
Appendix

A Broader Impact

As previously mentioned, the goal of our work is to create an image classification system which
is robust to various distortions on the input data, which has potential applications on improving
the practical use of neural network architectures. However, we have to point out some ethical
considerations for the use of our work. On the one hand, allowing more applications to access the
power of deep learning may not necessarily have a positive impact, since this largely depends on the
goals of the application itself. On the other hand, care should be taken when choosing the dataset
on which to train the student encoder, as well as the model to serve as the teacher encoder. Since
our proposed process aims to distill information from the teacher, as well as use a specific dataset to
perform classification, the presence of biases in either may carry over to our student encoder, which is
undesirable. It is paramount for the ethical application of our work to distill information from models
without any such biases.

B Proof of Proposition 1

Proposition 2. If R is a minimizer of the uniformity term

R ∈ argmin
f

N∑
i=1

log

N∑
j=1

exp
〈f(xi), f(xj)〉

τ
,

then any encoder S∗ ∈ argminS L̂contr(S; τ,R,A) exactly recovers the target embedding,
S∗(A(xi)) = R(xi) for all xi in the training set.

Proof. We are interested in the minimizers of the function L̂contr. To simplify notation, we denote
R(xi) as Ri, S(A(xi)) as Si and

HR(x) :=
∑
j

exp 〈x,Rj〉/τ .

We also denote
Fi(Si) := −〈Si, Ri〉+ τ logHR(Si)

such that

L̂contr(S; τ,R,A) =
1

τ ·N

N∑
j=1

Fi(Si).

Since each Si only appears in one term of the above sum, it suffices to show that Fi is uniquely
minimized by the argument Ri. The only assumption we make on Ri follows from [42] which shows
that if R minimizes the uniformity term, then

∑
j Rj = 0.

We prove the claim directly by showing that Fi(Si) − Fi(Ri) > 0 for any Si with ‖Si‖ = 1 and
Si 6= Ri. Fix some Si with norm 1 and suppose that 〈Si, Ri〉 = 1− δ. Then from an argument by
cosine distance, we see that replacing Ri with Si cannot alter the dot product 〈Ri, Rj〉 by more than
δ for any j: |〈Ri −Si, Rj〉| ≤ δ for all Rj . Using optimality of R, we claim there exists some j such
that this is strict on one side. There must exist a j such that

〈Rj , Si〉 > 〈Rj , Ri〉 − δ,
because if not, then 〈Rj , Si〉 = 〈Rj , Ri〉 − δ for all j. Summing both sides over j and using the fact
that

∑
j Rj = 0 generates the contradiction that 0 = −Nδ.

Now we decompose the HR(Si) term inside Fi(Si):

HR(Si) =
∑
j

exp (〈Si, Rj〉/τ)

> e−δ/τ ·
∑
j

exp (〈Ri, Rj〉/τ)

= e−δ/τ ·HR(Ri),
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where the inequality follows from exp (〈Si, Rj〉/τ) ≥ exp (〈Ri, Rj〉/τ − δ/τ) for all j, where it is
strict for at least one j. We can now directly compare Fi(Si) to Fi(Ri) as

Fi(x)− Fi(Ri) = 〈Ri, Ri − Si〉+ τ · (logHR(Si)− logHR(Ri))

= δ + τ · (logHR(Si)− logHR(Ri))

> δ + τ · log e−δ/τ = 0.

Hence, fi has a unique global minimizer at Ri.

C Variants on the Uniformity Term

As mentioned in the main text, in Section 3, we consider variations on the uniformity term in L̂contr.
We explicitly define these variations here. Recall that

L̂contr(S; τ,R,A) :=
1

τ
L̂MSE(S;R,A) + L̂unif(S; τ,R,A).

In the main text, we use the ‘student vs. teacher’ uniformity loss. We explicitly define this variant and
all others considered in the following list. We abuse notation slightly and use the function Kτ (·, ·)
defined as:

Kτ (y, z) := exp (〈y, z〉/τ),
noting that in the main text the arguments to K were indices and here they the embedding vectors
themselves. As above, we let S(A(xi)) and R(xi) be denoted by Si, Ri respectively.

• Student vs. Teacher: This loss compares the noisy student embeddings to the clean teacher
embeddings, denoted as

L̂unif
ST (S; τ,R,A) :=

1

N

∑
i

log
∑
j

Kτ (Si, Rj)

• Student vs. Student: This loss compares pairs of noisy student embeddings:

L̂unif
ST (S; τ,R,A) :=

1

N

∑
i

log
∑
j 6=i

Kτ (Si, Sj)

• Student vs. Both: This loss combines the above two losses, where the combination occurs
inside the logarithm:

L̂unif
SB (S; τ,R,A) :=

1

N

∑
i

log

∑
j 6=i

Kτ (Si, Sj) +
∑
j

Kτ (Si, Rj)


• NT-XEnt: This loss includes terms for the pairwise similarity between all 4N2 − 2N

pairs of student and teacher embeddings. We denote this as NT −XEnt, because in the
contrastive setting where data is provided in terms of batches of paired positive examples
{xi, x+i }, all pairs are considered in the contrastive loss.

L̂unif
NT (S; τ,R,A) :=

1

N

∑
i

(
log

∑
j 6=i

Kτ (Si, Sj) +
∑
j

Kτ (Si, Rj)

+

log

∑
j

Kτ (Ri, Sj) +
∑
j 6=i

Kτ (Ri, Rj)

).
D Further Experiments and Experimental Details

D.1 Training Details

Datasets For all experiments, we pre-train the robust encoder as well as the baseline using a
randomly chosen 100-class subset of the ImageNet dataset [36]. ImageNet consists of 1,000 classes
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of objects, with 1.2M training images and 50K validation images. The portion we use is the same
subset of ImageNet used by [39], and contains 126,689 training and 5,000 validation images. We
refer to this dataset as ImageNet-100.

For the transfer learning task, we make use of five datasets: (1) CIFAR-10 [28], (2) CIFAR-100 [28],
and (3) STL-10 [8]. (4) The COVID-19 Chest X-ray dataset [9], which consists of X-rays taken of
patients with healthy lungs as well as lungs affected by pneumonia resulting from COVID-19. The
dataset contains 5,286 training images and 624 test images. (5) We generate another random 100-class
subset of ImageNet [36] from the remaining 900 classes we did not use for ImageNet-100, which
we refer to as ImageNet-100B. This subset contains 128,987 training images and 5,000 validation
images.

Image Pre-Processing During contrastive training, we randomly crop the image and resize it to a
height and width of 224 pixels, then apply a random horizontal flip. The resultant image is normalized
to have a mean of 0 and standard deviation 1 in each color channel before being fed to the input of the
teacher. A copy of the randomly-cropped and flipped image is distorted with a given forward operator
and normalized to feed to the student input. We pre-process the images for training the baseline by
applying a random crop, resizing to 224× 224 pixels, applying a given distortion, and normalizing
the pixel values. During validation and testing, we resize each image to a height and width of 256
pixels, take a center crop of 224 × 224 pixels, apply a distortion, and finally normalize the image.
We vary the train and test distortions depending on the setting we evaluate.

For images from CIFAR-10, CIFAR-100, and STL-10, we pre-process the training images by resizing
to 224 × 224 pixels, applying a random horizontal flip, distorting with a given forward operator,
and finally normalizing the images. For validation images from these datasets we perform the
same process without the random flip. For training images from the COVID-19 X-ray dataset and
ImageNet-100B, we apply a random crop, resize to 224× 224 pixels, apply a given distortion, and
normalize the pixel values. For validation images from these datasets, instead of a random crop and
resize, we resize to 256 × 256 pixels and take a 224 × 224 center crop of the image, then apply a
distortion and normalize.

We apply random pixel masking, Gaussian blur, and additive Gaussian noise as our distortions in the
various settings we evaluate. Random pixel masking sets the intensity of a randomly-chosen set of
pixels in an image to 0. Gaussian blur convolves the image with an isotropic Gaussian kernel, and
additive Gaussian noise applies additive white gaussian noise to each each pixel in the image.

Training Hyperparameters We train our method and the supervised baseline using the Adam
optimizer with default values for β and a cosine learning rate schedule [26]. For the baseline, we
use a learning rate of 0.001 and a batch size of 64. For our method, we use a learning rate of 0.0003,
weight decay of 0.0001 and a batch size of 256, and we set the temperature τ from Eq (3) to be 0.1.
We train both the baseline and our method for 25 epochs. The baseline is optimized using cross
entropy loss.

We train a linear classifier on top of the learned representations for our method and the baseline for
each set of experiments. The linear classification layer is optimized with the Adam optimizer, using
a learning rate of 0.001 and a batch size of 128, and is trained for 10 epochs. For label-efficiency
experiments, we lower the batch size to 8 to compensate for the decrease in the data used. We freeze
the learned backbone network during training of the classifier. The classifier is trained using images
that have the same distortions as were used to train the backbone network. During transfer learning
using the baseline, we remove the classification layer used on ImageNet-100 pre-training and replace
it with a randomly-initialized layer with appropriate dimension.

We choose the hyperparameters for each model using a linear search over several values for each
hyperparameter, based on the highest mean validation accuracy we achieve on ImageNet-100 after
one epoch of training on each distortion type. Due to computational limitations, we did not use a
separate validation set for hyperparameter tuning, but rather extrapolated from these results over a
single epoch of training. The values searched over are as follows:

• The learning rate for our method was searched in the range of [10−4, 10−2]. For the baseline,
the search was over [10−5, 5 · 10−1].

• The weight decay was searched in the range [10−4, 10−3].
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• The temperature parameter τ was searched in the range [0.1, 1].

The batch size was set as high as possible with our computing hardware. For our method, this was
done since this form of contrastive loss benefits from greater batch size. For the baseline, this choice
improved performance. All experiments were performed on a system with 4 Nvidia Quadro RTX5000
GPUs, 2 Intel Xeon E5-2620 v4 CPUs, and 128GB of RAM. Experiments using CLIP networks
were run using 16-bit floating point models and data. We use the PyTorch implementation of the
supervised ImageNet-trained ResNet-101 [34].

D.2 Top-5 Results for Main Experiments

For sake of completeness, we provide the full metrics for our experiments, which also include top-5
accuracies for the experiments performed. The conclusions we can draw from the top-1 accuracy
results do not change when we look at the top-5 accuracies.

For the transfer learning task on COVID X-ray data, we present the area under the receiver operating
characteristic curve (AUC). This dataset presents a binary classification problem, so top-5 metrics do
not apply.
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Figure 7: Top-5 accuracies using a varying fraction of labeled samples to train a linear probe. We train
robust encoders on images with 90% random pixel masking and additive Gaussian noise with standard deviation
0.5, and fit a linear classifier on the learned representations using varying fractions of labeled training samples.
We compare to a supervised baseline that uses all of the labeled training samples. Results are averaged over 10
random instantiations of corruptions on the ImageNet-100 validation dataset. We omit error bars as standard
error is insignificant.
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Figure 8: Top-5 accuracies for images with varying corruption levels using models trained on a range of
levels. In the left figure, we compare our robust model with a baseline, both trained on images with 50% to 95%
random pixel masking. In the right figure, each model is trained on images with additive Gaussian noise with
random standard deviation from 0.1 to 0.3. We evaluate the models on images with more severe corruptions than
applied during training. Results are averaged over 10 random instantiations of corruptions on the ImageNet-100
validation dataset. We omit error bars as standard error is insignificant.
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Figure 9: Top-5 accuracies for varying noise levels on unseen classes using label shift. On the left, we see
the model trained on 50% to 95% random masking of pixels, while on the right the model trained on Gaussian
noise with standard deviation from 0.1 to 0.3. Both models are evaluated on the unseen classes, using the chosen
reference classes from ImageNet100 as the targets, as shown in the label shift table. Results are averaged over
10 random instantiations of corruptions. We omit error bars in the left figure as standard error is insignificant.
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Figure 10: Ablation study with top-5 accuracies. We evaluate the model trained on 50% to 95% random
masking of pixels, using several variants of the uniformity term in the contrastive loss. Results are averaged over
10 random instantiations of corruptions on the ImageNet-100 validation dataset. We omit error bars as standard
error is insignificant.

Table 4: Top-5 accuracy (percent) on ImageNet-100. The best accuracy for each distortion is bolded. Each
model is trained using images with a fixed type of distortion. We train our robust CLIP encoder contrastively,
then fit a linear probe on the learned representations using either all or 10% of the labeled training samples. We
report the mean and standard error for accuracy over 10 random instantiations of distortions on the ImageNet-100
validation dataset (Gaussian blur is deterministic, so we do not include standard error values). For Gaussian blur,
n corresponds to the length of the blur kernel.

Distortion Supervised
Baseline Ours Ours

(10% labeled data)

Random Mask 50% 93.86±0.04 97.60±0.02 96.57±0.06
Random Mask 75% 93.19±0.05 96.83±0.06 95.53±0.05
Random Mask 90% 92.12±0.05 96.34±0.04 95.20±0.04
Gaussian Noise σ = 0.1 95.49±0.03 97.39±0.04 96.11±0.03
Gaussian Noise σ = 0.3 93.00±0.05 95.59±0.07 93.95±0.06
Gaussian Noise σ = 0.5 90.45±0.05 93.18±0.06 91.14±0.06
Gaussian Blur n = 21 93.38 96.34 95.26
Gaussian Blur n = 37 89.42 93.94 91.88
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Table 5: Top-5 accuracies for transfer learning. We fit a linear classifier for each dataset on top of the
representations learned by the models from ImageNet-100. RM means the model was trained with random
missing pixels, and GN means it was trained with additive Gaussian noise. Results are mean and standard errors
over 10 realizations of the distortions during evaluation. The COVID X-ray dataset has two classes so there are
no top-5 results.

Model CIFAR-10 CIFAR-100 STL-10 ImageNet-100B

Baseline (RM) 98.92±0.02 84.09±0.05 99.38±0.01 88.35±0.04
Ours (RM) 99.23±0.02 86.26±0.04 99.72±0.01 95.40±0.04
Baseline (GN) 98.76±0.02 81.37±0.05 99.41±0.01 89.81±0.08
Ours (GN) 98.72±0.02 81.50±0.06 99.48±0.01 94.74±0.06

Table 6: Area under receiver operating characteristic curve (AUC) for transfer learning on COVID X-
ray data. We fit a linear classifier for the COVID X-ray dataset on top of the representations learned by the
models from ImageNet-100. RM means the model was trained with random missing pixels, and GN means
it was trained with additive Gaussian noise. Results are mean and standard errors over 10 realizations of the
distortions during evaluation.

Model AUC

Baseline (RM) 0.918±0.0011
Ours (RM) 0.918±0.0010

Baseline (GN) 0.927±0.0009
Ours (GN) 0.896±0.0015
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D.3 Comparisons with Denoising and Inpainting for Classification

An alternative way of solving the inverse problem presented in the paper is to use methods which
operate directly on the pixel space of the image. Instead of training a classifier which operates
on distorted images, one could try to recover the original images from the distorted version. The
recovered images can then be given to a classifier trained on clean images. We compare our method
with two such baselines which operate in pixel space:

1. We apply Non-Local Means (NLM) [2] denoising to images corrupted by additive Gaussian
noise.

2. We use Deep Decoder [16] with default parameters and 5000 optimization steps to perform
inpainting on images with random missing pixels. Deep Decoder is a method which
randomly initializes an under-parameterized generative network with upsampling and 1× 1
convolution layers, then optimizes over the weights of the network to fit a single distorted
image. Since the network is underparameterized, it cannot fit noise very well, while its
upsampling and convolution layers bias it to produce natural-looking images. The result
is that the network produces a reconstructed version of the original image, despite never
having been trained on any other data.

For evaluation, we corrupt images from the ImageNet-100 validation set with Gaussian noise and
random pixel masks, then apply NLM and Deep Decoder, respectively. We feed the recovered images
as input to a classification model trained on clean image data. The classification model we use is an
ImageNet pre-trained ResNet-101 backbone with a linear classifier trained on clean ImageNet-100
images. We compare the performance of these pixel-space inverse methods with that of our method.
The results for denoising are seen in Table 7 and the results for inpainting in Table 8. We can see that
the inverse methods acting in pixel space are not reliable at reconstructing images for classification.
In the case of denoising the accuracy degrades quickly with increasing noise, and for inpainting the
accuracy is poor for all masking levels.

Table 7: Denoising baseline. We compare our method to a 2-step denoising baseline, where a) we denoise
images with various levels of additive Gaussian noise using Non-Local Means denoising and b) we feed the
images through a model trained on clean images from ImageNet-100. Results for our method are included for
comparison. We perform 10 evaluation runs for each experiment and present the mean and standard error.

Noise Level Denoising Ours

σ = 0.1 73.49±0.08 84.46±0.08
σ = 0.3 56.47±0.14 81.30±0.07
σ = 0.5 27.64±0.14 76.23±0.10

Table 8: Inpainting baseline. We compare our method to an inpainting baseline, where a) we inpaint images
with varying fractions of missing pixels using Deep Decoder [16] and b) we feed the images through a model
trained on clean images from ImageNet-100. Results from the main paper are included for comparison.

Missing Pixel Fraction Inpainting Ours

50% 23.38 85.87
75% 21.89 83.99
90% 20.39 82.96

D.4 Transfering a Clean Classifier to Robust Encoders

To demonstrate the ability of our method to retrieve good representations from the teacher, we
perform the following experiment. We train a robust encoder on distorted images using the method
we propose. We then train a linear classifier on top of the pre-trained, non-robust CLIP backbone
using clean images. Finally, we transfer this linear classifier for clean images to the robust encoder.
The results can be seen in Table 9. We see that our technique achieves good results, even without
finetuning the linear classifier on distorted images. This means that the representations learned by the
student for distorted images are sufficiently close to those of the teacher for clean images.
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Table 9: Accuracies for applying a linear classifier trained on clean images on top of representations from
a robust CLIP encoder. We transfer the linear classifier trained on clean images on top of the representations
learned by our contrastive technique. We evaluate on the same noises used during training of the robust encoder.
Best scores are not bolded since we intend to illustrate a quality of our method instead of comparing two
techniques.

Distortion Clean Linear Classifier Ours

Random Mask 50% 80.1 85.87
Random Mask 75% 76.4 83.99
Random Mask 90% 78.1 82.96
Gaussian Noise σ = 0.1 77.2 84.46
Gaussian Noise σ = 0.3 75.7 81.30
Gaussian Noise σ = 0.5 70.5 76.23
Gaussian Blur n = 21 78.3 83.24
Gaussian Blur n = 37 73.1 77.80

D.5 Decreasing Noise Levels

Extending the results from Section 4.2, we evaluate both the baseline and our robust encoder in the
setting where the noise levels seen during testing are lower than those seen during training. The
results can be seen in Table 10, and they are in accord with the rest of our observations: accuracy for
both models is higher (due to lower noise), and our method still outperforms the baseline.

Table 10: Evaluation of our method on lower noise levels during testing. We extend the results
from Section 4.2 to incorporate the case where the noise is lower during test time than that seen
during training time. We see that our method still outperforms the baseline.

Distortion Baseline Ours

Random Mask 30% 76.75 ± 0.05 86.06 ± 0.06
Random Mask 35% 76.89 ± 0.07 86.04 ± 0.05
Random Mask 40% 76.93 ± 0.04 86.11 ± 0.06
Random Mask 45% 77.05 ± 0.08 86.06 ± 0.05
Gaussian Noise σ = 0.02 77.92 ± 0.02 85.71 ± 0.02
Gaussian Noise σ = 0.04 80.04 ± 0.05 86.13 ± 0.04
Gaussian Noise σ = 0.06 80.95 ± 0.05 86.40 ± 0.04
Gaussian Noise σ = 0.08 80.98 ± 0.04 86.25 ± 0.07

D.6 Baseline Model Pretrained on ImageNet-100

We examine a variant of our baseline model, where instead of using a ResNet pretrained on the full
ImageNet dataset, we instead train our ResNet on ImageNet-100 to get a good classifier on the clean
images, and then use that as a starting point for our baseline model. More specifically, the chosen
architecture is again ResNet-101, trained in a supervised fashion for clean images for 90 epochs, with
an SGD optimizer, a learning rate of 0.1, momentum of 0.9 and batch size of 256. 2 These results
can be seen in Tables 11 and 12. We can see that these results are comparable to (and in most cases
worse than) our original baseline. This is to be expected, since the model which is initialized with
full ImageNet weights was trained on roughly 10 times more data than this new model. In any case,
results are still worse than our method, which means that the latter is capable of outperforming the
stronger of the two baselines.

2These are the default hyperparameters for full ImageNet training as in the official pytorch examples
repository, found here: https://github.com/pytorch/examples/tree/master/imagenet.
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Table 11: Comparison of initial weights for supervised baseline, for the fixed noise experiment.
Training of the supervised baseline can be done starting from a ResNet-101 which was trained on the
full ImageNet, or from one which was trained on only ImageNet-100. We can see that the first choice,
which is the one used in the rest of this paper, is the better of the two. In any case, both baselines
provide worse results than our method (compare to Table 1).

Distortion Baseline Initial Weights
From ImageNet-100

Baseline Initial Weights
From Full ImageNet

Random Mask 50% 76.48 ± 0.02 77.53 ± 0.06
Random Mask 75% 74.38 ± 0.07 75.68 ± 0.06
Random Mask 90% 70.77 ± 0.10 74.12 ± 0.09
Gaussian Noise σ = 0.1 78.95 ± 0.06 82.23 ± 0.04
Gaussian Noise σ = 0.3 74.03 ± 0.08 75.78 ± 0.08
Gaussian Noise σ = 0.5 69.34 ± 0.09 71.43 ± 0.14
Gaussian Blur n = 21 72.70 76.40
Gaussian Blur n = 37 67.26 68.94

Table 12: Comparison of initial weights for supervised baseline, for the varying noise level
experiment. Similar to Table 11, we compare the two choices for the baseline for the experiment
with varying noise levels. Again, training with the full ImageNet dataset provides a stronger baseline
in most cases (compare with Figure 4).

Distortion Baseline Initial Weights
From ImageNet-100

Baseline Initial Weights
From Full ImageNet

Random Mask 96% 57.21 ± 0.11 56.80 ± 0.01
Random Mask 97% 41.58 ± 0.07 39.28 ± 0.15
Random Mask 98% 10.84 ± 0.09 11.01 ± 0.12
Random Mask 99% 1.12 ± 0.02 2.03 ± 0.12
Gaussian Noise σ = 0.35 71.71 ± 0.17 72.34 ± 0.12
Gaussian Noise σ = 0.4 68.40 ± 0.09 69.10 ± 0.12
Gaussian Noise σ = 0.45 62.75 ± 0.13 65.62 ± 0.12
Gaussian Noise σ = 0.5 54.16 ± 0.10 61.13 ± 0.19

D.7 Using original representations on distorted images

To understand how much we can gain from performing contrastive training to make image representa-
tions more robust, we would like to see how well the original CLIP network performs for classifying
distorted images. We train a linear classifier on top of the pre-trained, non-robust CLIP backbone
using distorted images (i.e. the network has not been trained with a contrastive step). We also train a
linear classifier on top of the ImageNet pre-trained ResNet-101 backbone using distorted images. We
present the results in Table 13. Clearly, both CLIP and ImageNet pre-trained ResNet-101 produce
poor representations for distorted images resulting in low classification accuracy. These results
highlight the need for a training procedure to make these pre-trained representations more robust.
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Table 13: Learning classifier on top of original representations. Here, the linear classifier is
trained on distorted images, using the original representations from CLIP and from ResNet-101
pre-trained on ImageNet. We can see that this deteriorates the results in both cases, when compared
to Table 1. We do not bold best results as this experiment does not attempt to compare these two
methods.

Distortion Original CLIP
Representations

Clean ResNet-101
Representations

Random Mask 50% 41.30 ± 0.06 46.30 ± 0.04
Random Mask 75% 24.00 ± 0.07 30.40 ± 0.04
Random Mask 90% 14.50 ± 0.10 23.10 ± 0.07
Gaussian Noise σ = 0.1 75.20 ± 0.06 74.50 ± 0.05
Gaussian Noise σ = 0.3 25.10 ± 0.07 50.80 ± 0.06
Gaussian Noise σ = 0.5 7.70 ± 0.09 25.20 ± 0.09
Gaussian Blur n = 21 51.20 65.80
Gaussian Blur n = 37 22.30 45.40

D.8 Experiments on ImageNet-100C

As a final benchmark, we compare our methods on a subset of ImageNet-C [18] with the same classes
as those of ImageNet-100, henceforth referred to as ImageNet-100C. We compare two models:

• The first is a baseline ResNet-101, pretrained on ImageNet and finetuned on clean images
of ImageNet-100.

• The second is a version of our student encoder, which is initialized from CLIP and is trained
on distorted images. On these images, Gaussian blurring with σ ∈ [1, 5] and Gaussian
additive noise with σ ∈ [0.05, 0.5] are applied, independently with probability 0.8 each.

Results can be seen in Table 14. The values for the methods on each corruption type are top-1
accuracies averaged across 5 levels of corruption. We can see here that our model does not get results
comparable to the baseline. This can be explained by a limitation of our current work, in that we rely
on student representations matching the teacher representations. If the type of noise is altered for the
student, then it is difficult for it to match the teacher representations, which are fixed. Indeed, altering
the type of noise on an image is expected to greatly affect its representation. Thus, at its present
iteration, our technique relies on some prior knowledge about the type of distortion encountered.
Possible ways around this, such as also finetuning the teacher, are left for consideration in future
work.
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Table 14: ImageNet-100C results. We present the mean top-1 accuracies across 5 corruption levels for each
corruption type. We do not present mean corruption error (mCE) as this is computed with respect to performance
on full ImageNet-C, while we compute on a 100-class subset of ImageNet-C.

Corruption Supervised Baseline Ours

Blur Defocus 61.76 56.88
Glass 49.15 50.52
Motion 59.38 44.37
Zoom 59.00 50.69

Digital Contrast 58.61 43.69
Elastic 67.85 60.40
JPEG 77.75 61.08
Pixelate 73.06 75.65

Noise Gaussian 55.83 56.81
Impulse 51.05 54.11
Shot 53.76 56.74

Weather Brightness 86.01 72.57
Fog 67.56 54.20
Frost 59.58 51.70
Snow 53.97 39.80

Extra Gaussian Blur 64.31 62.66
Saturate 82.16 65.95
Spatter 71.9 59.52
Speckle 62.65 66.28

D.9 ImageNet-100 Classes

To train our model and the baseline, we use a randomly-chosen 100-class subset of the original
ImageNet dataset. This subset is the same as used in [39]. We present the wnid of each of the classes
in the subset in Table 15

D.10 ImageNet-100B Classes

For the transfer learning experiments, we select a random subset of 100 classes from ImageNet which
are mutually exclusive with the classes found in ImageNet-100. We term this subset ImageNet-100B,
and present the wnid of each of the classes used in this subset in Table 16.

24



Table 15: List of ImageNet-100 Classes. We present the wnid of each of the classes used in ImageNet-100.
These classes are randomly sampled from the original ImageNet dataset and are the same classes used in [39].

ImageNet-100 Classes

n02869837 n02086910 n03785016 n02483362 n03837869
n01749939 n02859443 n03764736 n04127249 n03494278
n02488291 n13040303 n03775546 n02089973 n04136333
n02107142 n03594734 n02087046 n03017168 n03794056
n13037406 n02085620 n07836838 n02093428 n03492542
n02091831 n02099849 n04099969 n02804414 n02018207
n04517823 n01558993 n04592741 n02396427 n04067472
n04589890 n04493381 n03891251 n04418357 n03930630
n03062245 n02109047 n02701002 n02172182 n03584829
n01773797 n04111531 n03379051 n01729322 n02123045
n01735189 n02877765 n02259212 n02113978 n04229816
n07831146 n04429376 n07715103 n03787032 n02100583
n07753275 n02009229 n03947888 n02089867 n03642806
n03085013 n01978455 n04026417 n02119022 n04336792
n04485082 n02106550 n02326432 n03777754 n03259280
n02105505 n01820546 n03637318 n04238763 n02116738
n01983481 n01692333 n01980166 n02231487 n02108089
n02788148 n07714571 n02113799 n03032252 n03424325
n03530642 n02974003 n02086240 n02138441 n01855672
n04435653 n02114855 n03903868 n02104029 n02090622

Table 16: List of ImageNet-100B Classes. We present the wnid of each of the classes used in ImageNet-100B.
These classes are randomly sampled from the original ImageNet dataset and are mutually exclusive with the
classes in ImageNet-100.

ImageNet-100B Classes

n02088364 n02840245 n04258138 n03670208 n02013706
n03000134 n01688243 n02280649 n03483316 n02797295
n03544143 n03920288 n02492660 n02777292 n04366367
n03388043 n02488702 n03782006 n03602883 n03857828
n02165105 n03884397 n03495258 n03982430 n04243546
n02321529 n07745940 n04254120 n02808440 n03891332
n01819313 n01484850 n02391049 n03207743 n03796401
n03187595 n04147183 n04254777 n02096177 n03314780
n01667114 n04356056 n07716906 n01742172 n04039381
n02097130 n01644900 n03888605 n03792782 n01498041
n02104365 n02132136 n01843065 n01795545 n01990800
n02279972 n02999410 n02643566 n03534580 n03976657
n12985857 n02457408 n04515003 n03814906 n02107683
n01773549 n04540053 n03125729 n02342885 n02229544
n12057211 n02776631 n04179913 n03692522 n03063599
n02791270 n02107574 n03788365 n03272010 n03127747
n01491361 n02930766 n02098286 n09468604 n03179701
n02169497 n04263257 n02109525 n03720891 n03016953
n02793495 n03724870 n02966193 n03717622 n09193705
n02281787 n04081281 n03929660 n02177972 n04033901
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E Visualization of Distortions

In this section, we present several examples of the fixed distortions we apply during training and
testing. All images are taken from the ImageNet-100 validation set.

ORIGINAL BLUR N=21 BLUR N=37

RANDOM MASK 50% RANDOM MASK 75% RANDOM MASK 90%

GAUSSIAN NOISE =0.1 GAUSSIAN NOISE =0.3 GAUSSIAN NOISE =0.5

ORIGINAL BLUR N=21 BLUR N=37

RANDOM MASK 50% RANDOM MASK 75% RANDOM MASK 90%

GAUSSIAN NOISE =0.1 GAUSSIAN NOISE =0.3 GAUSSIAN NOISE =0.5

ORIGINAL BLUR N=21 BLUR N=37

RANDOM MASK 50% RANDOM MASK 75% RANDOM MASK 90%

GAUSSIAN NOISE =0.1 GAUSSIAN NOISE =0.3 GAUSSIAN NOISE =0.5

ORIGINAL BLUR N=21 BLUR N=37

RANDOM MASK 50% RANDOM MASK 75% RANDOM MASK 90%

GAUSSIAN NOISE =0.1 GAUSSIAN NOISE =0.3 GAUSSIAN NOISE =0.5

Figure 11: Visualization of the various fixed distortions we test.
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