
A Motivating Application Examples

There are two new features in our multi-agent bandit setting: asynchronous sampling and partial
access to arms. The asynchronous sampling has clear practical motivation due to the nature of multi-
agent (or distributed) decision-making. In the following, we focus on the justification of practical
relevance for the latter on partial access to arms. We highlight three different examples in the context
of the online shortest path routing (OSPR), clinical trials, and crowdsourcing, which are classical
applications of bandits. Indeed, our current model does not fully captures the following examples;
instead, it provides initial modeling with interesting and nontrivial mathematical challenges that are
addressed in this paper.

OSPR. In the basic version of OSPR, a bandit algorithm could be applied to select a path (arm)
with minimum delay. Now consider an extended version of OSPR in a heterogeneous network that
includes multiple virtual private networks (VPN) each represented by an agent (or a gateway, in
networking terminology). In this scenario, the local arms of an agent represent the paths including the
link in their VPN, and the paths in other VPNs are external arms. In the case of selecting a path that
goes through some nodes in another VPN, the path information might not be observable to the rest of
the network, which resides outside of the VPN, i.e., other agents. This scenario could be captured
by our bandit setting in which an external arm (a path in another VPN) is selected and the reward is
allocated (the delay), but it is not observable. On the other hand, when an agent selects a path in its
local VPN, they can share the information with the representative agents of other VPNs to eventually
find the globally shortest path in the entire network.

Cooperative clinical trial. A doctor in a clinic is required to offer a treatment plan for patients
with some disease, while the clinic, which the doctor sits in, can only provide partial options due to
lack of medical equipment. The goal of the doctor is to maximize his reputation or the number of
treatment successes. In the medical decision-making setting, the plan for the disease corresponds to
the arm, and the doctor in the clinic is an agent. If the doctor decides on a specific treatment option
that is not offered in their clinic, the patient may not come back for follow-up appointments, and
in this case, the patient’s medical record or feedback might be missing. Thus, the treatment plans
offered by the clinic are the local arms in FC-CMA2B. Cooperation among the doctors in different
clinics helps to accelerate learning the best treatment plan, by sharing medical statistics.

Crowdsourcing. In crowdsourcing, workers are allowed to register to any agents, each of which is
tailored for specific tasks. An agent maintains the profile of registered workers, with a reputation
score (e.g., the success rate of finishing a job) updated with their performance in satisfying tasks. In
real-world applications, workers are allowed to be anonymous to some agents with the aim to protect
personal privacy, with only the reputation score revealed to the agent. For anonymous workers, the
agent treats them as guests and no identity or profile can be tracked for them. Hence, the observed
reward is useless. In crowdsourcing with multiple agents, anonymous workers correspond to external
arms, and registered workers correspond to local arms. In this model, an agent selects anonymous
workers only based on reputation scores by other agents. Implicitly, different agents cooperate by
maintaining the common reputation score for registered workers.

It is worth noting that, to the best of our knowledge, FC-CMA2B is the first model that tackles a
multi-agent bandit setting where agents have access to a subset of arms. The basic setting that we
considered in this paper, however, could be extended to better capture more convincing practical
applications. We highlight a few practically relevant, and (to our belief) feasible extensions. First,
our model could be extended to the case that instead of exact information, a perturbed, yet useful
observation is communicated between agents. This extension makes the setting much more interesting
from a practical perspective since in this setting agents can share some limited information with
others to incentivize them to use their local resources (arms). Another practical extension is adding
the communication delay in the model as we tackled it in the Appendix E. One can consider
communication costs in the model and the goal becomes to provide low regret algorithms with low
communication costs.
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B Extensive Literature Review

In addition to cooperative stochastic bandits, the cooperative nonstochastic bandits were introduced
in [6] with the latest results in [20, 7, 30]. Specifically, [6] introduces the cooperation setting where
agents share the distribution over actions without delay. They bound the average regret for the case
that some of the agents are dishonest and behave in an arbitrary Byzantine manner. [20] studies the
tradeoff between cooperation and delay, which is ruled by the underlying communication network
topology, and proves a bound for the average regret. The authors in [7] prove an individual regret
bound that holds simultaneously for all agents, solving an open problem left in [20].

Our work is different from all above related literature, since we consider heterogeneous agents
each with access to a subset of arms and different decision capabilities. Besides, we consider fully-
connected agents, while most of prior work on cooperative bandits considers an underlying graph
connecting the agents. Extension of our result to the case with topology constraints and developing
efficient communication protocol among agents are interesting future directions.

We note that asynchronous online learning is getting attention in recent works such as [19, 22].
Specifically, [19] considers a model, in which there is a network of agents, and in each round some of
the agents are activated to make decisions. However, their model assumes full information feedback
and ours is dedicated to the bandit setting. In the context of bandit setting, the asynchronous nature
of our work is related to the category of sleeping bandits [40, 35, 34], in which some arms could
be “sleeping” or “unavailable” at some rounds. In these models, typically the set of available arms
changes without following any structure. In contrast, in our model, all arms are always available, but
there is a structured limitation on the observability of feedback dictated by the local subset and action
rate of agents. Note that the asynchronous nature our work considers is also different from the one
in [14], which concerns the learning horizon of agents, i.e., whether an agent joins the game at the
beginning, while we study the decision-making rates of agents.

Last, we note that in literature there is multi-agent bandits with competition. In this model, when an
agent selects an arm, it collects the reward only if no other agent pulls the same arm. Also, in some
cases, the reward of an arm will be degraded if it is being pulled by multiple agents. This model
is motivated by the application of distributed channel selection in wireless cognitive radio systems.
Several variants of this model have been studied in recent works, e.g., [3, 14, 17, 53, 11, 13, 43, 42, 9].
This line of work stands in clear contrast to our work, since we focus on the cooperative version of
multi-agent bandit problems where rewards are independently collected across agents.

C Summary of Notations

We list all notations used in this paper in Table 1.

D Supplementary Proofs and Analysis

In the first subsection, we first provide details on the derivation of the confidence intervals in AAE-LCB,
which will be used in our later proofs.

D.1 Analysis of Confidence Intervals in AAE

Let Xi,s, s = 1, 2, . . . , n, be the random variable by which the s-th observed reward for arm i ∈ S
is generated. For any positive a, we have

Pr {µ̂i,n ≥ µi + a} ≤Pr

{
1

n

n∑
s=1

[Xi,s − µi] ≥ a

}

= Pr

{
exp

(
θ

n∑
s=1

[Xi,s − µi]

)
≥ exp (θan)

}

≤E

{
exp

(
θ

n∑
s=1

[Xi,s − µi]− θan

)}
= exp(−nθa)E {exp(θ[Xi,s − µi])}n ,

2



Table 1: Summary of notations related to FC-CMA2B

Notation Description
t Index of time slot
T The number of time slots
K The number of arms
M The number of agents
K Set of all arms
A Set of agents
Kj Local subset of arms for agent j with observable reward
Ai Set of agents containing arm i
θj Action rate of agent j
wj Gap of adjacent decision rounds of agent j
Nj Total number of decisions made by agent j
Θi Aggregate action rate of agents containing arm i
Θ Aggregate action rate of all agents
xt(i) Reward of arm i at time slot t
µ(i) Mean reward of arm i

∆(i, i′) Difference of mean rewards between arm i and i′
∆i Difference of mean rewards between the optimal arm and arm i

Ijt Chosen arm by agent j at t
δt Algorithm parameter used in AAE-LCB and AAE
δ The minimum value for δt over the entire time horizon

nt(i) Total number of observations on arm i up to t
n̂jt (i) Number of observations on arm i available to agent j up to t
µ̂(i, n) Empirical reward mean of arm i with n observations

cint(i, j, t) Width of the confidence interval for arm i and agent j at time t
Cj,t Candidate set of agent j defined in AAE-LCB and AAE-AAE
RT Regret over T time slots
RjT Individual regret of agent j over time horizon T
dj The largest delay from any agent to agent j
D The largest delay between any two agents

KL(a, b) The Kullback-Leibler divergence between a Bernoulli of parameter a and b
KL(P1,P2) The Kullback-Leibler divergence between two random distributions P1 and P2

where θ can be any positive. The inequality bases on Chebyshev’s inequality.

Let φ(θ) = logE {exp(θ[Xi,s − µi])}, we have

Pr {µ̂i,n ≥ µi + a} ≤ exp(−nθa) exp(nφ(θ))

≤ inf
θ

exp(−n(aθ − φ(θ))

= exp(−nφ∗(a)).

where φ∗(a) is defined as supθ (aθ − φ(θ)).

Replacing a with (φ∗)−1
(

log(1/δ)
n

)
, we have

Pr {µ̂j,n ≥ µj + a} ≤ exp(−nφ∗(a)) = exp

(
−n log(1/δ)

n

)
= δ.

In summary,

Pr

{
µ̂j,n ≥ µj + (φ∗)−1

(
log(1/δ)

n

)}
≤ δ.

Similarly, we can derive the probability for µ̂j,n ≤ µj + (φ∗)−1
(

log(1/δ)
n

)
.
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For the bounded random variable Xi,s, we have

(φ∗)−1

(
log(1/δ)

n

)
=

√
log(1/δ)

2n
.

To construct the confidence intervals, we set the confidence probability as δ = 1/nα. Accordingly,

the upper/lower confidence bound for the i-th arm is µ̂i,s +
√

α log(n)
2n and µ̂i,s −

√
α log(n)

2n .

D.2 A Proof for Lemma 1

Based on the results in D.1, for any arm i with n observations, we have

Pr

(
µ(i) > µ̂(i, n) +

√
α log δ−1

2n

)
≤ δα.

Then, by applying the above inequality to the decision of agent j at time t = l/θj , we get (12).

Pr

µ(i) > µ̂
(
i, n̂jl/θj (i)

)
+

√√√√α log δ−1
l/θj

2n̂jl/θj (i)


≤
lΘi/θj∑
s=1

Pr

µ(i) > µ̂(i, s) +

√
α log δ−1

l/θj

2s

 ≤ lΘi

θj
δαl/θj .

(12)

The above equation shows that the probability that the true mean value of arm i is above the upper
confidence bound in agent j at time l/θj is not larger than lΘi

θj
δαl/θj . Similarly, for the lower confidence

interval we have

Pr

µ(i) < µ̂
(
i, n̂jl/θj (i)

)
−

√√√√α log δ−1
l/θj

2n̂jl/θj (i)

 ≤ lΘi

θj
δαl/θj .

Thus, the probability that the mean value of any arm in Kj at time l/θj lies in the confidence interval
is lower bounded by

1− 2
∑
i∈Kj

lΘi

θj
δαl/θj .

This completes the proof.

D.3 A Proof for Theorem 1

Theorem 1 can be proved in two steps.

(1) In the first step, we prove the lower bound without considering the influence of Θ/Θi∗ . To do
that, we assume the action rate of each agent is a constant. The techniques for the proof of the lower
bound in this case have been investigated extensively. For the completion of analysis, we provide
the details as follows. Let us define EK as the class of K-armed stochastic bandits where each arm
has a Bernoulli reward distribution. Assume that policy π is consistent over EK , i.e., for any bandit
problem ν ∈ EK and any σ′ > 0, whose regret satisfies

RT (π, ν) = O((TΘ)σ
′
), as T → +∞.

Let ν = [P1, P2, . . . , PK ] and ν′ = [P ′1, P
′
2, . . . , P

′
K ] be two reward distributions such that Pk = P ′k

except for k = i. Specifically, we choose P ′i = N (µi + λ) and λ > ∆i. For stochastic bandits, we
have the following divergence decomposition equation (one can refer to [8] for more details).

KL(Pν,π,Pν′,π) = Eν,π [nT (i)] KL(Pi, P
′
i ),

4



where Pν,π is the distribution of T -round action-reward histories induced by the interconnection
between policy π and the environment ν, and KL(Pν,π,Pν′,π) measures the relative entropy between
Pν,π and Pν′,π .

In addition, from the high-probability Pinsker inequality, we have

KL(Pν,π,Pν′,π) ≥ log
1

2 (Pν,π(A) + Pν′,π(Ac))
,

where A is any event defined over Pν,π and Pν′,π . By definition, the regret of policy π over ν and ν′
satisfies

RT (ν, π) ≥ T∆i

2
Pν,π

(
nT (i) ≥ TΘ

2

)
,

and

RT (ν′, π) ≥ T (λ−∆i)

2
Pν′,π

(
nT (i) <

TΘ

2

)
.

The above equation bases on the fact that the suboptimality gaps in ν′ is larger than λ−∆i.

Concluding the above two equations and lower bounding ∆i and (λ − ∆i)/2 by κ(∆i, λ) :=
min{∆i, λ−∆i}/2 yields

Pν,π
(
nT (i) ≥ TΘ

2

)
+ Pν′,π

(
nT (i) <

TΘ

2

)
≤ RT (ν, π) +RT (ν′, π)

κ(∆i, λ)T
.

We have

KL(Pi, P
′
i )Eν,π [nT (i)] ≥ log

(
κ(∆i, λ)

2

TΘ

RT (ν, π) +RT (ν′, π)

)
= log(

κ(∆i, λ)

2
) + log(TΘ)− log(RT (ν, π) +RT (ν′, π))

≥ log(
κ(∆i, λ)

2
) + (1− σ′) log(TΘ) + C,

where C is a constant. The last inequality is based on the assumption that the algorithm is consistent.
Taking λ = ∆i, for large T , we can lower bound the regret of any consistent policy π as follows:

lim inf
T→+∞

RT
log(TΘ)

≥ lim inf
T→+∞

∑
i Eν,π [nT (i)] ∆i

log(TΘ)
= O(

∑
i

∆i

KL(Pi, P ′i )
).

(2) In the second step, we proceed to prove that the regret lower bound has a further asymptotically
linear dependency on (Θ/Θi∗)

σ for any 0 < σ < 1. We prove this by contradiction: assume that
0 < σ′′ < 1 exists and the regret of some algorithm has an asymptotically linear dependency on
(Θ/Θi∗)

σ′′ . That is

lim sup
T→+∞, Θ

Θi∗
→+∞

RT (π, ν)

(Θ/Θi∗)σ
′′ log(TΘ)

= O(
∑
i

∆i

KL(Pi, P ′i )
). (13)

By similar reasoning, we have

KL(Pν,π,Pν′,π) ≥ log
1

2 (Pν,π(A) + Pν′,π(Ac))
, (14)

Redefine A as event nT (i∗) < (TΘ)/2. Similarly, we have

RT (ν, π) ≥ T∆i

2
Pν,π

(
nT (i∗) <

TΘ

2

)
,

and

RT (ν′, π) ≥ T (λ−∆i)

2
Pν′,π

(
nT (i∗) ≥ TΘ

2

)
.
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Then, it follows from Equation (14) that

KL(Pi, P
′
i )Eν,π [nT (i∗)] ≥ log(

κ(∆i, λ)

2
) + log(TΘ)− log(RT (ν, π) +RT (ν′, π))

≥ log(
κ(∆i, λ)

2
) + log(TΘ)− σ′′ log(

Θ

Θi∗
)− log log(TΘ) + C

≥ log(
κ(∆i, λ)

2
) + (1− σ′′) log(TΘ)− log log(TΘ) + C,

where the last inequality uses the fact that Θi∗ > 1/T .

And, when Θ/Θi∗ → +∞, we will have

TΘi∗ <
1

KL(Pi, P ′i )
((1− σ′′) log(TΘ)− log log(TΘ)).

Thus, the above inequality will not hold, since TΘi∗ ≥ Eν,π [nT (i∗)]. This contradicts the consis-
tency condition in Equation (13). That means, for given T , any algorithm incurs a linear regret with
respect to (Θ/Θi∗)

σ, for any 0 < σ < 1, when Θ/Θi∗ is large enough. We conclude our results
below.

lim inf
T→+∞, Θ

Θi∗
→+∞

RT
(Θ/Θi∗)σ log(TΘ)

= Ω

(∑
i

∆i

KL(Pi, P ′i )

)
, for any 0 < σ < 1.

This completes the proof.

D.4 The Regret Analysis of AAE-AAE

Last, we provide analysis on the regret result of the baseline algorithm AAE-AAE in Equation (4).

Consider a scenario where the local subset of each agent only contains one different arm. We assume
there exists a slow agent with the smallest action rate containing a suboptimal arm ĩ. Since there is
no delay between agents, the empirical mean values and confidence intervals for arms by different
agents is the same. In the following equation, we use the results in Appendix D.1 to calculate the
probability that there exists some arm whose mean value is above its confidence interval of width
1
2

√
α log T

2n̂j
l/θj

(i)
, i.e., for any j, we have

Pr

(
∃i, j, l : µ(i) > µ̂

(
i, n̂jl/θj (i)

)
+

1

2

√
α log T

2n̂jl/θj (i)

)

= Pr

(
∃i, l = 1, 2, . . . , Nj : µ(i) > µ̂

(
i, n̂jl/θj (i)

)
+

1

2

√
α log T

2n̂jl/θj (i)

)

≤
∑
i∈K

T∑
s=1

Pr

(
µ(i) > µ̂(i, s) +

1

2

√
α log T

2s

)

≤
∑
i∈K

1

T 0.25α
≤ K

T 0.25α−1
.

The first inequality uses the fact that there is at most T observations for each arm since each agent
only contains one arm. Thus, the probability that the mean values of all arms lie in the confidence

interval of width 1
2

√
α log T

2n̂j
l/θj

(i)
is at least 1− 2K/(T 0.25α−1).

We assume the mean values of all arms lie in the confidence interval of width 1
2

√
α log T

2n̂j
l/θj

(i)
. At any

time slot t, arm ĩ will not be eliminated if

1

2

√
α log T

2nt(̃i)
≥ ∆ĩ
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Thus, under the above assumption, the number of observations needed to eliminate arm ĩ in the slow
agent is at least

α log T

8∆2
ĩ

.

Combining with the probability that the above assumption holds, we can provide a lower bound for
the expected number of observations needed to eliminate arm i in the slow agent as follows.

α log T

8∆2
ĩ

(
1− 2K

T 0.25α−1

)
.

In other words, the expected number of mistakes made by the system can be as large as

Ω

(
Θ

Θmin

α log T

8∆2
ĩ

(
1− 2K

T 0.25α−1

))
.

Thus, the expected regret is at least Ω
(

Θ
Θmin

log T
)

. This completes the proof.

E Extension to Multi-Agent Bandits with Delays

The goal of FC-CMA2B is to capture the heterogeneity in the action rates of different agents. The basic
FC-CMA2B model introduced in this paper, however, can be extended to capture several additional
practically relevant features, such as the cost of cooperation, delays in broadcasting observations,
topology constraints, and malicious agents, each of which presents different additional challenges.

Here we extend our results to the case where there are communication delays between agents. Delays
between agents are measured in units of decision rounds. We define dj to be the largest delay from
any agent to agent j with D = maxj dj . The delay between agents can be interpreted as the case in
which agents are located on an underlying connected graph and the cooperation could be done by
routing over a network. Then, assuming links with unit delay, the delay dj is the longest path from
any agent to agent j and D is the diameter of the graph.

The AAE-LCB algorithm can be directly applied to the above case without any rule change. The regret
analysis of AAE-LCB for FC-CMA2B with delays, however, needs to account for delays. The following
result shows that AAE-LCB attains a regret with a linear dependency on the maximum delay parameter
D.

Theorem 3 (Expected Regret of AAE-LCB under FC-CMA2B with Delay) The expected regret of
AAE-LCB has the following upper bound,

E [RT ] ≤
∑

i:∆i>0

max

{
4α log δ−1

∆i

(
2 +

KΘi

Θi∗

)
+ Fi∆i,

12ΘiαK log δ−1

∆iΘi∗
+KDΘi∆i

}

+ 2

(
1 +

Θi

Θi∗

)∑
j∈A

Nj∑
l=1

∑
i∈Kj

lΘi

θj
δαl/θj +DΘ,

where

Fi :=
∑
j∈Ai

min

{
djθj ,

8α log δ−1

∆2
i

}
.

The proof of Theorem 3 follows the same logic flow as the proof of Theorem 2, and given later in
this section.

Comparing the regret bounds in Theorems 2 and 3, the new one includes additional terms that are
linear in the delays. Specifically, as D increases to T , the regret will be linear, which is consistent
with the fact that algorithms for FC-CMA2B suffers a linear regret when agents are totally separated.

We also briefly examine the impact of delay. Toward this, we consider three additional scenarios with
average delays of 1000, 3000 and 5000 slots. Specifically, for average 1000 delay case, the mean
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Figure 3: Regret of AAE-LCB with different delay values

delay between agent j and j′, dj,j′ , is uniformly randomly picked from [1000− 10, 1000 + 10]; and
at each time slot, the exact delay is taken uniformly randomly from [dj,j′ − 2, dj,j′ + 2]. In Figure E,
we report the evolution of cumulative regret of AAE-LCB and CO-UCB without any delay as well as
AAE-LCB with delays. with K = 100, M = 10, 30 arms per agent. The results shows the regret of
our algorithm for FC-CMA2B increases as the delay increases.

E.1 A Proof for Theorem 3

The proof of Theorem 3 mainly follows that of Theorem 2 except incorporating delays in the analysis.

Case I: local arm selection: For a sub-optimal arm i, we first upper bound the number of observations
made by agents in Ai, which is nt(i). Also, we reuse n̂jt (i) as the total number of observations
received by agents j up to t. Then, we have

nt(i) ≤ n̂jt (i) +
∑
j∈Ai

min
{
djθj , n

j
t (i)
}
, ∀ j ∈ Ai, (15)

where on the right hand side, the second term refers to an upper bound of the number of outstanding
observations, i.e., the observations that have not been received due to the delay between agents and
njt (i) is number of observations maded by agent j. We also consider two types of decisions: Type-I
corresponds to the decisions of an agent when the mean values of all arms lie in the confidence
intervals calculated by the agent; and Type-II decisions refer to others. First, we focus on the cases
that the algorithm makes a Type-I decision at time t, i.e., the mean value of any arm lies in its
confidence interval calculated by agent j. Then, at time t, if agent j in Ai selects arm i, we have√

2α log δ−1
t

n̂jt (i)
+

√
2α log δ−1

t

n̂jt (i
∗)

≥ ∆i. (16)

Otherwise, there is

µ̂(i, n̂jt (i)) +

√
α log δ−1

t

2n̂jt (i)
≤ µi + 2

√
α log δ−1

t

2n̂jt (i)
< µi + ∆i −

√
2α log δ−1

t

n̂jt (i
∗)

= µi∗ −

√
2α log δ−1

t

n̂jt (i
∗)

≤ µ̂(i∗, n̂jt (i
∗))−

√
α log δ−1

t

2n̂jt (i
∗)

,

implying that arm i is strictly dominated by i∗, hence, i can not be selected by agent j, contradicting
the assumption that i is selected by j. It follows from Equation (16) that

max

{√
2α log δ−1

t

n̂jt (i)
,

√
2α log δ−1

t

n̂jt (i
∗)

}
≥ ∆i

2
.

Thus, we have

min
{
n̂jt (i), n̂

j
t (i
∗)
}
≤ 8α log δ−1

t

∆2
i

. (17)
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Again, we define Q as the number of Type-II decisions. Then, by Lemma 1 that is still valid for the
delayed system, we have

E [Q] ≤ 2
∑
j∈A

Nj∑
l=1

∑
i∈Kj

lΘi

θj
δαl/θj . (18)

By combining Equations (17) and (18), we have

min
{
E
[
n̂jT (i)

]
,E
[
n̂jT (i∗)

]}
≤ 8α log δ−1

∆2
i

+ E [Q] . (19)

Then, using Equation (15), we have

E
[
n̂jT (i∗)

]
≥ E [nT (i∗)]−

∑
j∈Ai∗

djθj ≥
TΘi∗ − E [Q]

K
−
∑
j∈Ai∗

djθj

≥ Θi∗nT (i)

ΘiK
− E [Q]

K
−
∑
j∈Ai∗

djθj , (20)

where the second inequality is based on the fact that the expected number of decision rounds with the
optimal arm in the candidate set is at least TΘi∗ − E [Q], and the third inequality is based on the fact
that T ≥ nT (i)/Θi.

Last, combining the results in Equations (15), (19), and (20), we get

E [nT (i)] ≤max

8α log δ−1

∆2
i

+ Fi,
8αKΘi log δ−1

Θi∗∆2
i

+K
Θi

Θi∗

∑
j∈Ai∗

djθj

+

(
1 +

Θi

Θi∗

)
E [Q]

≤max

{
8α log δ−1

∆2
i

+ Fi,
8αKΘi log δ−1

Θi∗∆2
i

+KDΘi

}
+

(
1 +

Θi

Θi∗

)
E [Q] ,

where

Fi =
∑
j∈Ai

min

{
djθj ,

8α log δ−1

∆2
i

}
.

Case II: external arm selection: Now, we aim at upper bounding the expected number of selection
times for a suboptimal arm i by the agents outside set Ai. Again, we assume that agent j makes a
Type-I decision at time slot t. Consider the case that Ijt = i and i is not withinKj . By algorithm rules,
we have that arm i has the largest lower confidence bound. We prove that the following inequality
must hold in this case. √

α log δ−1
t

n̂jt (i
∗)
≥ 1

2
∆i, (21)

Otherwise, we have

µ̂(i, n̂jt (i))−

√
α logt δ

−1
t

2n̂jt (i)
≤ µ(i) = µ(i∗)−∆i

< µ̂(i∗, n̂jt (i
∗)) +

√
α log δ−1

t

2n̂jt (i
∗)
− 2

√
α log δ−1

t

2n̂jt (i
∗)

= µ̂(i∗, n̂jt (i
∗))−

√
α log δ−1

t

2n̂jt (i
∗)

,

contradicting the rules of the algorithm.

Thus, at time t, the selected arm i satisfies

∆i ≤ 2

√
αK log δ−1

t

(t−D)Θi∗ −Q
.
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The above equation is obtained by replacing n̂jt (i
∗) in Equation (21) with [(t−D)Θi∗ −Q]/K, since

n̂jt (i
∗) ≥ [(t−D)Θi∗ −Q]/K.

For any agent j, the largest time slot when the agent makes a Type-I decision and a suboptimal arm i
lies in the candidate set is

4
αK log δ−1

∆2
iΘi∗

+D +
Q

Θi∗
.

Then, the regret spent on the arm i in other agents is upper bounded by

4
αK log δ−1

∆i

Θi

Θi∗
+DΘi +

QΘi

Θi∗
+Q.

Summing up the above two pieces of regret and the expected number of Type-II decisions yields

E [RT ] ≤
∑

i:∆i>0

max

{
4α log δ−1

∆i

(
2 +

KΘi

Θi∗

)
+ Fi∆i,

12ΘiαK log δ−1

∆iΘi∗
+KDΘi∆i

}

+ 2

(
1 +

Θi

Θi∗

)∑
j∈A

Nj∑
l=1

∑
i∈Kj

lΘi

θj
δαl/θj +DΘ.

This completes the proof.
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