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Abstract

Representation learning has served as a key tool for meta-learning, enabling rapid
learning of new tasks. Recent works like MAML learn task-specific representa-
tions by finding an initial representation requiring minimal per-task adaptation (i.e.
a fine-tuning-based objective). We present a theoretical framework for analyzing
a MAML-like algorithm, assuming all available tasks require approximately the
same representation. We then provide risk bounds on predictors found by fine-
tuning via gradient descent, demonstrating that the method provably leverages the
shared structure. We illustrate these bounds in the logistic regression and neural
network settings. In contrast, we establish settings where learning one represen-
tation for all tasks (i.e. using a “frozen representation” objective) fails. Notably,
any such algorithm cannot outperform directly learning the target task with no
other information, in the worst case. This separation underscores the benefit of
fine-tuning-based over “frozen representation” objectives in few-shot learning.

1 Introduction

Meta-learning (Thrun & Pratt, 2012) has emerged as an essential tool for adapting prior knowledge
to new tasks under data and computational constraints. In this context, a meta-learner has access
to related source tasks from a shared environment. The learner aims to uncover inductive biases
from the source tasks to reduce the sample/computational complexity of learning new tasks from
the same environment. A common approach is representation learning (Bengio et al., 2013), i.e.
learning a feature extractor from the source tasks. At test time, a learner adapts to a new task by
fine-tuning the representation and retraining the final layer(s) (see, e.g., prototype networks (Snell
et al., 2017)). Substantial improvements over directly learning a single task has been shown in few-
shot learning (Antoniou et al., 2018), a natural setting in many applications including reinforcement
learning (Mendonca et al., 2019; Finn et al., 2017), computer vision (Nichol et al., 2018), federated
learning (McMahan et al., 2017) and robotics (Al-Shedivat et al., 2017).

The empirical success of representation learning has led to an increased interest in theoretical anal-
yses of underlying phenomena. Recent work assumes an explicitly shared representation across
tasks (Du et al., 2020; Tripuraneni et al., 2020b,a; Saunshi et al., 2020; Balcan et al., 2015). For
instance, Du et al. (2020) prove a generalization bound consisting of a representation error term and
an estimation error term. However, without fine-tuning the whole network, the representation error
accumulates to the target task and is irreducible, even with an infinitely large target task dataset.
This result is consistent with empirical findings, which suggest that fine-tuning the whole network
provides substantial performance gains, compared to just learning the final linear layer (Chen et al.,
2020; Salman et al., 2020). Due to the lack of (representation) fine-tuning while training on the
source tasks, we refer to methods above as making use of “frozen representation” objectives.

Linear separability of tasks on the same features poses additional problems, being an unrealistic
assumption when transferring knowledge to other domains (e.g. from ImageNet to medical images
(Raghu et al., 2019)). Therefore, we consider a more realistic setting where the available tasks only
approximately share the same representation. In this setting, we propose a theoretical framework for
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analyzing the sample complexity of fine-tuning, using an initial representation from a MAML-like
algorithm. We show that fine-tuning quickly adapts to new tasks, requiring fewer samples in certain
cases compared to methods using “frozen representation” objectives. To the best of our knowledge,
no prior theoretical studies exist beyond fine-tuning a linear model (Denevi et al., 2018; Konobeev
et al., 2020; Collins et al., 2020a; Lee et al., 2020) or only the task-specific layers (Du et al., 2020;
Tripuraneni et al., 2020b,a; Mu et al., 2020). Tripuraneni et al. (2020b), in particular, acknowledge
that their work does not incorporate representation fine-tuning, leaving such analysis to future work.
It is this gap which we now seek to address.

The following outlines this paper and its contributions:

In Section 2, we outline the general setting and our overall assumptions. Additionally, we introduce
ADAPTREP, the representative fine-tuning-based algorithm we analyze in this work. As a baseline,
we also formally define FROZENREP, which makes use of a “frozen representation” objective.

In Section 3, we provide an in-depth analysis of the (d-dimensional) linear representation setting,
when learning a k-dimensional representation. First, we show that ADAPTREP achieves rates of
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√
tr Σ
nS

)
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k
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√
tr Σ
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+ rsource

)
on the source and target tasks. Here, nS and nT are the number of available samples, T is the
number of source tasks, δ0 is the norm of the representation change, and Σ is the input covariance.
Thus, fine-tuning can handle the misspecified setting. In contrast, FROZENREP has a minimax rate
of Ω(d/nT) on the target task under certain task distributions, matching standard linear regression.
We provide a formal construction and an experimental verification of the gap in Section C.

In Section 4, we extend the analysis to general function classes. We provide risk bounds of the form

εOPT + εEST + εREPR,

where εOPT, εEST, εREPR are the optimization, estimation, and representation errors, respectively.

The optimization error εOPT quantifies the error from using approximate minima found during
optimization. To control εOPT, our analysis accounts for nonconvexity introduced by representation
fine-tuning, and is presented as a self-contained result in Section H.

The estimation error εEST stems from fine-tuning to the target task with finite nT samples. It
therefore scales with 1/

√
nT and is controlled by the complexity of the target fine-tuning set.

The representation error εREPR is the error incurred by representation learning on the source tasks
while adapting to them. It consists of two terms: one scaling as 1/

√
nST for learning an initialization

using all T source tasks, and the other scaling as 1/
√
nS for learning task-specific adaptations.

In Section 5, we instantiate our guarantees in the two-layer neural network setting. Additionally, we
provide an analysis for logistic regression in Section F. Furthermore, we extend the linear hard case
to a nonlinear setting in Section G.

1.1 Related Work

The empirical success of MAML (Finn et al., 2017), and meta-learning in general, has elicited
further theoretical analysis from both statistical and optimization perspectives. A flurry of work
engages in developing more efficient and theoretically-sound optimization algorithms (Antoniou
et al., 2018; Nichol et al., 2018; Li et al., 2017) or convergence analyses (Fallah et al., 2020; Zhou
et al., 2019; Rajeswaran et al., 2019; Collins et al., 2020b). Inspired by MAML, a subseqent line of
gradient-based meta-learning algorithms have been developed and widely used (Nichol et al., 2018;
Al-Shedivat et al., 2017; Jerfel et al., 2018). Much follow-up work focused on the online setting,
with accompanying regret bounds (Denevi et al., 2018; Finn et al., 2019; Khodak et al., 2019; Balcan
et al., 2015; Alquier et al., 2017; Bullins et al., 2019; Pentina & Lampert, 2014).

The statistical analysis of meta-learning traces back to Baxter (2000); Maurer & Jaakkola (2005),
which focused on inductive bias learning. Following the same setting, Amit & Meir (2018);
Konobeev et al. (2020); Maurer et al. (2016); Pentina & Lampert (2014) fix a meta-distribution for
source task sampling, and measure the average generalization error/gap over the meta distribution.
Another line of work connects the target performance to source using distance measures between
distributions (Ben-David & Borbely, 2008; Ben-David et al., 2010; Mohri & Medina, 2012). Finally,
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another series of works studied the benefits of using additional “side information” provided with a
task for specializing the parameters of an inner algorithm (Denevi et al., 2020, 2021).

The hardness of meta-learning has also been investigated under various settings. Recent work has
studied meta-learning performance in worst-case settings (Collins et al., 2020b; Hanneke & Kpotufe,
2020a,b; Kpotufe & Martinet, 2018; Lucas et al., 2020). Hanneke & Kpotufe (2020a) provide a no-
free-lunch result with a problem-independent minimax lower bound, while Konobeev et al. (2020)
also provide problem-dependent lower bound on a simple linear setting.

2 General Setting

2.1 Notation

Let [n] := {1, . . . , n}. We denote the vector L2-norm as ‖·‖2, and the matrix Frobenius norm
as ‖·‖F . Additionally, 〈·, ·〉 can denote either the Euclidean inner product or the Frobenius inner
product between matrices.

For a matrix A, we let σi(A) denote its ith largest singular value. Additionally, for positive semidef-
inite A, we write λmax(A) and λmin(A) for its largest and smallest eigenvalues, and A1/2 for its
principal square root. We write PA for the projection onto the column span of A, denoted ColA,
and P⊥A := I − PA for the projection onto its complement.

We use standard O,Θ, and Ω notation to denote orders of growth. We also use a . b or a � b to
indicate that a = O(b). Finally, we write a � b for a = Θ(b).

2.2 Problem Setting

Preliminaries. Fix an input space X ⊆ Rd and label space Y ⊆ R. We assume that the learner has
access to T source tasks. Each task t ∈ [T ] is associated with a distribution µt over the set X × Y
of input-label pairs. From each µt, the learner observes nS i.i.d. samples {(xi,t, yi,t) | i ∈ [nS]},
which we collect into a matrix Xt ∈ RnS×d and a vector yt ∈ RnS . Finally, we measure learner
performance using the loss function ` : R× Y → R.

We aim to find common structure among the source tasks that could be leveraged for future tasks. In
this work, such common structure is defined using representations, mappings φ : X → Z from the
input space to a latent spaceZ ⊆ Rk. These representations lie in some function class parameterized
by a normed space. However, unlike prior work, we do not assume that all tasks use a single
representation. Instead, there is a fixed θ0 such that the predictor for task t can be written as x 7→
〈wt, φθt(x)〉, with θt lying near θ0 (that is, ‖θt − θ0‖ is small).

ADAPTREP Procedure. Following the discussion above, consider the objective

min
θ0

min
θt,wt

‖θt−θ0‖≤δ0

1

nST

T∑
t=1

nS∑
i=1

`(〈wt, φθt(xi,t)〉 , yi,t) (1)

for some fixed δ0 > 0, which will be the main focus of this work. We refer to (1) as ADAPTREP,
as it finds an initialization φθ0 for which every task has a good representation nearby, ensuring ease
of fine-tuning. (1) can be viewed as a constrained form of algorithms found in the literature such
as iMAML (Rajeswaran et al., 2019) and Meta-MinibatchProx (Zhou et al., 2019). However, we
do not use train-validation splits, as is widespread in practice. This is motivated by results in Bai
et al. (2020), which show that data splitting may be undesirable, assuming realizability. Furthermore,
empirical evaluations have demonstrated successes despite the lack of such splits (Zhou et al., 2019).

FROZENREP Procedure. As a baseline, we will also be studying the ubiquitous “frozen representa-
tion” objective, which is analyzed in detail in Du et al. (2020); Tripuraneni et al. (2020b). Formally,
this objective can be written as follows:

min
θ0

min
wt

1

nST

T∑
t=1

nS∑
i=1

`(〈wt, φθ0(xi,t)〉 , yi,t). (2)
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Since φθ0 is frozen for all source tasks, we refer to the method above as FROZENREP. In Sections
3.4 and G, we will prove that unlike ADAPTREP, there are cases where FROZENREP is unable to
leverage the latent structure in the presence of misspecifications.

Learning Target Tasks. Let θ0 be a solution to (1) or (2). The learner obtains nT i.i.d. samples
{(xi, yi)} from a new task with distribution µ, which we collect into X ∈ RnT×d and y ∈ RnT as
before. We adapt to the target task using θ0 by solving

min
θ,w

‖θ−θ0‖≤δ

1

nT

nT∑
i=1

`(〈w, φθ(xi)〉 , yi). (3)

for some δ ≥ 0. This learned predictor is evaluated via its population loss over µ, which is given by
E(x,y)∼µ [`(〈w, φθ(x)〉 , y)]. We focus on the few-shot learning setting for the target task, where nT

is small, and a learner needs to effectively use the source tasks to sufficiently learn the target task.

Statistical Assumptions and Optimization Oracles. For ADAPTREP to be sensible, we need to
ensure that a desirable initialization exists. Accordingly, we assume that for some θ∗0 , every task t is
associated with (θ∗t , w

∗
t ) where ‖θ∗t − θ∗0‖ ≤ δ0, so that the associated distribution µt is given by

x ∼ p, y | x ∼ q(· |
〈
w∗t , φθ∗t (x)

〉
).

Here, p is an input distribution (same for all tasks), while q models label noise. Specifically, in
regression, we set E [y | x] =

〈
w∗t , φθ∗t (x)

〉
. With an appropriate choice of loss function `, we can

guarantee that the optimal predictor under the population loss is x 7→
〈
w∗t , φθ∗t (x)

〉
.

Throughout the paper, we assume access to an oracle for solving (1) or (2), similar to Du et al.
(2020); Tripuraneni et al. (2020b). For detailed analyses of source training optimization, we refer the
reader to Ji et al. (2020); Wang et al. (2020). On the other hand, representation fine-tuning introduces
nonconvexity during target time not present in prior work, where one simply optimizes a final linear
layer (a convex problem). Thus, our bounds explicitly incorporate optimization performance on (3).
We focus on using projected gradient descent (PGD), which applies to a wide variety of settings,
under certain loss landscape assumptions. These standalone results are also provided in Section H.

3 ADAPTREP in the Linear Setting

We first examine ADAPTREP in the linear setting to illustrate key ideas. Here, representations are
linear transformations Rd → Rk for d > k so that φB(x) = B>x, with distances measured by the
Frobenius norm. In this setting, we provide a performance bound for ADAPTREP, and then exhibit
a specific instance for which FROZENREP fails, establishing our claimed sample complexity gap.

3.1 Statistical Assumptions

Figure 1: Illustrating the geometry of task param-
eterization in the linear representation setting.

Data Sampling. We specialize the statistical
assumptions of Section 2.2. Assume that the
input distribution p is zero-mean and has co-
variance Σ. Let κ = λmax(Σ)/λmin(Σ) be the
condition number of Σ. As in Du et al. (2020),
we impose the following tail condition on p:
Assumption 3.1. There exists ρ > 0 such that
if x ∼ p, then Σ−1/2x is ρ2-sub-Gaussian1.

This assumption guarantees probabilistic tail
bounds for our proofs, and can be replaced with
other suitable tail conditions. Finally, we define
q (· | µ) ∼ N

(
µ, σ2

)
for a fixed σ > 0.

Parameterizing the Tasks. Let B∗ be the initial representation, and ∆∗t be the task-specific change
for task t, where ‖∆∗t ‖F ≤ δ0. Furthermore, letw∗t ∈ Rk be the task-specific weights. The predictor
for task t is then given by x 7→ 〈x, (B∗ + ∆∗t )w

∗
t 〉. We define θ∗t = (B∗ + ∆∗t )w

∗
t , and combine

(w∗t ) into a matrix W ∗ = [w∗1 , . . . , w
∗
T ] ∈ Rk×T . We illustrate the parameterization in Figure 1.

1A zero-mean random vector v is ρ2-sub-Gaussian if for any fixed u, E
[
exp(λv>u)

]
≤ λ2 ‖u‖22 ρ

2/2.
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Assumption 3.2 (Source task diversity). For any t ∈ [T ], ‖w∗t ‖2 = Θ(1), and σ2
k(W ∗) = Ω(T/k).

Since
∑
i∈[k] σ

2
i (W ∗) = ‖W ∗‖2F = Θ(T ) by Assumption 3.2, the bound on σ2

k(W ∗) implies that
the weights covers all directions in Rk roughly evenly. This condition is satisfied with high proba-
bility when the w∗t are sampled from a sub-Gaussian distribution with well-conditioned covariance.

Note that θ∗t = B∗w∗t + δ∗t , where ‖δ∗t ‖2 = ‖∆∗tw∗t ‖2 = O(δ0) by Assumption 3.2. Thus, the
predictor weights lie near the rank-k subspace determined by B∗, as illustrated by Figure 1. As a
convention since the parameterization is not unique, we require (B∗)>Σδ∗t = 0 for any t ∈ [T ].
This is without loss of generality, as we can always redefine relevant quantities as needed.

Finally, we evaluate the learner on a target task θ∗ := B∗w∗ + δ∗ for some w∗ and ‖δ∗‖2 ≤ δ0.

3.2 Training Procedure

Source training. We consider the following regularized form of (1):

min
B

min
∆t,wt

1

2nST

T∑
t=1

‖yt −Xt(B + ∆t)wt‖22 +
λ

2
‖∆t‖2F +

γ

2
‖wt‖22 . (4)

In Section B, we show that the regularization is equivalent to regularizing
√
λγ ‖∆twt‖2, consistent

with the intuition that ∆∗tw
∗
t has small norm. This additional regularization is necessary, since (1)

only controls the norm of ∆t, which is insufficient for controlling ∆twt.

Target training. Let B0 be the output of (4) after orthonormalizing. We adapt to the target task via

Lβ(∆, w) =
1

2n
‖y − βX (AB0

+ ∆) (w0 + w)‖22 , (5)

where AB0
:= [B0 B0] ∈ Rd×2k and w0 = [u,−u] for a fixed unit-norm vector u ∈ Rk. This

corresponds to training a predictor of the form x 7→ 〈x, (AB0
+ ∆)(w0 + w)〉. We optimize (5) by

performing TPGD steps of PGD with stepsize η on (5) with

Cβ := {(∆, w) | ‖∆‖F ≤ c1/β, ‖w‖2 ≤ c2/β}
as the feasible set, where we explicitly define c1 and c2 in Section B.

To understand the procedure, note that the predictor has parameter θ = β(AB0
w + ∆w0 + ∆w),

since AB0
w0 = 0.2 Within Cβ , the first two terms have O(1) norm, while ‖∆w‖2 = O(1/β). Thus,

for large β, the cross term ∆w is a negligible perturbation, and the predictor is approximately linear
in (∆, w). Consequently, Lβ is approximately convex in (∆, w) within Cβ , allowing PGD to find a
near-optimal solution in the constraint set.

3.3 Performance Bound

Now, we provide a performance bound on the performance of the algorithm proposed in Section 3.2.
We define the following rates3 of interest, where RΣ(w∗, δ0) > 0:

rS(nS, T ) :=
σ2kd

nST
+ σδ0 ‖Σ‖1/22

√
kd

nST
+
σ2k

nS
+

σδ0√
nS

√
tr Σ

rT(nT) :=
σ2k

nT
+

σδ0√
nT

√
tr Σ + min

[
krS(nS, T ) , RΣ(w∗, δ0)

√
krS(nS, T )

σ
√
nT

√
tr Σ

]
Theorem 3.1 (Performance guarantee, linear representations). Assume that Assumptions 3.1 and 3.2
hold, nS � ρ4(d+log(T/δ)), and nT � ρ4(d+log(1/δ)). Then there are (λ, γ, β, TPGD, η, c1, c2)
(specified in Section B) such that the training procedure in Section 3.2, with high probability, finds
θ achieving excess risk bounded as

E
[
(x>θ∗ − x>θ)2

]
. min

(
rT(nT),

σ2d

nT

)
.

2This “symmetrization” via AB0 is commonly used in the neural tangent kernel literature (Chizat et al.,
2019; Zhang et al., 2020), allowing us to set fθ0(x) ≡ 0 while ensuring AB0w ∈ ColB for any w.

3Log factors and non-dominant terms suppressed for clarity. Full rates are presented in the appendix.
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We prove this result in Section B. Nevertheless, we give an interpretation of rS and rT below.

Source Training. The rate rS represents the performance of the learner during source training. De-
spite misspecifications, the algorithm is able to pool the aggregate nST samples to learn a common
(kd-dimensional) initialization, as shown by the first two terms. The last two terms represent the
rate achieved on each task upon inferring the initialization, and therefore decays only with nS. The
first is the cost of learning w∗t , while the second is the cost of learning δ∗t .

Target Training. The rate rT represents the performance of the learner with fine-tuning. The first
two terms and their interpretations are analogous to that of the last two terms in rS. On the other
hand, the minimum indicates two ways to handle the representation error from source training:

Ignore source error. In the most data-starved regime, we ignore the finite-sample source error, re-
stricting fine-tuning to only learn δ∗. Thus, we incur an irreducible error in the form of krS(nS, T )4.

Fix source error. Alternatively, with more data, we can use fine-tuning to fix the source representa-
tion error. This additional complexity is captured by the second argument, indicating fine-tuning to a
vector with norm RΣ(w∗, δ0)

√
krS(nS, T ). Note that the additional norm shrinks to 0 as nS →∞.

Finally, by ignoring the representation B0 completely, we can obtain the alternative trivial σ2d/nT

rate, which matches the minimax lower bound for standard linear regression (see e.g., Duchi (2016)).

3.4 A Hard Case for FROZENREP

In this section, we present a sample complexity separation between ADAPTREP and FROZENREP
in the linear setting. We provide the formal construction and an experimental verification of the gap
in Section C. Nevertheless, we provide the following informal result:
Theorem 3.2 (FROZENREP-ADAPTREP Sample Complexity Separation). Assume k = Θ(1)� d.
There exists a family of task distributions T satisfying the conditions of Section 3.1, such that with
high probability over the draw of nT & d target samples, we have the minimax bound

min
ŵ,δ̂

max
τ∈T

θ∗∈supp τ

E
[

1

nT

∥∥∥X(θ∗ − B̄ŵ − δ̂)
∥∥∥2

2

]
&
σ2d

nT
.

FROZENREP is provided with infinitely many source tasks and per-task samples from τ to learn
B̄, and nT samples from θ∗ to learn (ŵ, δ̂). In contrast, by specializing Theorem 3.1 for the same
family, ADAPTREP (with only finitely many source tasks and per-task samples) achieves excess risk
bounded as

E
[
(x>θ∗ − x>θ̂)2

]
. min

(
σ
√
nT

,
σ2d

nT

)
.

Interpreting the minimax result. Observe that the rate is achievable by performing standard linear
regression directly on the target samples, with no other information. Thus, FROZENREP fails to cap-
ture the shared structure from source tasks, in the worst case. Furthermore, in the high-dimensional
setting when nT � d, there exists a strict separation between ADAPTREP and FROZENREP that
widens as nT →∞.

The minimax bound applies regardless of the target fine-tuning procedure in use, including those
used in practice, e.g. iMAML, MetaOptNet (Lee et al., 2019), and R2D2 (Bertinetto et al., 2019).
As FROZENREP is provided with infinitely many source tasks and samples, this failure is thus en-
tirely due to the representation learning algorithm. Altogether, we have established a case where
incorporating representation fine-tuning is provably sufficient for handling misspecifications, unlike
ubiquitous “frozen representation” objectives.

3.4.1 Intuition

In this section, we provide a brief intution behind our construction. Recall that in the linear setting,
FROZENREP uses the following objective for obtaining a representation:

B̂ = argmin
B

min
wt

1

2nST

∑
t∈[T ]

‖yt −XtBwt‖22
nS→∞−−−−→ 1

2T

∑
t∈[T ]

‖θ∗t −Bw∗t ‖
2
Σ . (6)

4For average target performance, krS(nS, T ) can be replaced by rS(nS, T ); see Section F; Du et al. (2020).
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By optimizing with respect to the Σ-norm, FROZENREP seeks a k-dimensional subspace that cap-
tures as much of the predictive signal across all source tasks. However, in general, the Σ-norm
is not aligned with the parameter norm. In other words, a small ‖θ −Bw‖Σ does not imply that
‖θ −Bw‖ is small, and thus it may be the case that θ −Bw is difficult to learn during fine-tuning.

Figure 2: Prototypical hard case. While ∆∗tw
∗
t

is smaller (left figure), FROZENREP learns ∆∗tw
∗
t

since it has a larger predictive signal (right figure).

A prototypical example of this difference is il-
lustrated by Figure 2, where k = 1. The dashed
red vector has small parameter norm, and is
thus easily learnable by fine-tuning (as demon-
strated by norm-based generalization bounds).
Thus, a meta-learner should opt to learn the
space captured by the solid green vector. How-
ever, if the Σ is structured so that ‖∆∗tw∗t ‖Σ �
‖B∗w∗t ‖Σ, then FROZENREP will learn the
space spanned by the dashed red vector instead.
By appropriately tuning the ratio of the lengths
of the two vectors, we obtain the desired result.

We provide a formal construction in Section
C.1.1, including the extension to general k.

4 ADAPTREP in the Nonlinear Setting

We now describe a framework for analyzing fine-tuning in general function classes. To simplify
notation, we modify the setting in Section 2.2 so that both the representation φ and predictor weights
w are captured by a parameter θ ∈ Θ, with corresponding predictor gθ.

Loss Notation. We denote the population and excess risk of predictor g with respect to the true
predictor g∗ as

L∞(g, g∗) := Ex∼p
[
Ey∼q(·|g∗(x)) [`(g(x), y)]

]
Lex
∞(g, g∗) := L∞(g, g∗)− L∞(g∗, g∗)

,

respectively. Additionally, we let L(g, g∗) denote the corresponding finite-sample quantity.5

Feasible Predictors. For an initialization θ and a fine-tuning set C ⊆ Θ, we define the set
AC(θ) := {gθ′ | θ′ − θ ∈ C} .

Intuitively, this set contains all feasible predictors given an initialization θ and feasible fine-tuning
set C. For convenience, we also define the set

[AC(θ)]⊗T :=
{

(xt)t∈[T ] 7→ (gt(xt))t∈[T ]

∣∣ g1, . . . , gT ∈ AC(θ)
}
,

which is a collection of functions mapping X T → YT . This set represents all feasible T -tuples of
predictors, for a given initialization θ and fine-tuning set C.

4.1 Training Procedure

Figure 3: An illustration of
source training.

Source Training. Fix a set of possible initializations Θ0 ⊆ Θ,
and a fine-tuning set CS. With nS samples for each task (with
optimal predictor g∗t ), we consider the objective

θ0 ∈ argmin
θ∈Θ0

1

T

T∑
t=1

min
gt∈ACS (θ)

L(gt, g
∗
t ). (7)

Note that this corresponds to the ADAPTREP objective in (1)
using the combined parameter θ. We illustrate the objective in
Figure 3

Target Training. Fix a fine-tuning set CT (not necessarily CS).
Given nT samples from a new task (with true predictor g∗), we
run PGD on L(δ) = L(gθ0+δ, g

∗
t ) with feasible set CT. In this

process, PGD is run with TPGD timesteps and step size η.
5Note that we have omitted the samples from the notation for brevity.

7



4.2 Assumptions

Figure 4: Assumption 4.1. If
AC(θ) has low complexity, then
fine-tuning quickly finds good
task-specific parameters for all
tasks.

We rephrase the statistical assumption from Section 2.2 in terms
of feasible sets AC(θ) as follows:
Assumption 4.1. There exists θ∗0 such that for every t ∈ [T ],
g∗t ∈ ACS(θ0).

We illustrate Assumption 4.1 in Figure 4. We also impose the
following standard regularity conditions on the loss function `:
Assumption 4.2. For any y ∈ Y , `(·, y) is 1-Lipschitz6 and
convex, and |`(0, y)| ≤ B.

Task Diversity. To ensure transfer from source to target, we
impose the following condition, a specific instance of which was
proposed by Du et al. (2020) in the linear setting, and proposed
by Tripuraneni et al. (2020b) for general settings:
Assumption 4.3 (Source tasks are (ν, ε)-diverse). There exists constants (ν, ε) such that if ρ is the
distribution of target tasks, then for any θ ∈ Θ0,

Eg∗∼ρ
[

inf
g∈ACT (θ)

Lex
∞(g, g∗)

]
≤ 1

ν

[
1

T

T∑
t=1

inf
g∈ACS (θ)

Lex
∞(g, g∗t )

]
+ ε.

The (ν, ε)-diversity assumption connects the average source task performance (right) to the average
target performance (left). Thus, it ensures that optimizing (7) results in controlled target perfor-
mance. We weakened the condition in Tripuraneni et al. (2020b) to bound average target perfor-
mance rather than worst-case, as is more suitable for higher-dimensional settings.

Target Loss Landscape. Finally, we impose conditions ensuring that PGD finds a near-optimal
solution in CT. We remark that these assumptions are specific to our choice of fine-tuning algorithm.
Assumption 4.4 (Approximate linearity in fine-tuning). Let x1, . . . , xnT

be the set of target inputs.
Then, there exists β, L such that

sup
δ∈CT

1

nT

nT∑
i=1

∥∥∇2
θgθ+δ(xi)

∥∥2

2
≤ β2 and sup

θ∈Θ0

1

nT

nT∑
i=1

‖∇θgθ(xi)‖22 ≤ L
2.

Assumption 4.5. supδ∈CT ‖δ‖2 ≤ R for some R.

4.3 Performance Bound

Recall that for a set H of functions Rd → Rk on n samples, its Rademacher complexityRn(H) on
n samples is given by

Rn(H) := Eε,X

 1

n

∣∣∣∣∣∣sup
h∈H

n∑
i=1

k∑
j=1

εijhj(xi)

∣∣∣∣∣∣
 ,

where (εij) are i.i.d. Rademacher random variables and (xi) are i.i.d. samples from some (preset)
distribution. We now proceed with our performance guarantee.
Theorem 4.1 (General Performance Bound). Assume that all assumptions in Section 4.2 hold. Let
(θt) be the set of iterates generated by PGD following the procedure in Section 4.1 (step size η
specified in Section D). Then, with probability at least 1− δ over the random draw of samples,

Eg∗∼ρ
[
min
t
Lex
∞(gθt , g

∗)
]
. βR2 +R

√
L2 + β2R2

TPGD︸ ︷︷ ︸
εOPT

+
1

δ
sup
θ∈Θ0

RnT
[ACT(θ)] +

B

δ
√
nT︸ ︷︷ ︸

εEST

+
1

ν

{
1

δT
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
+

B

δ
√
nST

}
+ ε︸ ︷︷ ︸

εREPR

.

6This is not restrictive as one can simply rescale the loss, and is assumed for simplicity of presentation.
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Note that the RnT complexity term samples from p. Meanwhile, the RnS complexity term samples
from p⊗T , which concatenates T i.i.d. samples from p (one for each task) for every draw.

We prove Theorem 4.1 in Section D. The Rademacher complexity terms decay in most settings as

1

T
RnS

[ ⋃
θ∈Θ0

[ACS(θ)]
⊗T

]
= O

(
C(Θ0)√
nST

+
diam CS√

nS

)
sup
θ∈Θ0

RnT [ACT(θ)] = O

(
diam CT√

nT

)
,

where C(Θ0) measures the complexity of Θ0, and diam CS and diam CT measures the size of the
fine-tuning sets CS and CT.

Understanding the Bound. We briefly outline out how the assumptions in Section 4.2 contribute
to the final bound. Let θOPT denote the best solution found by PGD, and define the parameters

θERM := argmin
θ∈ACT (θ0)

L(gθ, g
∗) and θ̄ := argmin

θ∈ACT (θ0)

L∞(gθ, g
∗).

That is, θERM is the minimizer of the empirical risk while θ̄ is the minimizer of the population risk,
both within ACT(θ0).

Figure 5: Illustrating the excess risk bound in Theorem 4.1.

Optimization error (εOPT).
The difference in performance
between θOPT and θERM,
i.e. the error due to PGD, is
controlled by the assumptions
on the target loss landscape.

Estimation error (εEST). By
uniform convergence, θERM

performs similarly to θ̄, with
the difference bounded using
Rademacher complexity. By
extension, θOPT performs
similarly to θ̄.

Representation/approximation error (εREPR). The average best case excess risk (i.e., the ex-
cess risk of θ̄) is bounded via the performance of the initialization θ0 on the source tasks, using
(ν, ε)-diversity. Since (7) is a finite-sample estimate of the desired bound, we again use uniform
convergence arguments, which manifest as the second Rademacher complexity term.

We have included an illustration of these three components in Figure 5.

5 Case Study: Two-Layer Neural Networks

We now illustrate our framework by instantiating our bounds in concrete settings. We focus on
specializing Theorem 4.1 to the two-layer neural networks (this section) and logistic regression
(provided in the appendix, Section F). For this section, we fix an activation function σ : R→ R.
Assumption 5.1. For any t ∈ [−2, 2], |σ′(t)| ≤ L and |σ′′(t)| ≤ µ. Furthermore, σ(0) = 0.

Then, for a constant β and θ = (B,w), where B ∈ Rd×2k and w ∈ Rk, we define the neural
network fβθ (x) = βw>σ(B>x), where σ is applied elementwise.

5.1 Statistical Assumptions

Data Sampling. For all tasks, the inputs are sampled from a 1-norm-bounded distribution p. Fur-
thermore, q(· | µ) is generated as µ + η for some O(1)-bounded additive noise η, similar to Tripu-
raneni et al. (2020b).

Parameterizing the Tasks. We fix a representation B∗ ∈ Rd×2k and a linear predictor w∗0 ∈ R2k.
In this setting, we consider representation changes lying in a k-dimensional subspace, determined
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by an orthonormal7 set of matrices ∆∗1, . . . ,∆
∗
k in Rd×2k. Then, for each t ∈ [T ], we have two

unit-norm vectors w∗t , δ
∗
t so that task t has parameter

θ∗t =

B∗ +
1

β

∑
i∈[k]

(δ∗t )i∆
∗
i , w

∗
0 +

1

β
w∗t

 .

We assume a diversity condition on (w∗t , δ
∗
t ) similar in spirit to the linear version in Assumption 3.2,

see Assumption E.2.

With appropriate assumptions on the initialization and large enough β, the source task predictors
behave like their linearizations, i.e. there exists feature vectors φB∗ and ψB∗,w∗0 so that

fθ∗t (x) ≈ φB∗(x)>w∗t +

〈
ψB∗,w∗0 (x) ,

∑
i∈[k]

δ∗t,i∆
∗
i

〉
.

We make use of these assumptions throughout for our result, see Assumption E.1 for the formal
statement. Note that φB∗ and ψB∗,w∗0 correspond to the “activation” and “gradient” features, re-
spectively, that are empirically evaluated by Mu et al. (2020).

5.2 Training Procedure

We use the squared error loss to train in this setting. Additionally, we use the training procedure in
Section 4.1 with the function class {fγθ }, with a minor caveat: we set γ = β during source training,
and γ = O(

√
nT) during target training.

With the procedure above, we now define the relevant feasible sets. We set Θ0 be the set of initial-
izations satisfying Assumption E.1. Finally, we set the constraint sets

CS = {(∆, w) | ‖∆‖F , ‖w‖2 ≤ 1/β} and CγT =
{

(∆, w)
∣∣∣ ‖∆‖2F + ‖w‖22 ≤ O(1/γ2)

}
.

5.3 Performance Guarantee

With the above assumptions in hand, we proceed with the performance guarantee.
Theorem 5.1 (Neural net performance bound). Assume that Assumptions 5.1, E.1 and E.2 hold.
Then, if nS ≥ nT, there exists a setting of the training parameters (see Section E) such that with
probability at least 1− δ, the iterates (θt) satisfy

Ef∗∼ρ
[
min
t
Lex
∞(fγθt , f

∗)
]
. L2 k

√
nT

+ L(L+ µ)
k3/2

√
nST

+

(
µ+ L

β

)
L
√
k,

where log factors have been suppressed for clarity.

6 Conclusion

We have presented, to the best of our knowledge, the first statistical analysis of fine-tuning-based
meta-learning. We demonstrate the success of such algorithms under the assumption of approxi-
mately shared representations between available tasks. In contrast, we show that “frozen represen-
tation” objectives analyzed by prior work fail under this weaker assumption.

An interesting line of future work is to determine ways to formulate useful shared structure among
MDPs, i.e. formulate settings for which meta-reinforcement learning succeeds and results in im-
proved regret bounds for downstream tasks.
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