
Supplement

A. Proofs
In this section we provide detailed proofs of our theoretical results.

A.1. Proof of Proposition 1

Note that π(B) =
∑p
i=1 π(Bi) is a separable sum. From Boyd and Vandenberghe (2004) we have

π∗(Z) =

p∑
i=1

π∗(Zi) . (A1)

To compute π∗(Zi), we use a result from Touchette (2005). Define g(b) = (Zi)
T b−π(b) = (Zi)

T b−λ1 ‖b‖2−(λ2/2) ‖b‖22,
and let b? = arg maxb∈Rp g(b). Then

π∗(Zi) = g(b∗) . (A2)

To find b∗ we have to solve∇g(b) = 0, where∇g(b) = Zi − λ2 − λ1

{
‖b‖−12 b ‖b‖2 6= 0

{b : ‖b‖2 ≤ 1} o.w.
. Consider the case

where ‖b‖2 6= 0 and set ∇g(b) = 0. We get

Zi =
(
λ2 + ‖b‖−12 λ1

)
x . (A3)

To solve for b we must first compute ‖b‖2. Taking the norm of both sides, we get ‖Zi‖2 =
(
λ2 + ‖b‖−12 λ1

)
‖b‖2. Thus,

‖b‖2 = λ−12

(
‖Zi‖2 − λ1

)
. Plugging the last expression in (A3) and solving for b, we obtain b? = λ−12

(
1− ‖Zi‖−12 λ1

)
Zi,

for ‖b?‖2 6= 0. We need to take into account that dom(p) = range(p∗) and vice-versa. In particular, ‖b?‖2 6= 0 iff
‖Zi‖2 > λ1. Therefore, we have

b? =

{
λ−12

(
1− ‖Zi‖−12 λ1

)
Zi ‖Zi‖2 > λ1

0 o.w.
. (A4)

From (A2) we now need to compute g(b?). If ‖Zi‖2 ≤ λ1, then g(b?) = 0. If ‖Zi‖2 > λ1, after some algebraic
manipulations, we obtain g(b?) = (2λ2)−1(‖Zi‖ − λ1)2. Finally, (A1) gives us the desired result

π∗(Z) = (2λ2)−1
p∑
i=1

{(
‖Zi‖2 − λ1

)2 ‖Zi‖2 > λ1

0 o.w.
. (A5)

A.2. Proof of Proposition 2

Since π(B) =
∑p
i=1 π(Bi) is a separable sum, from Beck (2017) Remark 6.7, we know

proxσπ(B) =
(

proxσπ(B1), . . . ,proxσπ(Bp)
)T
. (A6)

From Fan and Reimherr (2016), we have proxσλ1‖·‖2(Bi) =
[
1 − ‖Bi‖−12 σλ1

]
+
Bi. From Beck (2017) 6.2.3, we have

prox(σλ2/2)‖·‖22
(Bi) = (1 + σλ2)−1Bi. Moreover, ‖·‖22 is a proper closed and convex function, thus we can compose

prox(σλ2/2)‖·‖22
and proxσλ1‖·‖2 as described in Parikh et al. (2014), obtaining the desired form

proxσπ(Bi) = (1 + σλ2)−1
[
1− ‖Bi‖−12 σλ1

]
+
Bi . (A7)
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A.3. Proof of Proposition 3

We first prove (b), i.e. Z̄ = proxπ∗/σ

(
B/σ −XT V̄

)
. If we compute the derivative of Lσ

(
Z | V̄ , B

)
with respect to Zi

and we set it equal to 0, we obtain
Bi/σ −

(
XT
)
V̄ − Z̄i = ∇π∗(Z̄i)/σ (A8)

We now use the sub-gradient proximal operators characterization (Correa et al., 1992):

u = proxf (t) if and only if t− u ∈ ∂f(u) . (A9)

Considering t = Bi/σ − V̄ TX(i), u = Z̄i, and f = π∗/σ, the right hand side of (A9) is true by (A8). The left hand side of
(A9) gives us Z̄i = proxπ∗/σ

(
Bi/σ − V̄ TX(i)

)
. To conclude the first part of the proof just note that Z̄ = (Z̄1, . . . , Z̄p)

T .

For the second part of the proof, we need to find ψ(V ) := Lσ
(
V | Z̄, B

)
. First, note that by the Moreau decomposition (4)

Z̄ = B/σ −XTV − (1/σ) proxσπ
(
B − σXTV

)
. Plugging this into (5), after some algebraic manipulations, we obtain

ψ(V ) = h∗(V ) + π∗(Z̄) +
1

2σ

p∑
i=1

∥∥proxσπ
(
Bi − σV TX(i)

)∥∥2
2
− 1

2σ

p∑
i=1

‖Bi‖22 . (A10)

We now have to compute π∗(Z̄). If we set T = B − σXTV , then π∗(Z̄) =
∑p
i=1 π

∗( proxπ∗/σ(Ti/σ)
)
. In particular

proxπ∗/σ(Ti/σ) = Ti/σ − (1/σ) proxσπ(Ti) =

{
(1 + σλ2)−1

(
λ2 + ‖Ti‖−12 λ1

)
Ti ‖Ti‖2 > σλ1

Ti/σ o.w.
. (A11)

Composing (A11) and (2), again after some algebraic manipulations, we get
π∗(Z̄) = (λ2/2)

∑p
i=1

∥∥proxσπ
(
Bi − σV TX(i)

) ∥∥2
2
. Plugging this into (A10) concludes our proof.

A.4. Proof of Theorem 1

Remember that T = B − σXTV and X̂ = X ⊗ Ik. To prove (i), we just take the gradient of ψ(Y ) with respect to Y , as

given in (11). In particular, note that ∂V
TX(i)

∂Vj
= Xji, i.e. the element in the j-th row and i-th column of the matrix X , and

therefore that

∇V

(
1 + σλ2

2σ

p∑
i=1

∥∥ proxσπ

(
Bi − σV TX(i)

)∥∥2
2

)
=


−
∑p
i=1X1i proxσπ

(
Bi − σV TX(i)

)
...

−
∑p
i=1Xmi proxσπ

(
Bi − σV TX(i)

)
 = −X proxσπ(T ).

(A12)

Next, to prove (ii), note that ∂̂2ψ(V ) is the nk × nk symmetric matrix


∂ψ

∂V1∂V1
. . . ∂ψ

∂V1∂Vn
...

. . .
...

∂ψ
∂Vn∂V1

. . . ∂ψ
∂Vn∂Vn

. In particular, each block

here is the k × k matrix
∂ψ

∂Vt∂Vs
=

{
Ik + σ

∑p
i=1Xti∂ proxσπ(Ti)Xsi t = s

σ
∑p
i=1Xti∂ proxσπ(Ti)Xsi t 6= s

. (A13)

Thus, we have

∂̂2ψ(V ) = Ink +

p∑
i=1

X1i∂ proxσπ(Ti)X1i . . . X1i∂ proxσπ(Ti)Xni

...
. . .

...
Xni∂ proxσπ(Ti)X1i . . . Xni∂ proxσπ(Ti)Xni

 = Ink + X̂∂ proxσπ(T )X̂T . (A14)

We now need to show thatQ ∈ ∂ proxσπ(T ). Note that ∂ proxσπ(T ) is a pk×pk block-diagonal matrix, since ∂ proxσπ(Ti)
∂Tj

=

0 for i 6= j. Let us focus on T1, and let t1, . . . , tk be its k elements. Then, (∂ proxσπ(T1))ij = ∂ proxσπ(ti)
∂tj

, for
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i, j = 1, . . . , k. Specifically, for ‖Ti‖2 ≤ σλ1, it is straightforward to see that ∂ proxσπ(T1) = 0. For ‖Ti‖2 > σλ1,
knowing that ∂‖T1‖2

∂ti
= ‖T1‖−12 ti, after some algebraic manipulations we obtain

∂ proxσπ(ti)

∂tj
= (1 + σλ2)−1

{
1− σλ1 ‖T1‖−12 + ‖T1‖−32 σλ1t

2
i i = j

‖Ti‖−32 σλ1titj i 6= j
. (A15)

(A15) shows us that P1 = ∂ proxσπ(T1). Without loss of generality, we can do the same way for T2, . . . , Tp and prove (iii).
To conclude the proof of the theorem, we note that since Q ∈ ∂ proxσπ(T ), then Ink + σX̂QX̂T ∈ ∂̂2ψ(V ), and from
Hiriart-Urruty et al. (1984) we have ∂2ψ(V ) vec(D) = (Ink + σX̂QX̂T ) vec(D), for every D in the domain of V

B. Additional Simulation Results
We ran all simulations on a MacBookPro with 3.3 GHz DualCore Intel Core i7 processor and 16GB ram. We reran
all python simulations using openblas and mkl as blas systems, with threads=1,2 and openmp, with threads=1,4.
In all scenarios, times match those reported in the paper that are obtained considering openblas with 2 threads and
openmp with 4 threads. The following versions of sklearn and glmnet are used: scikit-learn==0.22.2 and
glmnet==4.1

Table B.1. a, b and c report mean CPU time in seconds for fgen, sklearn and glmnet, respectively, over 20 replications of the same
simulation scenari. In parenthesis we report standard errors. For each scenario we consider three values of cλ, which are held fixed over
the replications.

α = 0.8, l = 0.25 n=1000 n=5000
p; p0 k cλ a b c a b c

2(104); 10 5
0.8 0.2 (0.02) 1 (0.03) 0.7 (0.01) 0.6 (0.01) 9.1 (0.24) 3.1 (0.03)
0.4 0.3 (0.00) 1.0 (0.01) 0.6 (0.00) 1.4 (0.04) 9.5 (0.28) 3.2 (0.04)
0.2 0.4 (0.01) 1.2 (0.04) 0.6 (0.02) 1.3 (0.04) 10.2 (0.13) 3.0 (0.10)

Table B.2. a, b and c report CPU time in seconds for fgen, sklearn and glmnet, respectively. The full cλ grid consists of 100
log-spaced points between 1 and 0.01. We truncate the path search when max active components are selected. runs is the corresponding
number of explored cλ values. We fix 1000 seconds as time limit.

α = 0.8, l = 0.25 n=500 n=1000 n=5000
p; p0 k max runs a b c runs a b c runs a b c

105; 102 5
5 7 1.6 26.2 3.2 8 3.8 63.3 7.4 6 11.0 399.5 30.5

20 12 2.8 45.4 5.2 14 5.2 111.1 10.9 15 26.7 >1000 59.1
100 16 5.1 64.7 6.3 24 11.7 196.1 18.0 41 90.1 >1000 146.7
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