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Abstract

We propose a novel cost aggregation network, called Cost Aggregation Transform-
ers (CATs), to find dense correspondences between semantically similar images
with additional challenges posed by large intra-class appearance and geometric
variations. Cost aggregation is a highly important process in matching tasks, which
the matching accuracy depends on the quality of its output. Compared to hand-
crafted or CNN-based methods addressing the cost aggregation, in that either lacks
robustness to severe deformations or inherit the limitation of CNNs that fail to
discriminate incorrect matches due to limited receptive fields, CATs explore global
consensus among initial correlation map with the help of some architectural de-
signs that allow us to fully leverage self-attention mechanism. Specifically, we
include appearance affinity modeling to aid the cost aggregation process in order to
disambiguate the noisy initial correlation maps and propose multi-level aggregation
to efficiently capture different semantics from hierarchical feature representations.
We then combine with swapping self-attention technique and residual connections
not only to enforce consistent matching, but also to ease the learning process, which
we find that these result in an apparent performance boost. We conduct experiments
to demonstrate the effectiveness of the proposed model over the latest methods
and provide extensive ablation studies. Code and trained models are available
at https://sunghwanhong.github.io/CATs/.

1 Introduction

Establishing dense correspondences across semantically similar images can facilitate many Computer
Vision applications, including semantic segmentation [46, 54, 36], object detection [29], and image
editing [53, 30, 28, 25]. Unlike classical dense correspondence problems that consider visually similar
images taken under the geometrically constrained settings [16, 19, 50, 18], semantic correspondence
poses additional challenges from large intra-class appearance and geometric variations caused by the
unconstrained settings of given image pair.

Recent approaches [42, 43, 45, 34, 37, 39, 31, 58, 47, 57, 51, 35] addressed these challenges by
carefully designing deep convolutional neural networks (CNNs)-based models analogously to the
classical matching pipeline [48, 41], feature extraction, cost aggregation, and flow estimation. Several
works [24, 9, 37, 39, 47, 51] focused on the feature extraction stage, as it has been proven that the more
powerful feature representation the model learns, the more robust matching is obtained [24, 9, 51].
However, solely relying on the matching similarity between features without any prior often suffers
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from the challenges due to ambiguities generated by repetitive patterns or background clutters [42,
24, 26]. On the other hand, some methods [42, 49, 43, 23, 26, 58] focused on flow estimation stage
either by designing additional CNN as an ad-hoc regressor that predicts the parameters of a single
global transformation [42, 43], finding confident matches from correlation maps [20, 26], or directly
feeding the correlation maps into the decoder to infer dense correspondences [58]. However, these
methods highly rely on the quality of the initial correlation maps.

The latest methods [45, 37, 44, 21, 31, 27, 35] have focused on the second stage, highlighting the
importance of cost aggregation. Since the quality of correlation maps is of prime importance, they
proposed to refine the matching scores by formulating the task as optimal transport problem [47, 31],
re-weighting matching scores by Hough space voting for geometric consistency [37, 39], or utilizing
high-dimensional 4D or 6D convolutions to find locally consistent matches [45, 44, 27, 35]. Although
formulated variously, these methods either use hand-crafted techniques that are neither learnable nor
robust to severe deformations, or inherit the limitation of CNNs, e.g., limited receptive fields, failing
to discriminate incorrect matches that are locally consistent.

In this work, we focus on the cost aggregation stage, and propose a novel cost aggregation network to
tackle aforementioned issues. Our network, called Cost Aggregation with Transformers (CATs), is
based on Transformer [61, 10], which is renowned for its global receptive field. By considering all
the matching scores computed between features of input images globally, our aggregation networks
explore global consensus and thus refine the ambiguous or noisy matching scores effectively.

Specifically, based on the observation that desired correspondence should be aligned at discontinuities
with appearance of images, we concatenate an appearance embedding with the correlation map, which
helps to disambiguate the correlation map within the Transformer. To benefit from hierarchical feature
representations, following [26, 39, 58], we use a stack of correlation maps constructed from multi-
level features, and propose to effectively aggregate the scores across the multi-level correlation maps.
Furthermore, we consider bidirectional nature of correlation map, and leverage the correlation map
from both directions, obtaining reciprocal scores by swapping the pair of dimensions of correlation
map in order to allow global consensus in both perspective. In addition to all these combined, we
provide residual connections around aggregation networks in order to ease the learning process.

We demonstrate our method on several benchmarks [38, 11, 12]. Experimental results on various
benchmarks prove the effectiveness of the proposed model over the latest methods for semantic
correspondence. We also provide an extensive ablation study to validate and analyze components in
CATs.

2 Related Work

Semantic Correspondence. Methods for semantic correspondence generally follow the classical
matching pipeline [48, 41], including feature extraction, cost aggregation, and flow estimation. Most
early efforts [7, 30, 11] leveraged the hand-crafted features which are inherently limited in capturing
high-level semantics. Though using deep CNN-based features [5, 24, 42, 43, 23, 49, 26] has become
increasingly popular thanks to their invariance to deformations, without a means to refine the matching
scores independently computed between the features, the performance would be rather limited.

To alleviate this, several methods focused on flow estimation stage. Rocco et al. [42, 43] proposed an
end-to-end network to predict global transformation parameters from the matching scores, and their
success inspired many variants [49, 23, 25]. RTNs [23] obtain semantic correspondences through
an iterative process of estimating spatial transformations. DGC-Net [34], Semantic-GLU-Net [58]
and DMP [15] utilize a CNN-based decoder to directly find correspondence fields. PDC-Net [59]
proposed a flexible probabilistic model that jointly learns the flow estimation and its uncertainty.
Arguably, directly regressing correspondences from the initial matching scores highly relies on the
quality of them.

Recent numerous methods [45, 37, 39, 31, 47, 51, 35] thus have focused on cost aggregation stage to
refine the initial matching scores. Among hand-crafted methods, SCOT [31] formulates semantic
correspondence as an optimal transport problem and attempts to solve two issues, namely many to
one matching and background matching. HPF [37] first computes appearance matching confidence
using hyperpixel features and then uses Regularized Hough Matching (RHM) algorithm for cost
aggregation to enforce geometric consistency. DHPF [39], that replaces feature selection algorithm
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Figure 1: Overall network architecture. Our networks consist of feature extraction, cost aggrega-
tion, and flow estimation modules. We first extract multi-level dense features and construct a stack of
correlation maps. We then concatenate with embedded features and feed into the Transformer-based
cost aggregator to obtain a refined correlation map. The flow is then inferred from the refined map.

of HPF [37] with trainable networks, also uses RHM. However, these hand-crafted techniques for
refining the matching scores are neither learnable nor robust to severe deformations. As learning-
based approaches, NC-Net [45] utilizes 4D convolution to achieve local neighborhood consensus
by finding locally consistent matches, and its variants [44, 27] proposed more efficient methods.
GOCor [57] proposed aggregation module that directly improves the correlation maps. GSF [21]
formulated pruning module to suppress false positives of correspondences in order to refine the
initial correlation maps. CHM [35] goes one step further, proposing a learnable geometric matching
algorithm which utilizes 6D convolution. However, they are all limited in the sense that they inherit
limitation of CNN-based architectures, which is local receptive fields.

Transformers in Vision. Transformer [61], the de facto standard for Natural Language Processing
(NLP) tasks, has recently imposed significant impact on various tasks in Computer Vision fields such
as image classification [10, 55], object detection [3, 62], tracking and matching [52, 51]. ViT [10], the
first work to propose an end-to-end Transformer-based architecture for the image classification task,
successfully extended the receptive field, owing to its self-attention nature that can capture global
relationship between features. For visual correspondence, LoFTR [51] uses cross and self-attention
module to refine the feature maps conditioned on both input images, and formulate the hand-crafted
aggregation layer with dual-softmax [45, 60] and optimal transport [47] to infer correspondences.
COTR [22] takes coordinates as an input and addresses dense correspondence task without the use of
correlation map. Unlike these, for the first time, we propose a Transformer-based cost aggregation
module.

3 Methodology

3.1 Motivation and Overview

Let us denote a pair of images, i.e., source and target, as Is and It, which represent semantically
similar images, and features extracted from Is and It as Ds and Dt, respectively. Here, our goal is
to establish a dense correspondence field F (i) between two images that is defined for each pixel i,
which warps It towards Is.

Estimating the correspondence with sole reliance on matching similarities betweenDs andDt is often
challenged by the ambiguous matches due to the repetitive patterns or background clutters [42, 24, 26].
To address this, numerous methods proposed cost aggregation techniques that focus on refining the
initial matching similarities either by formulating the task as optimal transport problem [47, 31], using
regularized Hough matching to re-weight the costs [37, 39], or 4D or 6D convolutions [45, 27, 44, 35].
However, these methods either use hand-crafted techniques that are weak to severe deformations, or
fail to discriminate incorrect matches due to limited receptive fields.
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(a) Source (b) Target (c) Raw Corr. (d) Self-Attn. (e) Refined Corr. (f) Ground-truth

Figure 2: Visualization of correlation map and self-attention: (a) source image, (b) target image,
(c) raw correlation map, (d) self-attention, (e) refined correlation map, and (f) ground-truth, which
are bilinearly upsampled. The visualization proves that CATs successfully aggregates the costs by
integrating the surrounding information of the query, represented as green circle in the source.

To overcome these, we present Transformer-based cost aggregation networks that effectively integrate
information present in all pairwise matching costs, dubbed CATs, as illustrated in Fig. 1. As done
widely in other works [42, 45, 50, 34, 37], we follow the common practice for feature extraction and
cost computation. In the following, we first explain feature extraction and cost computation, and then
describe several critical design choices we made for effective aggregation of the matching costs.

3.2 Feature Extraction and Cost Computation

To extract dense feature maps from images, we follow [26, 37, 39] that use multi-level features for
construction of correlation maps. We use CNNs that produce a sequence of L feature maps, and Dl

represents a feature map at l-th level. As done in [37], we use different combination of multi-level
features depending on the dataset trained on, e.g., PF-PASCAL [12] or SPair-71k [38]. Given a
sequence of feature maps, we resize all the selected feature maps to Rh×w×c, with height h, width w,
and c channels. The resized features then undergo l-2 normalization.

Given resized dense features Ds and Dt, we compute a correlation map C ∈ Rhw×hw using the
inner product between features: C(i, j) = Dt(i) ·Ds(j) with points i and j in the target and source
features, respectively. In this way, all pairwise feature matches are computed and stored. However,
raw matching scores contain numerous ambiguous matching points as exemplified in Fig. 2, which
results inaccurate correspondences. To remedy this, we propose cost aggregation networks in the
following that aim to refine the ambiguous or noisy matching scores.

3.3 Transformer Aggregator

Renowned for its global receptive fields, one of the key elements of Transformer [61] is the self-
attention mechanism, which enables finding the correlated input tokens by first feeding into scaled
dot product attention function, normalizing with Layer Normalization (LN) [1], and passing the
normalized values to a MLP. Several works [10, 3, 62, 51] have shown that given images or features
as input, Transformers [61] integrate the global information in a flexible manner by learning to find
the attention scores for all pairs of tokens.

In this paper, we leverage the Transformers to integrate the matching scores to discover global
consensus by considering global context information. Specifically, we obtain a refined cost C′ by
feeding the raw cost C to the Transformer T , consisting of self-attention, LN, and MLP modules:

C′ = T (C + Epos), (1)

where Epos denotes positional embedding. The standard Transformer receives as input a 1D sequence
of token embeddings. In our context, we reshape the correlation map C into a sequence of vectors
C(k) ∈ R1×hw for k ∈ {1, ..., hw}. We visualize the refined correlation map with self-attention
in Fig. 2, where the ambiguities are significantly resolved.

Appearance Affinity Modeling. When only matching costs are considered for aggregation, self-
attention layer processes the correlation map itself disregarding the noise involved in the correlation
map, which may lead to inaccurate correspondences. Rather than solely relying on raw correlation
map, we additionally provide an appearance embedding from input features to disambiguate the
correlation map aided by appearance affinity within the Transformer. Intuition behind is that visually
similar points in an image, e.g., color or feature, have similar correspondences, as proven in stereo
matching literature, e.g., Cost Volume Filtering (CVF) [16, 50].
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Figure 3: Illustration of Transformer aggregator. Given correlation maps C with projected features,
Transformer aggregation consisting of intra- and inter-correlation self-attention with LN and MLP
refines the inputs not only across spatial domains but across levels.

To provide appearance affinity, we propose to concatenate embedded features projected from input
features with the correlation map. We first feed the features D into linear projection networks, and
then concatenate the output along corresponding dimension, so that the correlation map is augmented
such that [C,P(D)] ∈ Rhw×(hw+p), where [ · ] denotes concatenation, P denotes linear projection
networks, and p is channel dimension of embedded feature. Within the Transformer, self-attention
layer aggregates the correlation map and passes the output to the linear projection networks to retain
the size of original correlation C.

Multi-Level Aggregation. As shown in [37, 34, 39, 58, 31], leveraging multi-level features allows
capturing hierarchical semantic feature representations. Thus we also use multi-level features from
different levels of convolutional layers to construct a stack of correlation maps. Each correlation map
Cl computed between Dl

s and Dl
t is concatenated with corresponding embedded features and fed into

the aggregation networks. The aggregation networks now consider multiple correlations, aiming to
effectively aggregates the matches by the hierarchical semantic representations.

As shown in Fig. 3, a stack of L augmented correlation maps, [Cl,P(Dl)]Ll=1 ∈ Rhw×(hw+p)×L,
undergo the Transformer aggregator. For each l-th augmented correlation map, we aggregate with
self-attention layer across all the points in the augmented correlation map, and we refer this as
intra-correlation self-attention. In addition, subsequent to this, the correlation map undergoes inter-
correlation self-attention across multi-level dimensions. Contrary to HPF [37] that concatenates all
the multi-level features and compute a correlation map, which disregards the level-wise similarities,
within the inter-correlation layer of the proposed model, the similar matching scores are explored
across multi-level dimensions. In this way, we can embrace richer semantics in different levels of
feature maps, as shown in Fig. 4.

3.4 Cost Aggregation with Transformers

By leveraging the Transformer aggregator, we present cost aggregation framework with following
additional techniques to improve the performance.

Swapping Self-Attention. To obtain a refined correlation map invariant to order of the input images
and impose consistent matching scores, we argue that reciprocal scores should be used as aids to infer
confident correspondences. As correlation map contains bidirectional matching scores, from both
target and source perspective, we can leverage matching similarities from both directions in order to
obtain more reciprocal scores as done similarly in other works [45, 26].

As shown in Fig. 1, we first feed the augmented correlation map to the aforementioned Transformer
aggregator. Then we transpose the output, swapping the pair of dimensions in order to concatenate
with the embedded feature from the other image, and feed into the subsequent another aggregator.
Note that we share the parameters of the Transformer aggregators to obtain reciprocal scores. Formally,
we define the whole process as following:

S = T ([Cl,P(Dl
t)]

L
l=1 + Epos),

C′ = T ([(Sl)T,P(Dl
s)]

L
l=1 + Epos),

(2)

where CT(i, j) = C(j, i) denotes swapping the pair of dimensions corresponding to the source and
target images; S denotes the intermediate correlation map before swapping the axis. Note that
NC-Net [45] proposed a similar procedure, but instead of processing serially, they separately process
the correlation map and its transposed version and add the outputs, which is designed to produce
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(a) Source (b) Target (c) Corr. #1 (d) Corr. #3 (e) HPF [37] (f) CATs

Figure 4: Visualization of multi-level aggregation: (a) source, (b) target images, (c), (d) multi-level
correlation maps (e.g., l = 1 and l = 3), respectively, and final correlation maps by (e) HPF [37]
and (f) CATs. Note that HPF and CATs utilize the same feature maps. Compared to HPF, CATs
successfully embrace richer semantics in different levels of feature map.

a correlation map invariant to the particular order of the input images. Unlike this, we process the
correlation map serially, first aggregating one pair of dimensions and then further aggregating with
respect to the other pair. In this way, the subsequent attention layer is given more consistent matching
scores as an input, allowing further reduction of inconsistent matching scores. We include an ablation
study to justify our choice in Section 4.4

Residual Connection. At the initial phase when the correlation map is fed into the Transformers,
noisy score maps are inferred due to randomly-initialized parameters, which could complicate the
learning process. To stabilize the learning process and provide a better initialization for the matching,
we employ the residual connection. Specifically, we enforce the cost aggregation networks to estimate
the residual correlation by adding residual connection around aggregation networks.

3.5 Training

Data Augmentation. Transformer is well known for lacking some of inductive bias and its data-
hungry nature thus necessitates a large quantity of training data to be fed [61, 10]. Recent methods [55,
56, 32] that employ the Transformer to address Computer Vision tasks have empirically shown that
data augmentation techniques have positive impact on performance. However, in correspondence task,
the question of to what extent can data augmentation affect the performance has not yet been properly
addressed. From the experiments, we empirically find that data augmentation has positive impacts on
performance in semantic correspondence with Transformers as reported in Section 4.4. To apply data
augmentation [6, 2] with predetermined probabilities to input images at random. Specifically, 50% of
the time, we randomly crop the input image, and independently for each augmentation function used
in [6], we set the probability for applying the augmentation as 20%. More details can be found in
supplementary material.

Training Objective. As in [37, 39, 35], we assume that the ground-truth keypoints are given for
each pair of images. We first average the stack of refined correlation maps C′ ∈ Rhw×hw×L to obtain
C′′ ∈ Rhw×hw and then transform it into a dense flow field Fpred using soft-argmax operator [26].
Subsequently, we compare the predicted dense flow field with the ground-truth flow field FGT

obtained by following the protocol of [37] using input keypoints. For the training objective, we utilize
Average End-Point Error (AEPE) [34], computed by averaging the Euclidean distance between the
ground-truth and estimated flow. We thus formulate the objective function as L = ‖FGT − Fpred‖2.

4 Experiments

4.1 Implementation Details

For backbone feature extractor, we use ResNet-101 [14] pre-trained on ImageNet [8], and follow-
ing [37], extract the features from the best subset layers. Other backbone features can also be used,
which we analyze the effect of various backbone features in the following ablation study. For the
hyper-parameters for Transformer encoder, we set the depth as 1 and the number of heads as 6.
We resize the spatial size of the input image pairs to 256×256 and a sequence of selected features
are resized to 16×16. We use a learnable positional embedding [10], instead of fixed [61]. We
implemented our network using PyTorch [40], and AdamW [33] optimizer with an initial learning
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Table 1: Quantitative evaluation on standard benchmarks [38, 11, 12]. Higher PCK is better.
The best results are in bold, and the second best results are underlined. CATs† means CATs without
fine-tuning feature backbone. Feat.-level: Feature-level, FT. feat.: Fine-tune feature.

Methods Feat.-level FT. feat. Aggregation
SPair-71k [38] PF-PASCAL [12] PF-WILLOW [11]
PCK @ αbbox PCK @ αimg PCK @ αbbox

0.1 0.05 0.1 0.15 0.05 0.1 0.15

WTA Single 7 - 25.7 35.2 53.3 62.8 24.7 46.9 59.0

CNNGeo [42] Single 7 - 20.6 41.0 69.5 80.4 36.9 69.2 77.8
A2Net [49] Single 7 - 22.3 42.8 70.8 83.3 36.3 68.8 84.4
WeakAlign [43] Single 7 - 20.9 49.0 74.8 84.0 37.0 70.2 79.9
RTNs [23] Single 7 - 25.7 55.2 75.9 85.2 41.3 71.9 86.2
SFNet [26] Multi 7 - - 53.6 81.9 90.6 46.3 74.0 84.2

NC-Net [45] Single 3 4D Conv. 20.1 54.3 78.9 86.0 33.8 67.0 83.7
DCC-Net [17] Single 7 4D Conv. - 55.6 82.3 90.5 43.6 73.8 86.5
HPF [37] Multi - RHM 28.2 60.1 84.8 92.7 45.9 74.4 85.6
GSF [21] Multi 7 2D Conv. 36.1 65.6 87.8 95.9 49.1 78.7 90.2
ANC-Net [27] Single 7 4D Conv. - - 86.1 - - - -
DHPF [39] Multi 7 RHM 37.3 75.7 90.7 95.0 49.5 77.6 89.1
SCOT [31] Multi - OT-RHM 35.6 63.1 85.4 92.7 47.8 76.0 87.1
CHM [35] Single 3 6D Conv. 46.3 80.1 91.6 94.9 52.7 79.4 87.5

CATs† Multi 7 Transformer 42.4 67.5 89.1 94.9 46.6 75.6 87.5
CATs Multi 3 Transformer 49.9 75.4 92.6 96.4 50.3 79.2 90.3

Table 2: Per-class quantitative evaluation on SPair-71k [38] benchmark.

Methods aero. bike bird boat bott. bus car cat chai. cow dog hors. mbik. pers. plan. shee. trai. tv all

CNNGeo [42] 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6
A2Net [49] 22.6 18.5 42.0 16.4 37.9 30.8 26.5 35.6 13.3 29.6 24.3 16.0 21.6 22.8 20.5 13.5 31.4 36.5 22.3
WeakAlign [43] 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9
NC-Net [45] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1
HPF [37] 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 15.9 31.5 35.6 28.2
SCOT [31] 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35.0 27.7 24.4 48.4 40.8 35.6
DHPF [39] 38.4 23.8 68.3 18.9 42.6 27.9 20.1 61.6 22.0 46.9 46.1 33.5 27.6 40.1 27.6 28.1 49.5 46.5 37.3
CHM [35] 49.6 29.3 68.7 29.7 45.3 48.4 39.5 64.9 20.3 60.5 56.1 46.0 33.8 44.3 38.9 31.4 72.2 55.5 46.3

CATs† 46.5 26.9 69.1 24.3 44.3 38.5 30.2 65.7 15.9 53.7 52.2 46.7 32.7 35.2 32.2 31.2 68.0 49.1 42.4
CATs 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58.0 49.9

rate of 3e−5 for the CATs layers and 3e−6 for the backbone features are used, which we gradually
decrease during training.

4.2 Experimental Settings

In this section, we conduct comprehensive experiments for semantic correspondence, by evaluating
our approach through comparisons to state-of-the-art methods including CNNGeo [42], A2Net [49],
WeakAlign [43], NC-Net [45], RTNs [23], SFNet [26], HPF [37], DCC-Net [17], ANC-Net [27],
DHPF [39], SCOT [31], GSF [21], and CHMNet [35]. In Section 4.3, we first evaluate matching
results on several benchmarks with quantitative measures, and then provide an analysis of each
component in our framework in Section 4.4. For more implementation details, please refer to our
implementation available at https://github.com/SunghwanHong/CATs.

Datasets. SPair-71k [38] provides total 70,958 image pairs with extreme and diverse viewpoint,
scale variations, and rich annotations for each image pair, e.g., keypoints, scale difference, truncation
and occlusion difference, and clear data split. Previously, for semantic matching, most of the datasets
are limited to a small quantity with similar viewpoints and scales [11, 12]. As our network relies
on Transformer which requires a large number of data for training, SPair-71k [38] makes the use of
Transformer in our model feasible. we also consider PF-PASCAL [12] containing 1,351 image pairs
from 20 categories and PF-WILLOW [11] containing 900 image pairs from 4 categories, each dataset
providing corresponding ground-truth annotations.

Evaluation Metric. For evaluation on SPair-71k [38], PF-WILLOW [11], and PF-PASCAL [12],
we employ a percentage of correct keypoints (PCK), computed as the ratio of estimated keypoints
within the threshold from ground-truths to the total number of keypoints. Given predicted keypoint
kpred and ground-truth keypoint kGT, we count the number of predicted keypoints that satisfy
following condition: d(kpred, kGT) ≤ α ·max(H,W ), where d( · ) denotes Euclidean distance; α
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Figure 5: Qualitative results on SPair-71k [38]: (from top to bottom) keypoints transfer results by
SCOT [31], DHPF [39], and CATs. Note that green and red line denotes correct and wrong prediction,
respectively, with respect to the ground-truth.

denotes a threshold which we evaluate on PF-PASCAL with αimg, SPair-71k and PF-WILLOW with
αbbox; H and W denote height and width of the object bounding box or entire image, respectively.

4.3 Matching Results

For a fair comparison, we follow the evaluation protocol of [37] for SPair-71k, which our network
is trained on the training split and evaluated on the test split. Similarly, for PF-PASCAL and PF-
WILLOW, following the common evaluation protocol of [13, 23, 17, 37, 39], we train our network
on the training split of PF-PASCAL [12] and then evaluate on the test split of PF-PASCAL [12] and
PF-WILLOW [11]. All the results of other methods are reported under identical setting.

Table 1 summarizes quantitative results on SPair-71k [38], PF-PASCAL [12] and PF-WILLOW [11].
We note whether each method leverages multi-level features and fine-tunes the backbone features in
order to ensure a fair comparison. We additionally denote the types of cost aggregation. Generally,
our CATs outperform other methods over all the benchmarks. This is also confirmed by the results
on SPair-71k, as shown in Table 2, where the proposed method outperforms other methods by large
margin. Note that CATs† reports lower PCK than that of CHM, and this is because CHM fine-tunes
its backbone networks while CATs† does not. Fig. 5 visualizes qualitative results for extremely
challenging image pairs. We observe that compared to current state-of-the-art methods [31, 39], our
method is capable of suppressing noisy scores and find accurate correspondences in cases with large
scale and geometric variations.

It is notable that CATs generally report lower PCK on PF-WILLOW [11] compared to other state-
of-the-art methods. This is because the Transformer is well known for lacking some of inductive
bias. When we evaluate on PF-WILLOW, we infer with the model trained on the training split of PF-
PASCAL, which only contains 1,351 image pairs, and as only relatively small quantity of image pairs
is available within the PF-PASCAL training split, the Transformer shows low generalization power.
This demonstrates that the Transformer-based architecture indeed requires a means to compensate for
the lack of inductive bias, e.g., data augmentation.

4.4 Ablation Study

In this section we show an ablation analysis to validate critical components we made to design our
architecture, and provide an analysis on use of different backbone features, and data augmentation.
We train all the variants on the training split of SPair-71k [38] when evaluating on SPair-71k, and
train on PF-PASCAL [12] for evaluating on PF-PASCAL. We measure the PCK, and each ablation
experiment is conducted under same experimental setting for a fair comparison.

Network Architecture. Table 3 shows the analysis on key components in our architecture. There
are four key components we analyze for the ablation study, including appearance modelling, multi-
level aggregation, swapping self-attention, and residual connection.
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Table 3: Ablation study of CATs.

Components SPair-71k
αbbox = 0.1

(I) Baseline 26.8
(II) + Appearance Modelling 33.5
(III) + Multi-level Aggregation 35.9
(IV) + Swapping Self-Attention 38.8
(V) + Residual Connection 42.4

We first define the model without any of these as baseline,
which simply feeds the correlation map into the self-
attention layer. We evaluate on SPair-71k benchmark by
progressively adding the each key component. From I to
V, we observe consistent increase in performance when
each component is added. II shows a large improvement
in performance, which demonstrates that the appearance
modelling enabled the model to refine the ambiguous
or noisy matching scores. Although relatively small
increase in PCK for III, it proves that the proposed model
successfully aggregates the multi-level correlation maps. Furthermore, IV and V show apparent
increase, proving the significance of both components.

Table 4: Ablation study of feature backbone.

Feature Backbone SPair-71k PF-PASCAL
αbbox = 0.1 αimg = 0.1

DeiT-Bsingle [55] 32.1 76.5
DeiT-Ball [55] 38.2 87.5

DINO w/ ViT-B/16single [4] 39.5 88.9
DINO w/ ViT-B/16all [4] 42.0 88.9

ResNet-101single [14] 37.4 87.3
ResNet-101multi [14] 42.4 89.1

Feature Backbone. As shown in Table 4, we
explore the impact of different feature back-
bones on the performance on SPair-71k [38]
and PF-PASCAL [12]. We report the results of
models with backbone networks frozen. The top
two rows are models with DeiT-B [55], next two
rows use DINO [4], and the rest use ResNet-
101 [14] as backbone. Specifically, subscript
single for DeiT-B and DINO, we use the fea-
ture map extracted at the last layer for the single-
level, while for subscript all, every feature map
from 12 layers is used for cost construction. For ResNet-101 subscript single, we use a single-level
feature cropped at conv4− 23, while for multi, we use the best layer subset provided by [37]. Sum-
marizing the results, we observed that leveraging multi-level features showed apparent improvements
in performance, proving effectiveness of multi-level aggregation introduced by our method. It is worth
noting that DINO, which is more excel at dense tasks than DeiT-B, outperforms DeiT-B when applied
to semantic matching. This indicates that fine-tuning the feature could enhance the performance. To
best of our knowledge, we are the first to employ Transformer-based features for semantic matching.
It would be an interesting setup to train an end-to-end Transformer-based networks, and we hope this
work draws attention from community and made useful for future works.

Table 5: Effects of augmentation.

Augment. SPair-71k
αbbox = 0.1

DHPF [39] 7 37.3
DHPF [39] 3 39.4

CATs 7 43.5
CATs 3 49.9

Data Augmentation. In Table 5, we compared the PCK per-
formance between our variants and DHPF [39]. We note if the
model is trained with augmentation. For a fair comparison, we
evaluate both DHPF [39] and CATs trained on SPair-71k [38]
using strong supervision, which assumes that the ground-truth
keypoints are given. The results show that compared to DHPF,
a CNN-based method, data augmentation has a larger influence
on CATs in terms of performance. This demonstrates that not
only we eased the data-hunger problem inherent in Transform-
ers, but also found that applying augmentations for matching has positive effects. Augmentation
technique would bring a highly likely improvements in performance, and we hope that the future
works benefit from this.

Serial swapping. It is apparent that Equation 2 is not designed for an order-invariant output.
Different from NC-Net [45], we let the correlation map undergo the self-attention module in a serial
manner. We conducted a simple experiment to compare the difference between each approach. From
experiments, we obtained the results of parallel and serial processing on SPair-71k with αbbox = 0.1,
which are PCK of 40.8 and 42.4, respectively. In light of this, although CATs may not support order
invariance, adopting serial processing can obtain higher PCK as it has a better capability to reduce
inconsistent matching scores by additionally processing the already processed cost map, which we
finalize the architecture to include serial processing.

4.5 Analysis

Visualizing Self-Attention. We visualize the multi-level attention maps obtained from the Trans-
former aggregator. As shown in Fig. 6, the learned self-attention map at each level exhibits different
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Figure 6: Visualization of self-attention: (from left to right) source and target images, and multi-
level self-attentions. Note that each attention map attends different aspects, and CATs aggregates the
cost leveraging hierarchical semantic representations.

aspect. With these self-attentions, our networks can leverage multi-level correlations to capture
hierarchical semantic feature representations effectively.

Table 6: Memory and run-time comparison.
Inference time for aggregator is denoted by (·).

Aggregation Memory [GB] Run-time [ms]

NC-Net [45] 4D Conv. 1.2 193.3 (166.1)
SCOT [31] OT-RHM 4.6 146.5 (81.6)
DHPF [39] RHM 1.6 57.7 (29.5)
CHM [35] 6D Conv 1.6 47.2 (38.3)

CATs Transformer 1.9 34.5 (7.4)

Memory and run-time. In Table 6, we show
the memory and run-time comparison to NC-
Net [45], SCOT [31], DHPF [39] and CHM [35]
with CATs. For a fair comparison, the results
are obtained using a single NVIDIA GeForce
RTX 2080 Ti GPU and Intel Core i7-10700 CPU.
We measure the inference time for both the pro-
cess without counting feature extraction, and the
whole process. Thanks to Transformers’ fast com-
putation nature, compared to other methods, our method is beyond compare. We also find that
compared to other cost aggregation methods including 4D, 6D convolutons, OT-RHM and RHM,
ours show comparable efficiency in terms of computational cost. Note that NC-Net utilizes a single
feature map while other methods utilize multi-level feature maps. We used the standard self-attention
module for implementation, but more advanced and efficient transformer [32] architectures could
reduce the overall memory consumption.

4.6 Limitations

One obvious limitation that CATs possess is that when applying the method to non-corresponding
images, the proposed method would still deliver correspondences as it lacks power to ignore pixels that
do not have correspondence at all. A straightforward solution would be to consider including a module
to account for pixel-wise matching confidence. Another limitation of CATs would be its inability to
address a task of finding accurate correspondences given multi-objects or non-corresponding objects.
Addressing such challenges would be a promising direction for future work.

5 Conclusion

In this paper, we have proposed, for the first time, Transformer-based cost aggregation networks
for semantic correspondence which enables aggregating the matching scores computed between
input features, dubbed CATs. We have made several architectural designs in the network architec-
ture, including appearance affinity modelling, multi-level aggregation, swapping self-attention, and
residual correlation. We have shown that our method surpasses the current state-of-the-art in several
benchmarks. Moreover, we have conducted extensive ablation studies to validate our choices and
explore its capacity. A natural next step, which we leave for future work, is to examine how CATs
could extend its domain to tasks including 3-D reconstruction, semantic segmentation and stitching,
and to explore self-supervised learning.
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