
2019]: Python, Javascript, Go, and Ruby. The datasets from CodeSearchNet have been carefully
deduplicated to avoid data leakage from training sets. See Table 1 for a summary of the datasets.

Table 1: Dataset statistics

Samples per partition

Dataset Train Valid Test

CSN-Python 412,178 23,107 22,176
CSN-Javascript 123,889 8,253 6,483
CSN-Ruby 48,791 2,209 2,279
CSN-Go 317,832 14,242 14,291

Preprocessing We produce the AST for each method using the open-source parser Tree-Sitter,3
in which all the code tokens are natively mapped as terminals (see Fig1). We adopt the way to
split sub-tokens following [Alon et al., 2018, Zügner et al., 2021], in which each code token is
split into sub-tokens respective to code naming conventions, e.g., setConnectionsPerServer is
split into [set, connections, per, server]. We limit the vocabulary of sub-tokens with at least
100 occurrences in training sets, remove all punctuations and restrict the max code length 512. We
remove all anonymous Javascript functions following [Zügner et al., 2021]. We assign different ids
for nonterminals and do not split the literal of them. We set the max path length 32 covering almost
all paths and make padding for short paths. For paths longer than 32, we sample nodes with equal
intervals to maintain max length instead of truncating the last nodes since we assume the nodes at
both left and right ends of the path are equally important.

Parameter sharing In our implementation, the embedding matrix for nonterminals is shared for
both absolute and relative paths since both kinds of paths are made up of nonterminals within the same
syntax tree. We do not share the path encoder GRU for two different kinds of paths. Since the number
of nonterminal types is far less than the size of source code vocabulary, we set different embedding
matrices for nonterminals and source tokens, respectively. For efficiency, we share in different layers
and heads for the projection matrices WK

r ,WV
r in relative path encoding and WQ

a ,W
K
a in absolute

path encoding. We also share the path representation across different layers and heads, which means
we pre-encode paths only once by GRU before feeding features into Transformer.

Complexity optimization The naive way for relative path encoding needs to encode all the pairwise
paths for each code snippet and to compose the relative path representation matrix R ∈ Rn×n×d,
where n is code length and d is the dimension of hidden representations. This approach costs O(n2)
complexity since the number of pairwise paths encoded is n(n−1)

2 . To optimize it, we notice that
much repetition exists in all relative paths of a sample.4 That means we only need to encode all the
unique pairwise paths for each sample. We record the mapping between token pairs and unique paths
as matrix M ∈ Rn×n. After that, we compute the Query-Key product between tokens and unique
paths, and gather the product scores using matrix M . After calculating attention distribution, we

3https://github.com/tree-sitter/
4For example, if we parse a function that has three formal arguments to a syntax tree, we could see that the

pairwise relative path between any two arguments will be the same.
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scatter attention probability to each unique path and weighted sum using matrix M again. This
new approach avoids encoding O(n2) paths and reduces it into O(l) where l is the number of unique
paths and is far less than n2. It also reduces matrix R from O(n2d) to O(ld). In our experiment, we
set the max l 512 for the relative path, which covers most of the samples. Besides, the complexity of
absolute path encoding is original O(n), but we also reduce it in the same way and set the max l 256
for it. We refer readers to the appendix for further details.

Normalization We integrate vector sequence of path nodes as the inductive bias for the attention
module of Transformer, which is not just trivial technically. Firstly, directly integrating standard
RNN into the deep backbone of Transformer most likely results in gradient exploding or vanishing.
Secondly, the attention procedure of Transformer is similarity calculation between vectors. The
Q, K, and V of the attention module are normalized while standard RNN does not limit vector
norm, leading to size instability for dot-product attention between word and path representation. To
overcome these issues, we first replace the standard GRU as a layer-normalized GRU [Ba et al., 2016],
getting more stable parameters updates. After getting the final state of GRU, we feed it into another
normalization layer to keep it the same vector norm with Q, K, and V . The normalization is much
efficient shown in the following ablation result.

Hyperparameters We denote the number of layers for encoder and decoder as LE and LD, the
hidden size as D, the feed-forward dimension as DFF , and the number of heads as H . We primarily
report results on two model size for both TPTrans and TPTrans-α: base (LD=1, DFF =2048) and
large (LD=3, DFF =4096). For base and large settings, we all set LE=3, D=1024, and H=8. We add
a pointer network [Vinyals et al., 2015] to the decoder as same as our baselines. The base model
setting keeps the same size as other baselines for fair comparisons. The embedding dimension of the
word and path node are 512 and 64, and we apply a linear layer to project word embedding to the
hidden size of Transformer. We use one layer Bi-GRU, set the hidden size to 64, and concat the final
states of forward and backward as output with the size of the single head dimension. We set the batch
size and dropout rate to 128 and 0.2 and employ label smoothing of 0.1. All models and baselines are
trained from random initial parameters. As the optimizer, we use Adam [Kingma and Ba, 2014] with
a learning rate and weight decay of 1e−4. In our experiment, we use 4 Tesla V100 GPUs for training.

Baselines Combining two views of context and structure for source code has been widely discussed
in Code Intelligence. The context mainly refers to representing code as a sequence of text, and the
structure refers to extracting knowledge from code syntax. Here we mainly compare with Code2seq
[Alon et al., 2018], Graph Relational Embedding Attention Transformer (GREAT) [Hellendoorn
et al., 2019], XLNet [Yang et al., 2019] and Code Transformer [Zügner et al., 2021]. Unlike the
Transformer-based baselines, Code2seq uses only pairwise path information in AST to represent
code snippets, which means it mainly focuses on code structure within the syntax tree and lacks
context modelling. On the contrary, our proposed models and other baselines are designed based on
Transformer naturally focused on context. Specifically, GREAT uses the relative positional encoding
present in [Shaw et al., 2018] to bias the attention via manually designed edges, and Code Transformer
is a recent Transformer model based XLNet, incorporating multiple relations to learning both structure
and context jointly. XLNet is designed initially for huge-corpus natural language pretraining, but its
novel two-stream self-attention also shows powerful performance in code representation learning.

Table 2: Model comparison

Model Context Structure

Code2Seq No Relative Path
Great Yes Manually Designed Edges
XLNet Yes No
CodeTransformer Yes Multiply Structural Distances

TPTrans Yes Relative Path
TPTrans-α Yes Relative and Absolute Path

Essentially, the difference between our model and baselines GREAT and Code Transformer is
encoding path vs encoding edges in GREAT and distances in Code Transformer. The different node
combinations of paths naturally contain plenty of structure information, which is overlooked by
encoding distances. See Table 2 for clear comparisons between our models and baselines.
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5 Results

5.1 Overall comparison

Table 3: Code summarization result on the CSN dataset
Model Python Ruby Javascript Go

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Code2seq 35.79 24.85 29.34 23.23 10.31 14.28 30.18 19.88 23.97 52.30 43.43 47.45
Great 35.09 31.62 33.26 24.66 22.25 23.39 31.25 26.87 28.89 50.02 46.52 48.21
XLNet 37.39 32.01 34.49 29.88 25.89 27.74 33.33 26.86 29.75 51.79 47.58 49.60
CodeTransformer 36.41 33.68 34.99 31.46 24.50 27.55 35.07 29.65 32.13 55.09 48.05 51.33

TPTrans 38.45 33.63 35.88 32.70 27.75 30.02 33.47 28.27 30.65 56.19 51.14 53.54
[Base] ±0.17 ±0.06 ±0.05 ±1.32 ±0.38 ±0.72 ±0.62 ±0.52 ±0.04 ±0.21 ±0.56 ±0.22
TPTrans-α 38.48 33.99 36.09 32.54 26.77 29.38 34.06 28.42 30.99 56.00 50.97 53.37
[Base] ±0.07 ±0.29 ±0.18 ±0.15 ±0.50 ±0.35 ±0.21 ±0.12 ±0.14 ±0.33 ±0.28 ±0.22
TPTrans 38.76 34.66 36.59 32.40 27.63 29.82 33.83 28.37 30.86 55.79 51.05 53.30
[Large] ±0.49 ±0.35 ±0.02 ±0.84 ±0.78 ±0.79 ±0.55 ±0.54 ±0.53 ±1.30 ±1.30 ±0.83
TPTrans-α 38.39 34.70 36.45 33.07 28.34 30.52 33.68 28.95 31.14 55.67 51.31 53.39
[Large] ±0.18 ±0.26 ±0.22 ±0.86 ±0.61 ±0.53 ±0.34 ±0.54 ±0.46 ±0.92 ±0.76 ±0.13

The overall comparison results are shown in Table 3. We show the performance of two different
settings for both TPTrans and TPTrans-α. The base setting keeps the same Transformer backbone
as other Transformer-based baselines, and the large setting additionally widens the feed-forward
dimension and increases the number of decoder layers. We find that our proposed models TPTrans
and TPTrans-α substantially outperform all baselines on all but one language, highlighting the
effectiveness of learning path information. The only exception is Javascript, while our models still
outperform most of the baselines on this dataset. Besides, we find that the large setting further
improves the performance on most datasets.

It is worth mentioning that Code Transformer is designed based on XLNet, which natively equips the
relative positional encoding of context and is effective for modelling long sequences. In this work,
we mainly focus on studying the effectiveness of encoding path, so we use the original Transformer
as our backbone. Even so, we still obtain advanced results on almost all datasets. We also find that
compared to the improvement of Code Transformer over XLNet, our models get a more remarkable
rise over Code Transformer.

To investigate the exception of Javascript dataset, we focus on TPTrans and count the mean and
variance of all relative paths length across four datasets. We also count the total numbers of unique
relative paths in training datasets and present them in Table 4.5 We firstly find that the path length
of Javascript is not only longer but also has a significantly larger variance than other datasets. We
then find that the unique paths num of Javascript is much large and does not match its dataset size
well, which likely indicates much noise exists in the training dataset. So we assume that due to
such property of Javascript, it is harder to extract useful structural information from path than others.
Accordingly, our models achieve more significant performance on Ruby dataset, and the Ruby dataset
has smaller mean length and variance than others and also keeps an ideal num of unique paths. As for
the outlier of Javascript, one possible reasoning line is the inherent property of Javascript language
results in complicated syntax. We also suspect that it is due to the internal design of language parsers,
and perhaps a more suitable parser might alleviate this problem.

Table 4: Path statistics

Dataset Train Valid Test Train
Mean Var. Mean Var. Mean Var. Path nums Data size

Ruby 9.29 17.62 9.76 18.84 9.60 18.82 10.97M 48,791
Go 11.18 20.16 11.56 22.40 10.68 18.83 45.79M 317,832
Python 11.96 24.61 11.81 23.64 12.05 25.36 81.42M 412,178
Javascript 14.59 41.46 14.40 40.02 14.57 40.59 52.60M 81,487

Lastly, we find that the overall performance of TPTrans and TPTrans-α does not differ so much,
although the latter seems to obtain additional information about the absolute path. We investigate the
effectiveness of both paths and analyze the relationship between them further in the following.

5For Javascript, we present the sample num of non-anonymous functions.
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5.2 Empirical study

In this work, we propose two versions of models, namely TPTrans and TPTrans-α. The first one
encodes the pairwise relative paths in the syntax tree, while the last one additionally encodes the
absolute path. Here we explore the feature interaction of relative and absolute path encodings and
mainly experiment on the large model setting.

Table 5: Empirical study for path relationship

Model Python Ruby Javascript Go
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

TPTrans 38.76 34.66 36.59 32.40 27.63 29.82 33.83 28.37 30.86 55.79 51.05 53.30
±0.49 ±0.35 ±0.02 ±0.84 ±0.78 ±0.79 ±0.55 ±0.54 ±0.53 ±1.30 ±1.30 ±0.83

w/o Rel in V 37.00 33.33 35.06 29.96 25.87 27.76 31.93 27.31 29.43 54.48 51.56 52.97
±0.38 ±0.77 ±0.46 ±0.64 ±0.90 ±0.76 ±0.71 ±0.77 ±0.66 ±1.12 ±0.68 ±0.34

w/o Rel in K,V 34.30 28.99 31.42 24.78 20.32 22.33 27.94 23.08 25.28 51.47 47.71 49.52
±0.35 ±0.44 ±0.12 ±0.51 ±0.46 ±0.48 ±0.37 ±0.41 ±0.38 ±0.34 ±0.22 ±0.10

TPTrans-α 38.39 34.70 36.45 33.07 28.34 30.52 33.68 28.95 31.14 55.67 51.31 53.39
±0.18 ±0.26 ±0.22 ±0.86 ±0.61 ±0.53 ±0.34 ±0.54 ±0.46 ±0.92 ±0.76 ±0.13

w/o Rel in V 37.28 33.63 35.36 30.44 25.27 27.58 32.93 28.29 30.43 54.89 51.35 53.06
±0.35 ±0.44 ±0.34 ±1.47 ±1.11 ±0.16 ±0.33 ±0.54 ±0.43 ±0.39 ±0.17 ±0.27

w/o Rel in K,V 36.35 31.42 33.70 30.05 22.68 25.83 31.17 26.11 28.41 54.08 50.58 52.27
±0.34 ±0.62 ±0.31 ±0.84 ±1.04 ±0.52 ±0.85 ±0.66 ±0.58 ±0.99 ±0.72 ±0.61

Relative path encoding For TPTrans (Eq.6 + Eq.7), We first remove the relative path encoding in
the weighted sum of Value (2 in Eq.7) and then further remove the relative path in Query-Key product
(1 in Eq.6), showing in the top half of Table 5. We find that with the elimination of relative path
encoding gradually, the performance of TPTrans decreases obviously. After removing all submodules
of relative path encoding (1 in Eq.6 and 2 in Eq.7), TPTrans totally degenerates to vanilla Transformer
and performs the worst. These results highlight the usefulness of relative path encoding, both in
Query-Key product (Eq.6) and the weighted sum of Value (Eq.7).

Absolute path encoding TPTrans-α extra adds absolute path encoding on Query-Key product of
attention score (Eq.10) compared to TPTrans. We remove all the relative path encoding of TPTrans-α
and compare it to vanilla Transformer shown in the last rows of both top and bottom halves of Table
5, respectively. We find that absolute path encoding significantly improves vanilla Transformer,
highlighting its effectiveness.

Relationship between them We analyze the interaction between these two kinds of paths further.
In the bottom half of Table 5, we firstly find that with the elimination of two submodules of relative
path encoding gradually (1 in Eq.10 and 2 in Eq.7), the performance of TPTrans-α decreases at
the same time. This phenomenon is consistent with the ablation study for relative path encoding
shown in the previous paragraph. We then compare the top and bottom halves of Table 5 row by
row from down to up and find that with the introduction of relative path gradually, the performance
gap between TPTrans and TPTrans-α correspondingly decreases, which means the improvement
brought by absolute path becomes smaller at the same time. After introducing full of the relative path
encoding, the gain from absolute path encoding is almost weak. 6 These results show that these two
kinds of paths are not orthogonal and much feature overlap indeed exists between them. Actually, if
two sub-tokens are too far away from each other in the syntax tree, the relative path between them
then spans the root of AST, in which the relative and absolute path encodings play the same role for
modelling structure. The experimental results also show that it is preferable to encode the relative
path than the absolute path.

5.3 Ablation study

We explore the roles of each part of our approaches. We choose TPTrans with the base setting and
mainly experiment on Python and Ruby datasets.

6We also tried another method adding absolute path representation to word embedding directly in [Kim et al.,
2020] as mentioned before, but the overall conclusion remains all the same.
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Path vs. distance To verify the benefit of learning from paths than distances presented in [Zügner
et al., 2021], we try to convert all nodes in paths to the same one before feeding paths into TPTrans
and present in Table 6. After such special preprocessing, what TPTrans learns completely degenerates
into hops across the syntax tree between two terminals. We find that the performance of our proposed
model shows noticeable declines after information ablation. It indicates TPTrans indeed learns from
rich node combinations within paths, and it is better to model path than distance.

Table 6: Ablation study on path information

Model Python Ruby
Prec. Rec. F1 Prec. Rec. F1

TPTrans 38.45±0.17 33.63±0.06 35.88±0.05 32.70±1.32 27.75±0.38 30.02±0.72
degenerate to hops 37.31±0.22 32.76±0.24 34.89±0.09 29.68±0.04 24.85±0.17 27.05±0.10

Normalization As mentioned before, embedding vector sequences into the attention module of
Transformer is not just trivial, so we carefully design the normalization method and present the
ablation results in Table 7. These results prove that the normalization method is crucial for embedding
vector sequence into attention, which is also helpful to guide the design of neural networks.

Table 7: Ablation study on normalization

Model Python Ruby
Prec. Rec. F1 Prec. Rec. F1

TPTrans 38.45±0.17 33.63±0.06 35.88±0.05 32.70±1.32 27.75±0.38 30.02±0.72
w/o normalization 37.15±0.44 32.63±0.35 34.74±0.22 26.81±0.55 21.81±0.31 24.05±0.19

Deeper model architecture We re-design a deeper model architecture for TPTrans and vanilla
Transformer and set LE=LD=6, D=512, DFF =2048 and H=8. For TPTrans, the input and output
sizes of GRU are both 64. We present the results in Table 8 and conclude that our approaches of
integrating path encodings still work for the deep model setting.

Table 8: Ablation study on deeper model

Model Python Ruby
Prec. Rec. F1 Prec. Rec. F1

TPTrans 37.27±0.36 33.38±0.23 35.22±0.28 31.10±0.41 26.87±0.74 28.82±0.30
Transformer 32.71±0.27 27.63±0.10 29.96±0.16 24.26±0.33 19.66±0.45 21.71±0.25

6 Conclusion

In this paper, we investigate the interaction between the absolute and relative path encodings by
integrating them into the unified Transformer framework, and confirm that feature overlap exists
between these two kinds of paths. The detailed empirical study for path encodings also leads to our
novel code representation model TPTrans. Extensive experiments and ablation study demonstrate the
effectiveness of our approaches on code summarization across four different programming languages.
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