
ROI Maximization
in Stochastic Online Decision-Making

Nicolò Cesa-Bianchi
Università degli Studi di Milano & DSRC
nicolo.cesa-bianchi@unimi.it

Tommaso Cesari
Toulouse School of Economics
tommaso.cesari@tse-fr.eu

Yishay Mansour
Tel Aviv University & Google research

mansour@tau.ac.il

Vianney Perchet
CREST, ENSAE & Criteo AI Lab

vianney.perchet@normalesup.org

Abstract

We introduce a novel theoretical framework for Return On Investment (ROI)
maximization in repeated decision-making. Our setting is motivated by the use
case of companies that regularly receive proposals for technological innovations
and want to quickly decide whether they are worth implementing. We design an
algorithm for learning ROI-maximizing decision-making policies over a sequence
of innovation proposals. Our algorithm provably converges to an optimal policy
in class Π at a rate of order min

{
1/(N∆2), N−1/3}, where N is the number

of innovations and ∆ is the suboptimality gap in Π. A significant hurdle of our
formulation, which sets it aside from other online learning problems such as bandits,
is that running a policy does not provide an unbiased estimate of its performance.

1 Introduction
Often, companies have to make yes/no decisions, such as whether to adopt a new technology or retire
an old product. However, finding out the best option in all circumstances could mean spending too
much time or money in the evaluation process. If the decisions to make are many, one could be better
off making more of them quickly and inexpensively, provided that these decisions have an overall
positive effect. In this paper, we investigate the problem of determining a decision policy to balance
the reward over cost ratio optimally (i.e., to maximize the return on investment).

A motivating example. Consider a technology company that keeps testing innovations to increase
some chosen metric (e.g., benefits, gross revenue, revenue excluding the traffic acquisition cost).
Before deploying an innovation, the company wants to figure out whether it is profitable. As long
as each innovation can be tested on i.i.d. samples of users, the company can perform randomized
tests and make statistically sound decisions. However, there is an incentive to make these tests run
as quickly as possible because, for example, the testing process is expensive. Another reason could
be that keeping a team on a project that has negative, neutral, or even borderline positive potential
prevents it from testing other ideas that might lead to a significantly better improvement. In other
words, it is crucial to learn when to drop barely positive innovations in favor of highly positive ones,
so to increase the overall flow of improvement over time (i.e., the ROI of the tests).

More generally, our framework describes problems where an agent faces a sequence of decision tasks
consisting of either accepting or rejecting an innovation. Before making each decision, the agent can
invest resources into reducing the uncertainty on the value brought by the innovation. The global
objective is to maximize the total ROI. Namely, the ratio between the total value accumulated by
accepting innovations and the total cost. For an in-depth discussion on alternative goals, we refer the
reader to the Supplementary Material (Section D).

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

The model. Each task n in the sequence is associated with a pair (µn, Dn) that the learner can
never directly observe.

• µn is a random variable representing the (possibly negative) true value of the n-th innovation.
• Dn is a probability distribution over the real numbers with expectation µn, modeling the

feedback on the n-th innovation that the learner can gather from testing (see below).

During the n-th task, the learner can draw arbitrarily many i.i.d. samples Xn,1, Xn,2, . . . from Dn,
accumulating information on the unknown value µn of the innovation currently being tested. After
stopping drawing samples, the learner can decide to either accept the innovation, earning µn as a
reward, or reject it and gain nothing instead. We measure the agent performance during N tasks as the
(expected) total amount of value accumulated by accepting innovations µn divided by the (expected)
total number of samples requested throughout all tasks. In formulas, the ROI of a strategy is then∑N

n=1 E
[
µn · I{µn is accepted}

]∑N
n=1 E

[
number of samples requested during the n-th task

]
In Section 3 we present this setting in more detail and introduce the relevant notation.

I.I.D. assumption. We assume that the value µn of the n-th innovation is drawn i.i.d. from an
unknown and fixed distribution. This assumption is meaningful if past decisions do not influence
future innovations whose global quality remains stable over time. In particular, it applies whenever
innovations can progress in many orthogonal directions, each yielding a similar added value (e.g.,
when different teams within the same company test improvements relative to individual aspects of
the company). If both the state of the agent and that of the environment evolve, but the ratio of good
versus bad innovations remains essentially the same, then this i.i.d. assumption is still justified. In
other words, it is not necessarily the absolute quality of the innovations that has to remain stationary,
but rather the relative added value of the innovations given the current state of the system. This case
is frequent in practice, especially when a system is close to its technological limit. Last but not least,
algorithms designed under stochastic assumptions often perform surprisingly well in practice, even if
i.i.d. assumptions are not fully satisfied or simply hard to check.

A baseline strategy and policy classes. A natural, yet suboptimal, approach for deciding if an
innovation is worth accepting is to gather samples sequentially, stopping as soon as the absolute value
of their running average surpasses a threshold, and then accepting the innovation if and only if the
average is positive. The major drawback of this approach is that the value µn of an innovation n
could be arbitrarily close to zero. In this case, the number of samples needed to reliably determine
its sign (which is of order 1/µ2

n) would become prohibitively large. This would result is a massive
time investment for an innovation whose return is negligible at best. In hindsight, it would have
been better to reject the innovation early and move on to the next task. For this reason, testing
processes in practice needs hard termination rules of the form: if after drawing a certain number of
samples no confident decision can be taken, then terminate the testing process rejecting the current
innovation. Denote by τ this capped early stopping rule and by accept the accept/reject decision
rule that comes with it. We say that the pair π = (τ, accept) is a policy because it fully characterize
the decision-making process for an innovation. Policies defined by capped early stopping rules
(see (4) for a concrete example) are of great practical importance (Johari et al., 2017; Kohavi et al.,
2013). However, policies can be defined more generally by any reasonable stopping rule and decision
function. Given a (possibly infinite) set of policies, and assuming that µ1, µ2, . . . are drawn i.i.d.
from some unknown but fixed distribution, the goal is to learn efficiently, at the lowest cost, the best
policy π? in the set with respect to a sensible metric. Competing against fixed policy classes is a
common modeling choice that allows to express the intrinsic constraints that are imposed by the
nature of the decision-making problem. For example, even if some policies outside of the class could
theoretically yield better performance, they might not be implementable because of time, budget,
fairness, or technology constraints.

Challenges. One of the biggest challenges arising in our framework is that running a decision-
making policy generates a collection of samples that —in general— cannot be used to form an
unbiased estimate of the policy reward (see the impossibility result in Section E of the Supplementary
Material). The presence of this bias is a significant departure from settings like multiarmed and firing
bandits (Auer et al., 2002; Jain and Jamieson, 2018), where the learner observes an unbiased sample
of the target quantity at the end of every round (see the next section for additional details). Moreover,
contrary to standard online learning problems, the relevant performance measure is neither additive in

2

the number of innovations nor in the number of samples per innovation. Therefore, algorithms have
to be analyzed globally, and bandit-like techniques —in which the regret is additive over rounds—
cannot be directly applied. We argue that these technical difficulties are a worthy price to pay in order
to define a plausible setting, applicable to real-life scenarios.

Main contributions. The first contribution of this paper is providing a mathematical formalization
of our ROI maximization setting for repeated decision making (Section 3). We then design an
algorithm called Capped Policy Elimination (Algorithm 1, CAPE) that applies to finite policy classes
(Section 4). We prove that CAPE converges to the optimal policy at rate 1/(∆2N), where N is the
number of tasks and ∆ is the unknown gap between the performance of the two best policies, and
at rate N−1/3 when ∆ is small (Theorem 1) . In Section 5 we tackle the challenging problem of
infinitely large policy classes. For this setting, we design a preprocessing step (Algorithm 2, ESC)
that leads to the ESC-CAPE algorithm. We prove that this algorithm converges to the optimal policy
in an infinite set at a rate of N−1/3 (Theorem 4).

Limitations. Although we do not investigate lower bounds in this paper, we conjecture that our
N−1/3 convergence rate it is optimal due to similarities with bandits with weakly observable feedback
graphs (see Section 4, “Divided we fall”). Another limitation of our theory is that it only applies to
i.i.d. sequences of values µn. It would be interesting to extend our analysis to distributions of µn that
evolve over time. These two intriguing problems are left open for future research.

2 Related Work
Return on Investment (ROI) was developed and popularized by Donaldson Brown in the early Nineties
(Flesher and Previts, 2013) and it is still considered an extremely valuable metric by the overwhelming
majority of marketing managers (Farris et al., 2010). Beyond economics, mathematics, and computer
science, ROI finds applications in other fields, such as cognitive science and psychology (Chabris
et al., 2009). Despite this, to the best of our knowledge, no theoretical online learning framework
has been developed specifically for ROI maximization. However, our novel formalization of this
sequential decision problem does share some similarities with other known online learning settings.
In this section, we review the relevant literature regarding these settings and stress the differences
with ours.

Prophet inequalities and Pandora’s box. In prophet inequalities (Lucier, 2017; Correa et al.,
2019; Alaei et al., 2012), an agent observes sequentially (usually non-negative) random variables
Z1, . . . , Zn and decides to stop at some time τ ; the reward is then Zτ . Variants include the possibility
of choosing more than one random variable (in which case the reward is some function of the selected
random variables), and the possibility to go back in time (to some extent). The Pandora’s box problem
is slightly different (Weitzman, 1979; Kleinberg et al., 2016; Esfandiari et al., 2019); in its original
formulation, the agent can pay a cost cn ≥ 0 to observe any Zn. After stopping exploring, the agent’s
final utility is the maximum of the observed Zn’s minus the cumulative cost (or, in other variants,
some function of these). Similarly to the (general) prophet inequality, the agent in our sequential
problem faces random variables (Zn = µn in our notation) and sequentially selects any number
of them (possibly with negative values) without the possibility to go back in time and change past
decisions. The significant difference is that the agent in our setting never observes the value of µn. In
Pandora’s box, the agent can see this value by paying some price (that approximately scales as 1/ε2

where ε is the required precision). Finally, the global reward is the cumulative sum (as in prophets)
and not the maximum (as in Pandora’s box) of the selected variables, normalized by the total cost (as
in Pandora’s box, but our normalization is multiplicative instead of additive, as it represents a ROI).

Multi-armed bandits. If we think of the set of all policies used by the agent to determine whether
or not to accept innovations as arms, our setting becomes somewhat reminiscent of multi-armed
bandits (Slivkins, 2019; Bubeck and Cesa-Bianchi, 2012; Rosenberg et al., 2007). However, there are
several notable differences between these two problems. In stochastic bandits, the agent observes
an unbiased estimate of the expected reward of each pulled arm. In our setting, the agent not only
does not see it directly, but it is mathematically impossible to define such an estimator solely with the
feedback received (see the impossibility result in Section E of the Supplementary Material). Hence,
off-the-shelf bandit algorithms cannot be run to solve our problem. In addition, the objective in
bandits is to maximize the cumulative reward, which is additive over time, while the ROI is not. Thus,
it is unclear how formal guarantees for bandit algorithms would translate to our problem.

3

We could also see firing bandits (Jain and Jamieson, 2018) as a variant of our problem, where µn
belongs to [0, 1], Dn are Bernoulli distribution with parameter µn, and policies have a specific form
that allows to easily define unbiased estimates of their rewards (which, we reiterate, is not possible
in our setting in general). Furthermore, in firing bandits, it is possible to go back and forth in time,
sampling from any of the past distributions Dn and gathering any number of samples from it. This is
a reasonable assumption for the original motivations of firing bandits because the authors thought
of µn as the value of a project in a crowdfunding platform, and, in their setting, drawing samples
from Dn corresponds to displaying projects on web pages. However, in our setting, µn represents
the theoretical increment (or decrement) of a company’s profit through a given innovation, and it is
unlikely that a company would show new interest in investing in a technology that has been tested
before and did not prove to be useful (a killed project is seldom re-launched). Hence, when the
sampling of Dn stops, an irrevocable decision is made. After that, the learner cannot draw any more
samples in the future. Finally, as in multi-armed bandits, the performance criterion in firing bandits is
the cumulative reward and not the global ROI.

Another online problem that shares some similarities with ours is bandits with knapsacks (Badani-
diyuru et al., 2018). In this problem, playing an arm consumes one unit of time together with some
other resources, and the learner receives an unbiased estimate of its reward as feedback. The process
ends as soon as time or any one of the other resources is exhausted. As usual, the goal is to maximize
the cumulative regret. As it turns out, we can also think of our problem as a budgeted problem. In this
restatement, there is a budget of T samples. The repeated decision-making process proceeds as before,
but it stops as soon as the learner has drawn a total of T samples across all decision tasks. The goal is
again to maximize the total expected reward of accepted innovations divided by T (see Section D of
the Supplementary Material for more details on the reduction). As per the other bandit problems,
there are two crucial differences. First, running a policy does not reveal an unbiased estimate of its
reward. Second, our objective is different, and regret bounds do not directly imply convergence to
optimal ROI. For other examples of budget-constrained bandit settings, see also (Cayci et al., 2020,
2019).

Repeated A/B testing. We can view our problem as a framework for repeated A/B testing (Tukey,
1953; Genovese et al., 2006; Foster and Stine, 2008; Heesen and Janssen, 2016; Javanmard et al.,
2018; Azevedo et al., 2018; Li and Barber, 2019; Schmit et al., 2019; Xu et al., 2021; Johari et al.,
2021), in which assessing the value of an innovation corresponds to performing an A/B test, and
the goal is maximizing the ROI. A popular metric to optimize sequential A/B tests is the so-called
false discovery rate (FDR) —see (Ramdas et al., 2017; Yang et al., 2017) and references therein.
Roughly speaking, the FDR is the ratio of accepted µn that are negative over the total number of
accepted µn (or more generally, the number of incorrectly accepted tests over the total number if the
metric used at each test changes with time). This, unfortunately, disregards the relative values of tests
µn that must be taken into account when optimizing a single metric (Chen and Kasiviswanathan,
2020; Robertson and Wason, 2018). Indeed, the effect of many even slightly negative accepted tests
could be overcome by a few largely positive ones. For instance, assume that the samples Xn,i of
any distribution Dn belong to {−1, 1}, and that their expected value µn is uniformly distributed on
{−ε, ε}. To control the FDR, each A/B test should be run for approximately 1/ε2 times, yielding a
ratio of the average value of an accepted test to the number of samples of order ε3. A better strategy,
using just one sample from each A/B test, is simply to accept µn if and only if the first sample is
positive. Direct computations show that this policy, which fits our setting, achieves a significantly
better performance of order ε.

Some other A/B testing settings are more closely related to ours, but make stronger additional
assumptions or suppose preliminary knowledge: for example, smoothness assumptions can be made
on both Dn and the distributions of µn (Azevedo et al., 2018), or the distribution of µn is known, and
the distribution of samples belongs to a single parameter exponential family, also known beforehand
(Schmit et al., 2019).

A related topic that sits in between multi-armed bandits and repeated A/B testing is best-arm
identification—see, e.g., the recent paper (Garivier and Kaufmann, 2021) and references therein—
where the learner has to minimize the number of observations needed to select a (near)-optimal
arm.

Rational metareasoning. Our setting is loosely related to the AI field of meta-reasoning (Griffiths
et al., 2019; Hay et al., 2012). In a metalevel decision problem, determining the utility (or reward) of

4

a given action is computationally intractable. Instead, the learner can run a simulation, investing a
computational cost to gather information about this hidden value. The high-level idea is then to learn
which actions to simulate. After running some simulations, the learner picks an action to play, gains
the corresponding (hidden) reward, and the state of the system changes. In rational meta-reasoning,
the performance measure is the value of computation (VOC): the difference between the increment
in expected utility gained by executing a simulation and the cost incurred by doing so. This setting
is not directly comparable to ours for two reasons. First, the performance measure is different, and
the additive nature of the difference that defines the VOC gives no guarantees on our multiplicative
notion of ROI. Second, in this problem, one can pick which actions to simulate, while in our settings,
innovations come independently of the learner, who has to evaluate them in that order.

3 Setting and Notation
In this section, we formally introduce the repeated decision-making protocol for an agent whose goal
is to maximize the total return on investment in a sequence of decision tasks.

The only two choices that an agent makes in a decision task are when to stop gathering information
on the current innovation and whether or not to accept the innovation based on this information. In
other words, the behavior of the agent during each task is fully characterized by the choice of a pair
π = (τ, accept) that we call a (decision-making) policy (for the interested reader, Section A of the
Supplementary Material contains a short mathematical discussion on policies), where:

• τ(x), called duration, maps a sequence of observations x = (x1, x2, . . .) to an integer d (the
no. of observations after which the learner stops gathering info on the current innovation);

• accept(d,x), called decision, maps the firs d observations of a sequence x = (x1, x2, . . .)
to a boolean value in {0, 1} (where 1 represents accepting the current innovation).

An instance of our repeated decision-making problem is therefore determined by a set of admissible
policies Π = {πk}k∈K = {(τk, accept)}k∈K (with K finite or countable) and a distribution D on
[−1, 1], modelling the value of innovations.1 Naturally, the former is known beforehand but the latter
is unknown and should be learned.

For a fixed choice of Π and D, the protocol is formally described below. In each decision task n:

1. the value µn of the current innovation is drawn i.i.d. according to D;
2. Xn is a sequence of i.i.d. (given µn) observations with Xn,i = ±1 and E[Xn,i | µn] = µn;
3. the agent picks kn ∈ K or, equivalently, a policy πkn = (τkn , accept) ∈ Π;
4. the agent draws the first dn = τkn(Xn) samples2 of the sequence of observations Xn;
5. on the basis of these sequential observations, the agent makes the decision accept

(
dn,Xn

)
.

Crucially, µn is never revealed to the learner. We say that the agent runs a policy πk = (τk, accept)
(on a value µn) when steps 4–5 occur (with kn ← k). We also say that they accept (resp., rejects) µn
if their decision at step 5 is equal to 1 (resp., 0). Moreover, we say that the reward obtained and the
cost3 paid by running a policy πk = (τk, accept) on a value µn are, respectively,

reward(πk, µn) = µn accept
(
τk(Xn),Xn

)
∈ {µn, 0} cost(πk, µn) = τk(Xn) ∈ N (1)

The objective of the agent is to converge to the highest ROI of a policy in Π, i.e., to guarantee that

RN = sup
k∈K

∑N
n=1 E

[
reward(πk, µn)

]∑N
m=1 E

[
cost(πk, µm)

] − ∑N
n=1 E

[
reward(πkn , µn)

]∑N
m=1 E

[
cost(πkm , µm)

] → 0 as N →∞ (2)

where the expectations are taken with respect to µn, Xn, and (possibly) the random choices of kn.

1We assume that the values of the innovations and the learner’s observations belong to [−1, 1] and {−1, 1}
respectively. We do this merely for the sake of readability (to avoid carrying over awkward constants or
distributions Dn). With a standard argument, both [−1, 1] and {−1, 1} can be extended to arbitrary codomains
straightforwardly under a mild assumption of subgaussianity.

2Given µn, the random variable dn is a stopping time w.r.t. the natural filtration associated to Xn.
3We define the cost as the duration τk(Xn) of a run. Following our exact proofs, one can see that everything

remains true if we define the cost in terms of any increasing function of the duration. This puts no meaningful
restrictions on cost functions.

5

To further lighten notations, we denote the expected reward, cost, and ROI of a policy π by

reward(π) = E
[
reward(π, µn)

]
, cost(π) = E

[
cost(π, µn)

]
, ROI(π) = reward(π)/cost(π) (3)

respectively and we say that πk? is an optimal policy if k? ∈ argmaxk∈KROI(πk). Note that
reward(π) and cost(π) do not depend on n because µn is drawn i.i.d. according to µ.

For each policy (τ, accept) ∈ Π and all tasks n, we allow the agent to reject the value µn regardless
of the outcome of the sampling. Formally, the agent can always run the policy (τ, 0), where the
second component of the pair is the decision identically equal to zero (i.e., the rule “always reject”).

We also allow the agent to draw arbitrarily many extra samples in addition to the number τ(Xn)
that they would otherwise draw when running a policy (τ, accept) ∈ Π on a value µn, provided
that these additional samples are not taken into account in the decision to either accept or reject
µn. Formally, the agent can always draw τ(Xn) + k many samples (for any k ∈ N) before making
the decision accept

(
τ(Xn),Xn

)
, where we stress that the first argument of the decision function

accept is τ(Xn) and not τ(Xn) + k. Oversampling this way worsens the objective and might seem
utterly counterproductive, but it will be crucial for recovering unbiased estimates of µn.

4 Competing Against K policies (CAPE)
As we mentioned in the introduction, in practice the duration of a decision task is defined by a capped
early-stopping rule —e.g., drawing samples until 0 falls outside of a confidence interval around the
empirical average, or a maximum number of draws has been reached. More precisely, if N tasks have
to be performed, one could consider the natural policy class {(τk, accept)}k∈{1,...,K} given by

τk(x) = min
(
k, inf {d ∈ N : |xd| ≥ αd}

)
and accept(d,x) = I {xd ≥ αd} (4)

where xd = (1/d)
∑d
i=1 xi is the average of the first d elements of the sequence x = (x1, x2, . . .)

and αd = c
√

(1/d) ln(KN/δ), for some c > 0 and δ ∈ (0, 1). While in this example policies are
based on an Hoeffding concentration rule, in principle the learner is free to follow any scheme. Thus,
we now generalize this notion and present an algorithm with provable guarantees against these finite
families of policies.

Finite sets of policies. In this section, we focus on finite sets of K policies Π = {πk}k∈{1,...,K} =
{(τk, accept)}k∈{1,...,K} where accept is an arbitrary decision and τ1, . . . , τK is any sequence of
bounded durations (say, τk ≤ k for all k).4 For the sake of convenience, we assume the durations are
sorted by index (τk ≤ τh if k ≤ h), so that τ1 is the shortest and τK is the longest.

Divided we fall. A common strategy in online learning problems with limited feedback is explore-
then-commit (ETC). ETC consists of two phases. In the first phase (explore), each action is played
for the same amount of rounds, collecting this way i.i.d. samples of all rewards. In the subsequent
commit phase, the arm with the best empirical observations is played consistently. Being very easy to
execute, this strategy is popular in practice, but unfortunately, it is theoretically suboptimal in some
applications. A better approach is performing action elimination. In a typical implementation of
this strategy, all actions in a set are played with a round-robin schedule, collecting i.i.d. samples of
their rewards. At the end of each cycle, all actions that are deemed suboptimal are removed from the
set, and a new cycle begins. Neither one of these strategies can be applied directly because running
a policy in our setting does not return an unbiased estimate of its reward (for a quick proof of this
simple result, see Section E in the Supplementary Material). However, it turns out that we can get an
i.i.d. estimate of a policy π by playing a different policy π′. Namely, one that draws more samples
than π. This is reminiscent of bandits with a weakly observable feedback graph, a related problem
for which the time-averaged regret over T rounds vanishes at a T−1/3 rate (Alon et al., 2015). Albeit
none of these three techniques works on its own, suitably interweaving all of them does.

United we stand. With this in mind, we now present our simple and efficient algorithm (Algo-
rithm 1, CAPE) whose ROI converges (with high probability) to the best one in a finite family of
policies. We will later discuss how to extend the analysis even further, including countable families
of policies. Our algorithm performs policy elimination (lines 1–5) for a certain number of tasks

4We chose τk ≤ k for the sake of concreteness. All our results can be straightforwardly extended to arbitrary
τk ≤ Dk by simply assuming without loss of generality that k 7→ Dk is monotone and replacing k with Dk.

6

(line 1) or until a single policy is left (line 6). After that, it runs the best policy left in the set (line 7),
breaking ties arbitrarily,5 for all remaining tasks. During each policy elimination step, the algorithm
oversamples (line 2) by drawing twice as many samples as it would suffice to take its decision
accept

(
τmax(Cn)(Xn),Xn

)
(at line 3). These extra samples are used to compute rough estimates of

rewards and costs of all potentially optimal policies and more specifically to build unbiased estimates
of these rewards. The test at line 4 has the only purpose of ensuring that the denominators ĉ−n (k) at
line 5 are bounded away from zero so that all quantities are well-defined.

Algorithm 1: Capped Policy Elimination (CAPE)
Input: finite policy set Π, number of tasks N , confidence parameter δ, exploration cap Nex

Initialization: let C1 ← {1, . . . ,K} be the set of indices of all currently optimal candidates
1 for task n = 1, . . . , Nex do
2 draw the first 2max(Cn) samples Xn,1, . . . , Xn,2max(Cn) of Xn

3 make the decision accept
(
τmax(Cn)(Xn),Xn

)
4 if n ≥ 2K2 ln(4KNex/δ) then let Cn+1 ← Cn \ C ′n, where

5 C ′n =
{
k ∈ Cn :

(
r̂+
n (k) ≥ 0 and r̂+

n (k)/ĉ−n (k) < r̂−n (j)/ĉ+n (j), for some j ∈ Cn
)

or
(
r̂+
n (k) < 0 and r̂+

n (k)/ĉ+n (k) < r̂−n (j)/ĉ−n (j), for some j ∈ Cn
)}

r̂±n (k) =
1

n

n∑
m=1

max(Cm)∑
i=1

Xm,max(Cm)+i

max(Cm)
accept

(
τk(Xm),Xm

)
±
√

2

n
ln

4KNex

δ
(5)

ĉ±n (k) =
1

n

n∑
m=1

τk(Xm)± (k − 1)

√
1

2n
ln

4KNex

δ
(6)

6 if |Cn+1| = 1 then let r̂±Nex
(k)← r̂±n (k), ĉ±Nex

(k)← ĉ±n (k), CNex+1 ← Cn+1, break
7 run policy πk′ for all remaining tasks, where

k′ ∈

argmax
k∈CNex+1

(
r̂+
Nex

(k)/ĉ−Nex
(k)
)

if r̂+
Nex

(k) ≥ 0 for some k ∈ CNex+1

argmax
k∈CNex+1

(
r̂+
Nex

(k)/ĉ+Nex
(k)
)

if r̂+
Nex

(k) < 0 for all k ∈ CNex+1
(7)

As usual in online learning, the gap in performance between optimal and sub-optimal policies is a
complexity parameter. We define it as ∆ = mink 6=k?

(
ROI(πk?)− ROI(πk)

)
, where we recall that

k? ∈ argmaxk ROI(πk) is the index of an optimal policy. Conventionally, we set 1/0 =∞.

Theorem 1. If Π is a finite set of K policies, then the ROI of Algorithm 1 run for N tasks with
exploration cap Nex =

⌈
N2/3

⌉
and confidence parameter δ ∈ (0, 1) converges to the optimal

ROI(πk?), with probability at least 1− δ, at a rate

RN = Õ
(

min

(
K3

∆2N
,
K

N1/3

))
as soon as N ≥ K3 (where the Õ notation hides only logarithmic terms, including a log(1/δ) term).

Proof sketch. This theorem relies on four technical lemmas (Lemmas 5-8) whose proofs are deferred
to Section B of the Supplementary Material.

With a concentration argument (Lemma 5), we leverage the definitions of r̂±n (k), ĉ±n (k) and the i.i.d.
assumptions on the samples Xn,i to show that, with probability at least 1− δ, the event

r̂−n (k) ≤ reward(πk) ≤ r̂+
n (k) and ĉ−n (k) ≤ cost(πk) ≤ ĉ+n (k) (8)

5More precisely, ties should be broken in a measurable way, e.g., uniformly at random. We do not insist
on this point here, but the interested reader might see (Cesari and Colomboni, 2021, Section 2.4) for a more
thorough discussion on this topic.

7

occurs simultaneously for all n ≤ Nex and all k ≤ max(Cn). For the rewards, the key is oversam-
pling, because accept

(
τk(Xm),Xm

)
in eq. (5) depends only on the first k ≤ max(Cm) samples of

Xm and is therefore independent of Xm,max(Cm)+i for all i. Assume now that (8) holds.

If ∆ > 0 (i.e., if there is a unique optimal policy), we then obtain (Lemma 6) that suboptimal policies
are eliminated after at most N ′ex tasks, where N ′ex ≤ 288K2 ln(4KNex/δ)/∆

2 + 1. To prove it we
show that a confidence interval for ROI(πk) = reward(πk)/cost(πk) is given by[
r̂−n (k)

ĉ+n (k)
I
{
r̂+
n (k) ≥ 0

}
+
r̂−n (k)

ĉ−n (k)
I
{
r̂+
n (k) < 0

}
,
r̂+
n (k)

ĉ−n (k)
I
{
r̂+
n (k) ≥ 0

}
+
r̂+
n (k)

ĉ+n (k)
I
{
r̂+
n (k) < 0

}]
we upper bound its length, and we compute an N ′ex such that this upper bound is smaller than ∆/2.

Afterwards, we analyze separately the case in which the test at line 6 is true for some task N ′ex ≤ Nex

and its complement (i.e., when the test is always false).

In the first case, by (8) there exists a unique optimal policy, i.e., we have that ∆ > 0. This is where
the policy-elimination analysis comes into play. We can apply the bound above on N ′ex, obtaining
a deterministic upper bound N ′′ex on the number N ′ex of tasks needed to identify the optimal policy.
Using this upper bound, writing the definition of RN , and further upper bounding (Lemma 7) yields

RN ≤ min

(
(2K + 1)Nex

N
,

(2K + 1)
(
288 (K/∆)2 ln(4KNex/δ) + 1

)
N

)
(9)

Finally, we consider the case in which the test at line 6 is false for all tasks n ≤ Nex, and line 7 is
executed with CNex+1 containing two or more policies. This is covered by a worst case explore-
then-commit analysis. The key idea here is to use the definition of k′ in Equation (7) to lower bound
reward(πk′) in terms of reward(πk?)/cost(πk?). This, together with some additional technical
estimations (Lemma 8) leads to the result.

As we mentioned in Footnote 4, if we swap the bounds on durations τk ≤ k with generic τk ≤ Dk

(with k 7→ Dk non-decreasing), the result would still hold, but the right-hand side would scale with
DK rather than K. To see why, note that in our current presentation when the policy set Π is finite,
K plays the role of both the cardinality of Π and a uniform upper bound on their durations, where the
latter role is the most important. The key intuition on why this is the case is that whenever some data
are sufficient to evaluate a policy k, it can also be used to evaluate all policies k′ ≤ k for free. In
particular, in a case where many (even infinitely many, in principle) of the durations of the policies
shared the same upper bound Dk, our algorithm would have a very easy time in narrowing down the
best one because, using only Dk samples, it could keep updated a large number of policy estimators
all at once.

5 Competing Against Infinitely Many Policies (ESC-CAPE)
Theorem 1 provides theoretical guarantees on the convergence rate RN of CAPE to the best ROI of
a finite set of policies. Unfortunately, the bound becomes vacuous when the cardinality K of the
policy set is large compared to the number of tasks N . It is therefore natural to investigate whether
the problem becomes impossible in this scenario.

Infinite sets of policies. With this goal in mind, we now focus on policy sets Π = {πk}k∈K ={
(τk, accept)

}
k∈K as in the previous section, with K = N rather than K = {1, . . . ,K}.

We will show how such a countable set of policies can be reduced to a finite one containing all
optimal policies with high probability (Algorithm 2, ESC). After this is done, we can run CAPE on
the smaller policy set, obtaining theoretical guarantees for the resulting algorithm.

Estimating rewards and costs. Similarly to eqs. (5) and (6), we first introduce estimators for our
target quantities. If at least 2k samples are drawn during each of n2 consecutive tasks n1 + 1, . . . ,
n1 + n2, we can define, for all ε > 0, the following lower confidence bound on reward(πk):

r̂−k (n1, n2, ε) =
1

n2

n1+n2∑
n=n1+1

k∑
i=1

Xn,k+i

k
accept

(
τk(Xn),Xn

)
− 2ε (10)

If at least τk(Xn) samples are drawn during each of m0 consecutive tasks n0 + 1, . . . , n0 +m0, we
can define the following empirical average of cost(πk):

ck(n0,m0) =
(
τk(Xn0+1) + . . .+ τk(Xn0+m0

)
)
/m0 (11)

8

A key observation. The key idea behind Algorithm 2 (ESC) is simple. Since all optimal poli-
cies πk? have to satisfy the relationships reward(πk)/cost(πk) ≤ reward(πk?)/cost(πk?) ≤
1/cost(πk?), then, for all policies πk with positive reward(πk), the cost of any optimal policy
πk? must satisfy the relationship cost(πk?) ≤ cost(πk)/reward(πk). In other words, optimal poli-
cies cannot draw too many samples and their cost can be controlled by estimating the reward and
cost of any policy with positive reward.

We recall that running a policy (τ, 0) during a task n means drawing the first τ(Xn) samples of
Xn = (Xn,1, Xn,2, . . .) and always rejecting µn, regardless of the observations.

Algorithm 2: Extension to Countable (ESC)
Input: countable policy set Π, number of tasks N , confidence parameter δ, accuracy levels (εn)n
Initialization: for all j, let mj ←

⌈
ln
(
j(j + 1)/δ

)
/2ε2j

⌉
and Mj = m1 + . . .+mj

1 for j = 1, 2, . . . do
2 run policy

(
2 · 2j , 0

)
for mj tasks and compute r̂−2j ← r̂−2j (Mj−1,mj , εj) as in (10)

3 if r̂−2j > 0 then let j0 ← j and k0 ← 2j0

4 for l = j0 + 1, j0 + 2, . . . do
5 run policy

(
τ2l , 0

)
for ml tasks and compute c2l ← c2l(Ml−1,ml) as in (11)

6 if c2l > 2l εl + k0/r̂
−
k0

then let j1 ← l and return K ← 2j1

Thus, Algorithm 2 (ESC) first finds a policy πk0 with reward(πk0) > 0 (lines 1–3), memorizing
an upper estimate k0/r̂−k0 of the ratio cost(πk0)/reward(πk0) = 1/ROI(πk0). By the argument
above, this estimate upper bounds the expected number of samples cost(πk?) drawn by all optimal
policies πk? . Then ESC simply proceeds to finding the smallest (up to a factor of 2) K such
that cost(πK) ≥ k0/r̂

−
k0

(lines 4–6). Being k0/r̂−k0 ≥ cost(πk0)/reward(πk0) ≥ cost(πk?) by
construction, the index K determined this way upper bounds k? for all optimal policies πk? . (All the
previous statements are intended to hold with high probability.) This is formalized in the following
key lemma, whose full proof we defer to Section C of the Supplementary Material.

Lemma 2. Let Π be a countable set of policies. If ESC is run with δ ∈ (0, 1), ε1, ε2, . . . ∈ (0, 1],
and halts returning K, then k? ≤ K for all optimal policies πk? with probability at least 1− δ.

Before proceeding with the main result of this section, we need a final lemma upper bounding the
expected cost of our ESC algorithm. This step is crucial to control the total ROI because in this
setting with arbitrarily long durations, picking the wrong policy even once is, in general, enough to
drop the performance of an algorithm down to essentially zero, compromising the convergence to an
optimal policy. This is another striking difference with other common online learning settings like
stochastic bandits, where a single round has a negligible influence on the overall performance of an
algorithm. To circumvent this issue, we designed ESC so that it tests shorter durations first, stopping
as soon as the previous lemma applies, and a finite upper bound K on k? is determined.

Lemma 3. Let Π be a countable set of policies. If ESC is run with δ ∈ (0, 1), ε1, ε2, . . . ∈ (0, 1],
and halts returning K, then the total number of samples it draws before stopping (i.e., its cost) is
upper bounded by Õ

(
(K/ε2) log(1/δ)

)
, where ε = min{ε1, ε2, . . . , εlog2K}.

Proof. Note that, by definition, ε = min{ε1, ε2, . . . , εj1} > 0. Algorithm 2 (ESC) draw samples
only when lines 2 or 5 are executed. Whenever line 2 is executed (j = 1, . . . , j0) the algorithm
performs mj tasks drawing 2 · 2j samples each time. Similarly, whenever line 5 is executed
(l = j0 + 1, . . . , j1) the algorithm draws at most 2l samples during each of the ml tasks. Therefore,
recalling that j1 = log2K, the total number of samples drawn by ESC before stopping is at most

j0∑
j=1

2 · 2jmj +

j1∑
l=j0+1

2lml ≤ 2

j1∑
j=1

2jmj ≤ 2j12j1
⌈

1

2ε2
ln
j1(j1 + 1)

δ

⌉

The ESC-CAPE algorithm. We can now join together our two algorithms obtaining a new one,
that we call ESC-CAPE, which takes as input a countable policy set Π, the number of tasks N , a
confidence parameter δ, some accuracy levels ε1, ε2, . . ., and an exploration cap Nex. The joint

9

algorithm runs ESC first with parameters Π, N, δ, ε1, ε2, Then, if ESC halts returning K, it runs
CAPE with parameters {(τk, accept)}k∈{1,...,K} , N, δ,Nex.

Analysis of ESC-CAPE. Since ESC rejects all values µn, the sum of the rewards accumulated
during its run is zero. Thus, the only effect that ESC has on the convergence rate RN of ESC-CAPE
is an increment on the total cost in the denominator of its ROI. We control this cost by minimizing its
upper bound in Lemma 3. This is not a simple matter of taking all εj’s as large as possible. Indeed, if
all the εj’s are large, the if clause at line 3 might never be verified, because the conditional checks
whether a confidence interval (for reward(π2j)) of length Θ(ε) sits to the right of the origin. In other
words, the returned index K depends on ε and grows unbounded in general as ε approaches 1/2.
This follows directly from the definition of our lower estimate on the rewards (10). Thus, there is a
trade-off between having a small K (which requires small εj’s) and a small 1/ε2 to control the cost
of ESC (for which we need large εj’s). A direct computation shows that picking constant accuracy
levels εj = N−1/3 for all j achieves the best of both worlds and immediately gives our final result.

Theorem 4. If Π is a countable set of policies, then the ROI of ESC-CAPE run for N tasks with
confidence parameter δ ∈ (0, 1), constant accuracy levels εj = N−1/3, and exploration cap
Nex =

⌈
N2/3

⌉
converges to the optimal ROI(πk?), with probability at least 1− δ, at a rate

RN = Õ
(

1 +KI{ESC halts returning K}
N1/3

)
where the Õ notation hides only logarithmic terms, including a log(1/δ) term.

Note that the previous bound depends on the algorithm-dependent quantity K. While this might
seem somewhat nonconventional, a simple argument gets rid of this issue. Indeed, if a lower bound
λ? on the ROI of an optimal policy were known beforehand, then it would be easy to control K by
estimating the cost of policies 2`, for increasing values of ` (as in ESC). In this case, K would be
upper bounded by the number of policies whose cost is smaller than 2/λ? (say). This quantity is now
constant (in N ; it depends only on the distribution D and the set of policies Π, playing the role of a
complexity measure of the problem instance). If λ? is unknown, one can first estimate it up to some
multiplicative constant (say, 1/2), with high probability. Again, we can do this at a constant cost
(depending only on the instance (Π,D)) via a multiplicative Chernoff bound.

6 Conclusions
After formalizing the problem of ROI maximization in repeated decision making, we presented an
algorithm (ESC-CAPE) that is competitive against infinitely large policy sets (Theorem 4). For this
algorithm, we prove a convergence rate of order 1/N1/3 with high probability. To analyze it, we first
proved a convergence result for its finite counterpart CAPE (Theorem 1), which is of independent
interest. Notably, this finite analysis guarantees a significantly faster convergence of order 1/N on
easier instances in which there is a positive gap in performance between the two best policies.

Acknowledgments and Disclosure of Funding
An earlier version of this work was done during Tommaso Cesari’s Ph.D. at the University of Milan.
Nicolò Cesa-Bianchi and Tommaso R. Cesari gratefully acknowledge partial support by Criteo AI
Lab through a Faculty Research Award and by the MIUR PRIN grant Algorithms, Games, and
Digital Markets (ALGADIMAR). Nicolò Cesa-Bianchi was also supported by the COST Action
CA16228 “European Network for Game Theory” (GAMENET) and by the EU Horizon 2020 ICT-48
research and innovation action under grant agreement 951847, project ELISE. This work has also
benefited from the AI Interdisciplinary Institute ANITI. ANITI is funded by the French “Investing
for the Future – PIA3” program under the Grant agreement n. ANR-19-PI3A-0004. Yishay Mansour
was supported in part by a grant from the European Research Council (ERC) under the European
Union’sHorizon 2020 research and innovation program (grant agreement No. 882396), by the Israel
Science Foundation(grant number 993/17), Tel Aviv University Center for AI and Data Science
(TAD), and the Yandex Initiative for Machine Learning at Tel Aviv University. Vianney Perchet was
supported by a public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-
0056-LMH, LabEx LMH, in a joint call with Gaspard Monge Program for optimization, operations
research and their interactions with data sciences. Vianney Perchet also acknowledges the support of
the ANR under the grant ANR-19-CE23-0026.

10

References
Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. 2012. Online prophet-inequality

matching with applications to ad allocation. In Proceedings of the 13th ACM Conference on
Electronic Commerce. Association for Computing Machinery, New York, NY, USA, 18–35.

Noga Alon, Nicolò Cesa-Bianchi, Ofer Dekel, and Tomer Koren. 2015. Online Learning with
Feedback Graphs: Beyond Bandits. In Proceedings of The 28th Conference on Learning Theory
(Proceedings of Machine Learning Research, Vol. 40), Peter Grünwald, Elad Hazan, and Satyen
Kale (Eds.). PMLR, Paris, France, 23–35.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of the multiarmed
bandit problem. Machine learning 47, 2-3 (2002), 235–256.

Eduardo M. Azevedo, Alex Deng, Jose Luis Montiel Olea, Justin Rao, and E. Glen Weyl. 2018. The
A/B Testing Problem. In Proceedings of the 2018 ACM Conference on Economics and Computation
(Ithaca, NY, USA) (EC ’18). Association for Computing Machinery, New York, NY, USA, 461–462.
https://doi.org/10.1145/3219166.3219204

Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. 2018. Bandits with knap-
sacks. Journal of the ACM (JACM) 65, 3 (2018), 1–55.

Sébastien Bubeck and Nicolo Cesa-Bianchi. 2012. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning 5, 1 (2012), 1–122.

Semih Cayci, Atilla Eryilmaz, and Rayadurgam Srikant. 2019. Learning to control renewal processes
with bandit feedback. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 3, 2 (2019), 1–32.

Semih Cayci, Atilla Eryilmaz, and R Srikant. 2020. Budget-Constrained Bandits over General
Cost and Reward Distributions. In Proceedings of the Twenty Third International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research, Vol. 108), Silvia
Chiappa and Roberto Calandra (Eds.). PMLR, Online, 4388–4398.

Tommaso R Cesari and Roberto Colomboni. 2021. A nearest neighbor characterization of Lebesgue
points in metric measure spaces. Mathematical Statistics and Learning 3, 1 (2021), 71–112.

Christopher F Chabris, Carrie L Morris, Dmitry Taubinsky, David Laibson, and Jonathon P Schuldt.
2009. The allocation of time in decision-making. Journal of the European Economic Association
7, 2-3 (2009), 628–637.

Shiyun Chen and Shiva Kasiviswanathan. 2020. Contextual Online False Discovery Rate Control. In
Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics
(Proceedings of Machine Learning Research, Vol. 108), Silvia Chiappa and Roberto Calandra
(Eds.). PMLR, Online, 952–961.

Jose Correa, Patricio Foncea, Ruben Hoeksma, Tim Oosterwijk, and Tjark Vredeveld. 2019. Recent
developments in prophet inequalities. ACM SIGecom Exchanges 17, 1 (2019), 61–70.

Hossein Esfandiari, MohammadTaghi HajiAghayi, Brendan Lucier, and Michael Mitzenmacher. 2019.
Online pandora’s boxes and bandits. Proceedings of the AAAI Conference on Artificial Intelligence
33, 01 (2019), 1885–1892.

P.W. Farris, N. Bendle, P.E. Pfeifer, and D. Reibstein. 2010. Marketing Metrics: The Definitive Guide
to Measuring Marketing Performance. Pearson Education, New York.

Dale L. Flesher and Gary John Previts. 2013. Donaldson Brown (1885-1965): The power of an
individual and his ideas over time. The Accounting Historians Journal 40, 1 (2013), 79–101.

Dean P Foster and Robert A Stine. 2008. α-investing: a procedure for sequential control of expected
false discoveries. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70, 2
(2008), 429–444.

11

https://doi.org/10.1145/3219166.3219204

Aurélien Garivier and Emilie Kaufmann. 2021. Nonasymptotic sequential tests for overlapping
hypotheses applied to near-optimal arm identification in bandit models. Sequential Analysis 40, 1
(2021), 61–96.

Christopher R Genovese, Kathryn Roeder, and Larry Wasserman. 2006. False discovery control with
p-value weighting. Biometrika 93, 3 (2006), 509–524.

Thomas L Griffiths, Frederick Callaway, Michael B Chang, Erin Grant, Paul M Krueger, and Falk
Lieder. 2019. Doing more with less: meta-reasoning and meta-learning in humans and machines.
Current Opinion in Behavioral Sciences 29 (2019), 24–30.

Nicholas Hay, Stuart Russell, David Tolpin, and Solomon Eyal Shimony. 2012. Selecting Computa-
tions: Theory and Applications. In Proceedings of the Twenty-Eighth Conference on Uncertainty
in Artificial Intelligence (Catalina Island, CA) (UAI’12). AUAI Press, Arlington, Virginia, USA,
346–355.

Philipp Heesen and Arnold Janssen. 2016. Dynamic adaptive multiple tests with finite sample FDR
control. Journal of Statistical Planning and Inference 168 (2016), 38–51.

Lalit Jain and Kevin Jamieson. 2018. Firing Bandits: Optimizing Crowdfunding. In Proceedings
of the 35th International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmässan, Stockholm
Sweden, 2206–2214.

Adel Javanmard, Andrea Montanari, et al. 2018. Online rules for control of false discovery rate and
false discovery exceedance. The Annals of statistics 46, 2 (2018), 526–554.

Ramesh Johari, Pete Koomen, Leonid Pekelis, and David Walsh. 2017. Peeking at A/B Tests: Why It
Matters, and What to Do about It. In Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (Halifax, NS, Canada) (KDD ’17). Association
for Computing Machinery, New York, NY, USA, 1517–1525.

Ramesh Johari, Pete Koomen, Leonid Pekelis, and David Walsh. 2021. Always Valid Inference:
Continuous Monitoring of A/B Tests. Operations Research 0 (2021).

Robert Kleinberg, Bo Waggoner, and E. Glen Weyl. 2016. Descending Price Optimally Coordinates
Search. In Proceedings of the 2016 ACM Conference on Economics and Computation (Maastricht,
The Netherlands) (EC ’16). Association for Computing Machinery, New York, NY, USA, 23–24.

Ron Kohavi, Alex Deng, Brian Frasca, Toby Walker, Ya Xu, and Nils Pohlmann. 2013. Online
Controlled Experiments at Large Scale. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Chicago, Illinois, USA) (KDD ’13).
Association for Computing Machinery, New York, NY, USA, 1168–1176.

Ang Li and Rina Foygel Barber. 2019. Multiple testing with the structure-adaptive Benjamini–
Hochberg algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology)
81, 1 (2019), 45–74.

Brendan Lucier. 2017. An economic view of prophet inequalities. ACM SIGecom Exchanges 16, 1
(2017), 24–47.

Aaditya Ramdas, Fanny Yang, Martin J. Wainwright, and Michael I. Jordan. 2017. Online Control
of the False Discovery Rate with Decaying Memory. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., Red Hook, NY, USA, 5655–5664.

David S. Robertson and James M. S. Wason. 2018. Online control of the false discovery rate in
biomedical research. arXiv:1809.07292 [stat.ME]

Dinah Rosenberg, Eilon Solan, and Nicolas Vieille. 2007. Social learning in one-arm bandit problems.
Econometrica 75, 6 (2007), 1591–1611.

12

Sven Schmit, Virag Shah, and Ramesh Johari. 2019. Optimal Testing in the Experiment-rich Regime.
In Proceedings of Machine Learning Research (Proceedings of Machine Learning Research,
Vol. 89), Kamalika Chaudhuri and Masashi Sugiyama (Eds.). PMLR, Naha, Okinawa, Japan,
626–633.

Aleksandrs Slivkins. 2019. Introduction to Multi-Armed Bandits. Foundations and Trends® in
Machine Learning 12, 1-2 (2019), 1–286.

John Wilder Tukey. 1953. The Problem of Multiple Comparisons.

Abraham Wald. 1944. On cumulative sums of random variables. The Annals of Mathematical
Statistics 15, 3 (1944), 283–296.

Martin L. Weitzman. 1979. Optimal Search for the Best Alternative. Econometrica 47, 3 (1979),
641–654.

Ziyu Xu, Ruodu Wang, and Aaditya Ramdas. 2021. A unified framework for bandit multiple testing.
arXiv preprint arXiv:2107.07322 0 (2021).

Fanny Yang, Aaditya Ramdas, Kevin G Jamieson, and Martin J Wainwright. 2017. A framework
for Multi-A(rmed)/B(andit) Testing with Online FDR Control. In Advances in Neural Information
Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc., Long Beach, CA, USA, 5957–5966.

13

Checklist
The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [N/A]

• Did you include the license to the code and datasets? [N/A]

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Introduction

(c) Did you discuss any potential negative societal impacts of your work? [N/A] We do
not believe that a theoretical analysis could have any negative impacts on society

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Section 3
describes the setting, finite (resp., infinite) policy sets are introduced at the beginning
of Section 4 (resp., Section 5), and everything else is included in the statements of
lemmas and theorems

(b) Did you include complete proofs of all theoretical results? [Yes] Some technical details
are deferred to the Supplementary Material

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [N/A]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]

(b) Did you mention the license of the assets? [N/A]

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

14

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

