
A Almost Sure Convergence of Sequence of Normal Random Variables

In this paper, we need a sequence of random variables {Xn}n≥1 such that Xn ∼ N (0, σ2
n),

limn→+∞ σn = 0, and Xn → 0 almost surely. The following lemma shows the existence of
such a sequence.
Lemma 12. There exist a sequence of random variables {Xn}n≥1 such that Xn ∼ N (0, σ2

n),
limn→+∞ σn = 0, and Xn → 0 almost surely.

Proof. Let σn = 1/n2 and Xn ∼ N (0, σ2
n). Define the event En , {|Xn| > ε}. We have

∞∑
n=1

P(En) =

∞∑
n=1

P(|N (0, 1)| > ε/σn) ≤
∞∑
n=1

σn
ε
e−

ε2

2σn ≤
∞∑
n=1

σn
ε

=

∞∑
n=1

1

εn2
< +∞ .

By the Borel–Cantelli lemma, we have P(lim supn→+∞En) = 0, which implies that Xn → 0
almost surely.

B Proofs for Underparametrized Regime

B.1 Proof of Lemma 2

By [7, Theorem 1], we have[
A>

b>

]+

=
[
(I −Q)A(A>(I −Q)A)−1, (I−P )b

b>(I−P )b)
.
]

Define r , A>b ∈ Rd. Since A has linearly independent columns, the Gram matrix G = A>A is
non-singular. The Sherman-Morrison formula gives

(A>(I −Q)A)−1 =

(
A>A− rr>

‖b‖2

)−1

= G−1 +
G−1rr>G−1

‖b‖2 − r>G−1r
= G−1 +

G−1rb>(A+)>

‖b‖2 − r>G−1r
,

where we use the facts r = A>b and AG−1 = (A+)> in the last equality. Therefore, we deduce

A(A>(I −Q)A)−1 = AG−1 +
AG−1rb>(A+)>

‖b‖2 − r>G−1r

= (A+)> +
AG−1A>bb>(A+)>

‖b‖2 − r>G−1r

=

(
I +

AA+bb>

‖b‖2 − r>G−1r

)
(A+)>

=

(
I +

PQ

1− r>G−1r
‖b‖2

)
(A+)> .

Observe that

1− r>G−1r

‖b‖2
= 1− b>A(A>A)−1A>b

‖b‖2
= 1− b>Pb

‖b‖2
= z .

Therefore, we obtain the desired expression.

B.2 Proof of Theorem 3

First, we rewrite the expression as follows∥∥∥∥∥
[
A>

b>

]+ [
x
a1

]∥∥∥∥∥
2

−
∥∥(A+)>x

∥∥2

=

∥∥∥∥(I −Q)(I + PQ/z)(A+)>x+
(I − P )b

b>(I − P )b
a1

∥∥∥∥2

− ‖(A+)>x‖2 ,

(6)
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where P,Q, z are defined in Lemma 2. Since a1 has mean 0 and is independent of other random
variables, so that the cross term vanishes under expectation over b and a1:

Eb,a1
[〈

(I −Q)(I + PQ/z)(A+)>x,
(I − P )b

b>(I − P )b
a1

〉]
= 0 ,

where 〈·, ·〉 denotes the inner product. Therefore taking the expectation of (6) over b and a1 yields

Eb,a1

∥∥∥∥∥
[
A>

b>

]+ [
x
a1

]∥∥∥∥∥
2

−
∥∥(A+)>x

∥∥2

 (7)

= Eb,a1

[
‖(I −Q)(I + PQ/z)(A+)>x‖2 − ‖(A+)>x‖2 +

∥∥∥∥ (I − P )b

b>(I − P )b
a1

∥∥∥∥2
]

(8)

(9)

We simplify the third term. Recall that I − P = I − AA+ is an orthogonal projection matrix and
thus idempotent∥∥∥∥ (I − P )b

b>(I − P )b
a1

∥∥∥∥2

=
a2

1

(b>(I − P )b)2
‖(I − P )b‖2 =

a2
1

b>(I − P )b
. (10)

Thus we have

Eb,a1

∥∥∥∥∥
[
A>

b>

]+ [
x
a1

]∥∥∥∥∥
2

−
∥∥(A+)>x

∥∥2

 (11)

= Eb,a1
[
‖(I −Q)(I + PQ/z)(A+)>x‖2 − ‖(A+)>x‖2 +

a2
1

b>(I − P )b

]
. (12)

We consider the first and second terms. We write v = (A+)>x and define z = b>(I−P )b
‖b‖2 . The sum

of the first and second terms equals

‖(I −Q)(I + PQ/z)v‖2 − ‖v‖2 = −v>Mv , (13)

where

M , Q− PQ+QP

z
+

(
2

z
− 1

z2

)
QPQ+

QPQPQ

z2
.

The rank of M is at most 2. To see this, we re-write M in the following way

M =

[
Q

(
−P
z

+

(
2

z
− 1

z2

)
PQ+

PQPQ

z2

)]
+

[
−PQ

z

]
,M1 +M2 .

Notice that rank(M1) ≤ rank(Q), rank(M2) ≤ rank(Q), and rank(Q) = 1.

It follows that rank(M) ≤ rank(M1) + rank(M2) = 2. The matrix M has at least n − 2 zero
eigenvalues. We claim that M has two non-zero eigenvalues and they are 1− 1/z < 0 and 1.

Since
rank(PQ) ≤ rank(Q) = 1

and

tr(PQ) =
b>Pb

‖b‖2
= 1− z,

thus PQ has a unique non-zero eigenvalue 1− z. Let u 6= 0 denote the corresponding eigenvector
such that PQu = (1− z)u. Since u ∈ imP and P is a projection, we have Pu = u. Therefore we
can verify that

Mu = (1− 1

z
)u .
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To show that the other non-zero eigenvalue of M is 1, we compute the trace of M

tr(M) = tr(Q)− 2 tr(PQ)

z
+

(
2

z
− 1

z2

)
tr(PQ) +

tr((PQ)2)

z2
= 2− 1

z
,

where we use the fact that tr(Q) = 1, tr(PQ) = 1− z,

tr((PQ)2) = tr

(
Pbb>Pbb>

‖b‖4

)
= tr

(
(b>Pb)(b>Pb)

‖b‖4

)
= (1− z)2 .

We have shown that M has eigenvalue 1 − 1/z and M has at most two non-zero eigenvalues.
Therefore, the other non-zero eigenvalue is tr(M)− (1− 1/z) = 1.

We are now in a position to upper bound (13) as follows:

−v>Mv ≤ −(1− 1/z)‖v‖2 .

Putting all three terms of the change in the dimension-normalized generalization loss yields

Eb,a1

∥∥∥∥∥
[
A>

b>

]+ [
x
a1

]∥∥∥∥∥
2

−
∥∥(A+)>x

∥∥2

 ≤ Eb,a1
[
−(1− 1/z)‖v‖2 +

a2
1

b>(I − P )b

]
.

Therefore, we get

Eb,a1

∥∥∥∥∥
[
A>

b>

]+ [
x
a1

]∥∥∥∥∥
2
 ≤ Eb,a1

[
1

z
‖v‖2 +

a2
1

b>(I − P )b

]
.

For b1, . . . , bn, a1
iid∼ N (0, 1), we have E[a2

1] = 1. Moreover, b>(I − P )b follows χ2(n − d) a
distribution. Thus 1

b>(I−P )b
follows an inverse-chi-squared distribution with mean 1

n−d−2 . Therefore

the expectation E[
a21

b>(I−P )b
] = 1

n−d−2 .

Notice that 1/z follows a 1 + d
n−dF (d, n− d) distribution and thus E[1/z] = 1 + d

n−d−2 .

As a result, we obtain

Eb,a1

∥∥∥∥∥
[
A>

b>

]+ [
x
a1

]∥∥∥∥∥
2
 ≤ (n− 2)‖v‖2 + 1

n− d− 2

For b1, . . . , bn, a1
iid∼ Nmix

σ,1 , we need the following lemma.

Lemma 13 (Proof in Appendix B.3). Assume d, n > d+ 2 and P are fixed, where P ∈ Rn×n is an
orthogonal projection matrix whose rank is d. Define z , b>(I−P )b

‖b‖2 , where b = [b1, . . . , bn]> ∈ Rn.

If a1, b1, · · · , bn
iid∼ Nmix

σ,1 , we have E[1/z] ≤ n−2+
√
d

n−d−2 and E[a2
1/b
>(I − P )b] ≤ 2/(3σ2)+1

n−d−2 .

Lemma 13 implies that

Eb,a1 [1/z] ≤ n− 2 +
√
d

n− d− 2
, Eb,a1

[
a2

1

b>(I − P )b

]
<

2/(3σ2) + 1

n− d− 2
.

Therefore, we conclude that

Eb,a1

∥∥∥∥∥
[
A>

b>

]+ [
x
a1

]∥∥∥∥∥
2

≤ (n− 2 +
√
d)‖v‖2 + 2/(3σ2) + 1

n− d− 2
.
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B.3 Proof of Lemma 13

Lemma 14 shows that a noncentral χ2 distribution first-order stochastically dominates a central χ2

distribution of the same degree of freedom. It will be needed in the proof of Lemma 13.
Lemma 14. Assume that random variables X ∼ χ2(k, λ) and Y ∼ χ2(k), where λ > 0. For any
c > 0, we have

P(X ≥ c) > P(Y ≥ c).
In other words, the random variable X (first-order) stochastically dominates Y .

Proof. Let Y1, X2, . . . , Xk
iid∼ N (0, 1) and X1 ∼ N (

√
λ, 1) and all these random variables are

jointly independent. Then X ′ ,
∑k
i=1X

2
i ∼ χ2(k, λ) and Y ′ , Y 2

1 +
∑k
i=2X

2
i ∼ χ2(k).

It suffices to show that P(X ′ ≥ c) > P(Y ′ ≥ c), or equivalently, P(|N (µ, 1)| ≥ c) > P(|N (0, 1)| ≥
c) for all c > 0 and µ ,

√
λ > 0. Denote Fc(t) = P(|N (µ, 1)| ≥ c) and we have

Fc(µ) = 1− 1√
2π

∫ c

−c
exp

(
− (x− µ)2

2

)
dx = 1− 1√

2π

∫ c−µ

−c−µ
exp

(
−x

2

2

)
dx,

and thus
dFc(µ)

dµ
=

1√
2π

[
exp

(
− (c− µ)2

2

)
− exp

(
− (c+ µ)2

2

)]
> 0.

This shows P(|N (µ, 1)| ≥ c) > P(|N (0, 1)| ≥ c) and we are done.

Proof of Lemma 13. Since bi
iid∼ Nmix

σ,1 , we can rewrite b = u + w where w ∼ N (0, σ2In) and the

entries of u satisfy ui
iid∼ Unif({−1, 0, 1}). Furthermore, u and w are independent. Similarly, we

can write a1 = û+ ŵ, where û ∼ Unif({−1, 0, 1}) and ŵ ∼ N (0, σ2) are independent. To bound
E[a2

1], we have

E[a2
1] = E[(û+ ŵ)2] = E[û2] + E[ŵ2] =

2

3
+ σ2 .

Note that
1

z
=

b>Ib

b>(I − P )b
= 1 +

(u+ w)>P (u+ w)

(u+ w)>(I − P )(u+ w)
.

Since P is an orthogonal projection, there exists an orthogonal transformation O depending only on
P such that

(u+ w)>P (u+ w) = [O(u+ w)]>Dd[O(u+ w)]

whereDd = diag([1, . . . , 1, 0 . . . , 0]) with d diagonal entries equal to 1 and the others equal to 0. We
denote ũ = O(u), which is fixed (as u and O are fixed), and w̃ = O(w) ∼ N (0, σ2In). It follows
that

1

z
= 1 +

(ũ+ w̃)>Dd(ũ+ w̃)

(ũ+ w̃)>(I −Dd)(ũ+ w̃)
= 1 +

∑d
i=1(ũi + w̃i)

2∑n
i=d+1(ũi + w̃i)2

= 1 +

∑d
i=1(ũi + w̃i)

2/σ2∑n
i=d+1(ũi + w̃i)2/σ2

.

Observe that

d∑
i=1

(ũi + w̃i)
2/σ2 ∼ χ2

d,
√√√√ d∑

i=1

ũ2
i


n∑

i=d+1

(ũi + w̃i)
2/σ2 ∼ χ2

n− d,
√√√√ n∑
i=d+1

ũ2
i

 ,

and that these two quantities are independent. It follows that

E

[
d∑
i=1

(ũi + w̃i)
2/σ2

∣∣∣∣∣u
]

= d+

√√√√ d∑
i=1

ũ2
i .
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By Lemma 14, the denominator
∑n
i=d+1(ũi+w̃i)

2/σ2 first-order stochastically dominates χ2(n−d).
Therefore, we have

E
[

1∑n
i=d+1(ũi + w̃i)2/σ2

∣∣∣∣u] ≤ E
[

1

χ2(n− d)

]
=

1

n− d− 2
.

Putting the numerator and denominator together yields

E
[

1

z

∣∣∣∣u] ≤ 1 +
d+

√∑d
i=1 ũ

2
i

n− d− 2
≤ 1 +

d+
√
d

n− d− 2
=
n− 2 +

√
d

n− d− 2
.

Similarly, we have

E
[

1

b>(I − P )b

∣∣∣∣u] = E
[

1

[O(u+ w)]>(I −Dd)[O(u+ w)]

∣∣∣∣u]
= E

[
1/σ2∑n

i=d+1(ũi + w̃i)2/σ2

∣∣∣∣u]
≤ 1

σ2
E
[

1

χ2(n− d)

]
=

1

σ2
· 1

n− d− 2
.

Thus, we obtain

E[1/z] ≤ n− 2 +
√
d

n− d− 2
, E

[
1

b>(I − P )b

]
≤ 1

σ2
· 1

n− d− 2
.

It follows that

E
[

a2
1

b>(I − P )b

]
≤ 2/3 + σ2

σ2
· 1

n− d− 2
=

2/(3σ2) + 1

n− d− 2
.

B.4 Proof of Theorem 4

We start from (12). Taking expectation over all random variables gives

E

∥∥∥∥∥
[
A>

b>

]+ [
x
a1

]∥∥∥∥∥
2

−
∥∥(A+)>x

∥∥2


= E

[
‖(I −Q)(I + PQ/z)(A+)>x‖2 − ‖(A+)>x‖2 +

a2
1

b>(I − P )b

]
≥ − E‖(A+)>x‖2 + E

[
a2

1∑n
i=1 b

2
i

]
.

Our strategy is to choose σ so that E
[

a21∑n
i=1 b

2
i

]
is sufficiently large. This is indeed possible as we

immediately show. Define independent random variables u ∼ Unif({−1, 0, 1}) and w ∼ N (0, σ2).
Since a1 has the same distribution as u+ w, we have

E[a2
1] = E[(u+ w)2] = E[u2] + E[w2] ≥ 2

3
.

On the other hand,

E
[

1∑n
i=1 b

2
i

]
≥ P(max

i
|bi| ≤ σ) E

[
1∑n
i=1 b

2
i

∣∣∣∣max
i
|bi| ≤ σ

]
= [P(|b1| ≤ σ)]

n E
[

1∑n
i=1 b

2
i

∣∣∣∣max
i
|bi| ≤ σ

]
≥
[

1

3
√

2πσ2

∫ σ

−σ
exp

(
− t2

2σ2

)
dt

]n
1

nσ2

≥ 1

5nnσ2
.
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Together we have

E
[

a2
1∑n

i=1 b
2
i

]
≥ 1

5n+1nσ2
.

As a result, we conclude

lim
σ→0+

E

∥∥∥∥∥
[
A>

b>

]+ [
x
a1

]∥∥∥∥∥
2

−
∥∥(A+)>x

∥∥2

 = +∞ ,

which completes the proof.

C Proofs for Overparametrized Regime

C.1 Proof of Lemma 6

Since A and B have full row rank, (AA>)−1 and (BB>)−1 exist. Therefore we have

B+ = B>(BB>)−1.

The Sherman-Morrison formula gives

(BB>)−1 = (AA> + bb>)−1 = G− Gbb>G

1 + b>Gb
= G−Gbu = G(I − bu) .

Hence, we deduce

B+ = [A, b]>G(I − bu) =

[
A>G(I − bu)
b>G(I − bu)

]
=

[
A+(I − bu)
b>G(I − bu)

]
=

[
A+(I − bu)

u

]
.

Transposing the above equation yields to the promised equation.

C.2 Proof of Lemma 7

Let us first denote
v , (A+)>x

and
G , (AA>)−1 ∈ Rn×n.

First note that by Cauchy-Schwarz inequality, it suffices to show there exists D such that
E[λ4

max(G)] < +∞ and E‖v‖4 < +∞.

We defineAd ∈ Rn×d to be the submatrix ofA that consists of all n rows and first d columns. Denote

Gd , (AdA
>
d )−1 ∈ Rn×n.

We will prove E[λ4
max(G)] < +∞ by induction.

The base step is d = n+ 8. Recall D[1:n+8] = N (0, In+8). We first show E[λmax(Gn+8)]4 < +∞.
Note that since Gn+8 is almost surely positive definite,

E[λ4
max(Gn+8)] = E[λmax(G4

n+8)] ≤ E tr(G4
n+8) = E tr((An+8A

>
n+8)−4) = tr(E[(An+8A

>
n+8)−4]) .

By our choice of D[1:n+8], the matrix (An+8A
>
n+8)−1 is an inverse Wishart matrix of size n × n

with (n+ 8) degrees of freedom, and thus has finite fourth moment (see, for example, Theorem 4.1
in [57]). It then follows that

E[λ4
max(Gn+8)] ≤ tr(E[(An+8A

>
n+8)−4]) < +∞ .

For the inductive step, assume E[λmax(Gd)]
4 < +∞ for some d ≥ n+ 8. We claim that

λmax(Gd+1) ≤ λmax(Gd) ,

or equivalently,
λmin(AdA

>
d ) ≤ λmin(Ad+1A

>
d+1) .
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Indeed, this follows from the fact that

AdA
>
d 4 AdA

>
d + bb> = Ad+1A

>
d+1 ,

under the Loewner order, where b ∈ Rn×1 is the (d+ 1)-th column of A. Therefore, we have

E[λ4
max(Gd+1)] ≤ E[λ4

max(Gd)]

and by induction, we conclude that E[λ4
max(G)] < +∞ for all d ≥ n+ 8.

Now we proceed to show E‖v‖4 < +∞. We have

‖v‖4 = ‖(AA>)−1Ax‖4 ≤ ‖(AA>)−1A‖4op · ‖x‖4 ,

where ‖ · ‖op denotes the `2 → `2 operator norm. Note that

‖(AA>)−1A‖4op = λ2
max

((
(AA>)−1A

)>
(AA>)−1A

)
= λ2

max

(
A>(AA>)−2A

)
= λmax

((
A>(AA>)−2A

)2)
,

where the last equality uses the fact that A>(AA>)−2A is positive semidefinite. Moreover, we
deduce

‖(AA>)−1A‖4op = λmax
(
A>(AA>)−3A

)
≤ tr

(
A>(AA>)−3A

)
= tr

(
(AA>)−3AA>

)
= tr

(
(AA>)−2

)
.

Using the fact that AdA>d 4 Ad+1A
>
d+1 established above, induction gives

(AA>)−2 4 (An+8A
>
n+8)−2.

It follows that

E
[
‖(AA>)−1A‖4op

]
≤ E

[
tr
((
An+8A

>
n+8

)−2
)]

= tr
(
E
[(
An+8A

>
n+8

)−2
])

< +∞ , (14)

where again we use that fact that inverse Wishart matrix
(
An+8A

>
n+8

)−1
has finite second moment.

Next, we demonstrate E‖x‖4 < +∞. Recall that every Di is either a Gaussian or a Gaussian mixture
distribution. Therefore, every entry of x has a subgaussian tail, and thus E‖x‖4 < +∞. Together
with (14) and the fact that x and A are independent, we conclude that

E‖v‖4 ≤ E
[
‖(AA>)−1A‖4op

]
· E
[
‖x‖4

]
< +∞ .

C.3 Proof of Theorem 8

The randomness comes from A, x, a1 and b. We first condition on A and x being fixed.

Let G , (AA>)−1 ∈ Rn×n and u , b>G
1+b>Gb

∈ R1×n. Define

v , (A+)>x , r , 1 + b>Gb , H , bb> .

We compute the left-hand side but take the expectation over only a1 for the moment

Ey

∥∥∥∥∥
[
A>

b>

]+ [
x
a1

]∥∥∥∥∥
2

−
∥∥(A+)>x

∥∥2

= Ey
∥∥(I − bu)>v + u>a1

∥∥2 − ‖v‖2

= ‖(I − bu)>v‖2 + Ey‖u>a1‖2 − ‖v‖2 (E[a1] = 0)

= ‖(I − bu)>v‖2 + Ey[a2
1]
‖Gb‖2

r2
− ‖v‖2 .
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Let us first consider the first and third terms of the above equation:

‖(I − bu)>v‖2 − ‖v‖2 = v>
(
(I − bu)(I − bu)> − I

)
v

= − v>
(
bu+ u>b> − buu>b>

)
v

= − v>
(
HG+GH

r
− HG2H

r2

)
v .

Write G = V ΛV >, where Λ = diag(λ1, . . . , λn) ∈ Rn×n is a diagonal matrix (λi > 0) and
V ∈ Rn×n is an orthogonal matrix. Recall b ∼ N (0, σ2In). Therefore w , V >b ∼ N (0, σ2In).
Taking the expectation over b, we have

Eb
[
HG+GH

r

]
= Eb

[
V
V >bb>V Λ + ΛV >bb>V

1 + b>V ΛV >b
V >
]

= V Ew
[
ww>Λ + Λww>

1 + w>Λw

]
V > .

Let R , Ew
[
ww>Λ+Λww>

1+w>Λw

]
. We have

Rii = Ew
[

2λiw
2
i

1 +
∑n
i=1 λiw

2
i

]
= σ2Eν∼N (0,In)

[
2λiν

2
i

1 + σ2
∑n
i=1 λiν

2
i

]
> 0

and if i 6= j,

Rij = Ew
[

(λi + λj)wiwj
1 +

∑n
i=1 λiw

2
i

]
.

Notice that for any w and j, it has the same distribution if we replace wj by −wj . As a result,

Rij = Ew
[

(λi + λj)wi(−wj)
1 +

∑n
i=1 λiw

2
i

]
= −Rij .

Thus the matrix R is a diagonal matrix and

R = 2σ2 Λ diag(ν)2

1 + σ2ν>Λν
.

Thus we get

Eb,A
[
HG+GH

r

]
= 2σ2Eν∼N (0,In),A

[
GV diag(ν)2V >

1 + σ2ν>Λν

]
Moreover, by the monotone convergence theorem, we deduce

lim
σ→0+

Eν∼N (0,In),A,x

[
−v>GV diag(ν)2V >

1 + σ2ν>Λν
v

]
= Eν∼N (0,In),A,x

[
−v>GV diag(ν)2V >v

]
= E[−v>Gv] .

It follows that as σ → 0+,

E
[
−v>HG+GH

r
v

]
∼ −2σ2E[v>Gv] = −2σ2E

[
v>(AA>)−1v

]
= −2σ2E[‖(A>A)+x‖2] .

Moreover, by (4), we have

E
[
v>(AA>)−1v

]
≤ E

[
λmax

(
(AA>)−1

)
‖(A+)>x‖2

]
< +∞ .

Next, we study the term HG2H/r2:

Eb,A
[
HG2H

r2

]
= Eb,A

[
V
V >bb>V Λ2V >bb>V

(1 + b>V ΛV >b)2
V >
]

= Ew∼N (0,σ2In),A

[
V
ww>Λ2ww>

(1 + w>Λw)2
V >
]

= σ4Eν∼N (0,In),A

[
V

νν>Λ2νν>

(1 + σ2ν>Λν)2
V >
]
.
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Again, by the monotone convergence theorem, we have

lim
σ→0+

Eν∼N (0,In),A,x

[
v>V

νν>Λ2νν>

(1 + σ2ν>Λν)2
V >v

]
= Eν∼N (0,In),A,x

[
v>V νν>Λ2νν>V >v

]
= EA,x

[
v>V

(
2Λ2 + In

n∑
i=1

λ2
i

)
V >v

]
= E

[
v>
(
2G2 + tr(G2)In

)
v
]
.

It follows that as σ → 0+,

Eb,A,x
[
HG2H

r2

]
∼ σ4E

[
v>
(
2G2 + tr(G2)In

)
v
]

= σ4E
[
2‖(AA>)−1v‖2 + tr((AA>)−2)‖v‖2

]
.

Moreover, by (4), we have

E
[
2‖(AA>)−1v‖2 + tr((AA>)−2)‖v‖2

]
≤ (n+ 2)E

[
λ2

max((AA>)−1)‖(A+)>x‖2
]
< +∞ .

We apply a similar method to the term ‖Gb‖2
r2 . We deduce

‖Gb‖2

r2
=

b>G2b

(1 + b>Gb)2
=

b>V Λ2V >b

(1 + b>V ΛV >b)2
.

It follows that

E
[
‖Gb‖2

r2

]
= Ew∼N (0,σ2In),A

[
w>Λ2w

(1 + w>Λw)2

]
= σ2Eν∼N (0,In),A

[
ν>Λ2ν

(1 + σ2ν>Λν)2

]
The monotone convergence theorem implies

lim
σ→0+

Eν∼N (0,In),A

[
ν>Λ2ν

(1 + σ2ν>Λν)2

]
= E[ν>Λ2ν] = E[tr(G2)] .

Thus we get as σ → 0+

Ey[a2
1]
‖Gb‖2

r2
∼ σ4E[tr(G2)] ,

where E[tr(G2)] ≤ nE[λ2
max((AA>)−1)] < +∞.

Putting all three terms together, we have as σ → 0+

Ld+1 − Ld ∼ −2σ2E[‖(A>A)+x‖2] .

Therefore, there exists σ > 0 such that Ld+1 − Ld < 0.

C.4 Proof of Theorem 9

Again we first condition on A and x being fixed. Let G , (AA>)−1 ∈ Rn×n and u , b>G
1+b>Gb

∈
R1×n as defined in Lemma 6. We also define the following variables:

v , (A+)>x , r , 1 + b>Gb.

We compute Ld+1 − Ld but take the expectation over only a1 for the moment

Ey

∥∥∥∥∥
[
A>

b>

]+ [
x
a1

]∥∥∥∥∥
2

−
∥∥(A+)>x

∥∥2

= Ey
∥∥(I − bu)>v + u>a1

∥∥2 − ‖v‖2

= ‖(I − bu)>v‖2 + Ey‖u>a1‖2 − ‖v‖2 (E[a1] = 0)

= ‖(I − bu)>v‖2 + Ey[a2
1]
‖Gb‖2

r2
− ‖v‖2 . (15)
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Our strategy is to make E[a2
1
‖Gb‖2
r2 ] arbitrarily large. To this end, by the independence of a1 and b we

have

Ea1,b
[
a2

1

‖Gb‖2

r2

]
= Ey[a2

1]Eb
[
‖Gb‖2

r2

]
.

By definition of Nmix
σ,µ , with probability 2/3, a1 is sampled from either N (µ, σ2) or N (−µ, σ2),

which implies E[a2
1] ≥ 1

3µ
2. For each bi, we have

P(|bi| ∈ [σ, 2σ]) ≥ 1

3
× 1

4
.

Also note that G is positive definite. It follows that

Eb
[
||Gb||2

r2

]
= Eb

[
||Gb||2

(1 + b>Gb)2

]
≥ Eb

(λmin(G)||b||)2

(1 + λmax(G)||b||2)2
≥
(

1

12

)n
λ2

min(G)nσ2

(1 + 4λmax(G)nσ2)
2 .

Altogether we have

Ea1,b
[
a2

1

‖Gb‖2

r2

]
≥ 1

3 · 12n
nλ2

min(G)µ2σ2

(1 + 4nλmax(G)σ2)2
.

Let µ = 1/σ2 and we have

lim
σ→0+

E
[
a2

1

‖Gb‖2

r2

]
≥ lim
σ→0+

EA,xEa1,b
[

1

3 · 12n
nλ2

min(G)

σ2(1 + 4nλmax(G)σ2)2

]
= EA,xEa1,b lim

σ→0+

[
1

3 · 12n
nλ2

min(G)

σ2(1 + 4nλmax(G)σ2)2

]
= +∞ ,

where we switch the order of expectation and limit using the monotone convergence theorem. Taking
full expectation over A, x, b and a1 of (15) and using the assumption that E‖v‖2 < +∞ we have

Ld+1 − Ld = EA,x,b‖(I − bu)>v‖2 + E
[
a2

1

‖Gb‖2

r2

]
− EA,x‖v‖2 → +∞

as σ → 0+.

C.5 Proof of Theorem 10

If we define G , (AA>)−1 ∈ Rn×n and u , b>G
1+b>Gb

∈ R1×n, Lemma 6 implies[
A>

b>

]+

=
[
(I − bu)>(A+)>, u>

]
.

It follows that

[A, b]+[A, b] =

[
A+A− ww>

r
w
r

w>

r 1− 1
r

]
,

where
w = A+b , r = 1 + b>Gb .

We obtain the expression for Ed+1:

Ed+1 =

(
[x>, a1]

[
A>A− ww>

r − I w
r

w>

r − 1
r

] [
β
β1

])2

,

=

[
x>
(
A+A− ww>

r
− I
)
β +

yw>β

r
+
x>wβ1

r
− a1β1

r

]2

=

[
x>(A+A− I)β +

1

r

(
−x>ww>β + x>wβ1 + a1w

>β − a1β1

)]2

.
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If a1, b1, . . . , bn
iid∼ Nmix

σ,µ or a1, b1, . . . , bn
iid∼ N (0, σ2), it holds that E[a1] = 0 ∈ R, E[x] = 0 ∈ Rd,

and E[b] = 0 ∈ Rn×1. Therefore we have

E
[
x>
(
A+A− I

)
β

1

r
x>wβ1

]
= E

[
1

r
x>
(
A+A− I

)
βx>w

]
E [β1] = 0,

E
[
x>
(
A+A− I

)
β

1

r
a1w

>β

]
= E

[
x>
(
A+A− I

)
β

1

r
E[a1]w>β

]
= 0,

E
[
x>
(
A+A− I

)
β

1

r
a1β1

]
= E

[
x>
(
A+A− I

)
β

1

r
E[a1]β1

]
= 0.

It follows that

E[Ed+1] = E
[
x>(A+A− I)β

]2
+ E

[
1

r2

(
−x>ww>β + x>wβ1 + a1w

>β − a1β1

)2]
+ E

[
2

r
x>(A+A− I)β(−x>ww>β)

]
,

which then gives
E[Ed+1]− E[Ed]

= E
[

1

r2

(
−x>ww>β + x>wβ1 + a1w

>β − a1β1

)2]
+ E

[
2

r
x>(A+A− I)β(−x>ww>β)

]
.

First, we consider the second term E
[

2
rx
>(A+A− I)β(−x>ww>β)

]
. Note that

E
[

2

r
x>(A+A− I)β(−x>ww>β)

]
= E

[
−2

r
x>(A+A− I)ββ>ww>x

]
= E

[
2

r
x>(I −A+A)E[ββ>]ww>x

]
= ρ2E

[
2

r
x>(I −A+A)ww>x

]
,

where the second equality is because β is independent from the remaining random variables and the
third step is because of β ∼ N (0, ρ2I). Recalling that w = A+b and A+AA+ = A+, we have

E
[

2

r
x>(A+A− I)β(−x>ww>β)

]
= ρ2E

[
2

r
x>(I −A+A)A+bw>x

]
= ρ2E

[
2

r
x>(A+ −A+AA+)bw>x

]
= 0.

Now we consider the first term E
[

1
r2

(
−x>ww>β + x>wβ1 + a1w

>β − a1β1

)2]
. Note that all

the cross terms vanishes since E[β] = 0 and E[β1] = 0. This implies

E
[

1

r2

(
−x>ww>β + x>wβ1 + a1w

>β − a1β1

)2]
= E

[
1

r2

(
(x>ww>β)2 + (x>wβ1)2 + (a1w

>β)2 + (a1β1)2
)]

= E
[

1

r2

(
tr(xx>ww>ββ>ww>) + β2

1(x>ww>x) + a2
1 tr(ww>ββ>) + a2

1β
2
1

)]
= E

[
1

r2

(
ρ2‖w‖2 tr(xx>ww>) + ρ2(x>ww>x) + a2

1ρ
2‖w‖2 + a2

1ρ
2
)]

= ρ2E
[

1

r2
(‖w‖2 + 1)((x>w)2 + E[a2

1])

]
,
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where the third equality is because of [β>, β1]> ∼ N (0, ρ2Id+1). From the above calculation one
can see that E[Ed+1] > E[Ed].

If a1, b1, . . . , bn
iid∼ Nmix

σ,µ , Theorem 9 implies that for any C > 0, there exist µ, σ such that

E

∥∥∥∥∥
[
A>

b>

]+ [
x
a1

]∥∥∥∥∥
2

− E
∥∥(A+)>x

∥∥2
> C .

Because E[Ed+1] ≥ E[Ed], we obtain that for any C > 0, there exist µ, σ such that Lexp
d+1−L

exp
d > C.

If a1, b1, . . . , bn
iid∼ N (0, σ2), we have as σ → 0,

E[Ed+1]− E[Ed] = ρ2σ2E
[

1

r2
(σ2‖A+‖2 + 1)(‖A+>x‖2 + 1)

]
∼ ρ2σ2

(
E‖A+>x‖2 + 1

)
.

From the proof of Theorem 8, we know that as σ → 0+∥∥∥∥∥
[
A>

b>

]+ [
x
a1

]∥∥∥∥∥
2

− E
∥∥(A>)+x

∥∥2 ∼ −2σ2E[‖(A>A)+x‖2] .

If ρ ≤ η
√

E[‖(A>A)+x‖2]
E‖A+>x‖2+1

, we have

Lexp
d+1 − L

exp
d ∼ −σ

2
(
2η2E[‖(A>A)+x‖2]− ρ2

(
E‖A+>x‖2 + 1

))
≤ −σ2η2E[‖(A>A)+x‖2] .

As a result, there exists σ > 0 such that for all ρ ≤ η
√

E[‖(A>A)+x‖2]
E‖A+>x‖2+1

, we have Lexp
d+1 < Lexp

d .

D Discussion

Recently, there has been growing interest in the comparison and connection between deep learning
and classical machine learning methods. For example, clustering, a classical unsupervised machine
learning method, was adapted to end-to-end training of image data [17, 24–27]. This paper studied
the non-monotonic generalization risk curve of overparametrized linear regression. It would be an
interesting future work to study the multiple descent phenomenon in other classical machine learning
methods and theoretically understand this phenomenon in deep learning. Moreover, when the multiple
descent phenomenon arises in different machine learning models, it remains open whether there is
any deep reason in common that accounts for it.
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