
The supplemental material is organized as follow. Detailed proofs of theoretical results in Section1

3.1 and Section 3.2 are provided in Section A and Section B, respectively. Section C presents2

configurations of computing devices and detailed settings (e.g., data splits, hyper-parameters) of3

numerical experiments given in Section 4 of the main paper.4

A Proof of results in Section 3.15

A.1 Proof of Lemma 3.16

Proof. First, as X and Y are compact sets and f is continuous on X ×Y , there exist constantsm,M7

such that m ≤ f(x,y) ≤M for any (x,y) ∈ X × Y . According to [1, Lemma 10.4], we have8 (
1

αky
− Lf

2

)
‖Rαk

y
(x,yk(x, z))‖2 ≤ f(x,yk(x, z))− f(x,yk+1(x, z)), ∀k ≥ 0.

Since αky ∈ [αy, αy] ⊂ (0, 2
Lf

), it follows from [1, Theorem 10.9] that ‖Rαy
(x,yk(x, z))‖ ≤9

‖Rαk
y
(x,yk(x, z))‖, and thus10

‖Rαy
(x,yk(x, z))‖2 ≤ 1

(1/αy − Lf/2)

(
f(x,yk(x, z))− f(x,yk+1(x, z))

)
, ∀k ≥ 0.

Summing the above inequality from k = 0 to K, we have11

K∑
k=0

‖Rαy
(x,yk(x, z))‖2 ≤ 1

(1/αy − Lf/2)

(
f(x,y0(x, z))− f(x,yK+1(x, z))

)
.

Since yk(x, z) ∈ Y for any k, m ≤ f(x,yk(x, z)) ≤ M for any x ∈ X , z ∈ Y and k ≥ 0. Then12

we can obtain from the above inequality that13

min
0≤k≤K

‖Rαy
(x,yk(x, z))‖ ≤

√
M −m

(1/αy − Lf/2) (K + 1)
, ∀x ∈ X , z ∈ Y.

The conclusion follows by letting Cf =
√

M−m
1/αy−Lf/2

.14

A.2 Proof of Lemma 3.215

Proof. For any x ∈ X , and any ε > 0, there exists yε ∈ Ŝ(x) such that F (x,yε) ≤16

infy∈Ŝ(x) F (x,y) + ε. As yε ∈ Ŝ(x), then Rα(x,yε) = 0 for any α > 0 and thus yk(x,yε) = yε17

for any k ≥ 0. Since yε ∈ Y , we have18

ϕK(xK , zK) ≤ ϕK(x,yε) = max
1≤k≤K

{F (x,yk(x,yε))} = F (x,yε) ≤ inf
y∈Ŝ(x)

F (x,y) + ε.

The conclusion follows by letting ε→ 0 in above inequality.19

A.3 Proof of Theorem 3.120

Proof. For any K > 0, we define i(K) := argmin0≤k≤K‖Rαy
(x,yk(x, z))‖. For any limit21

point x̄ of the sequence {xK}, let {xl} be a subsequence of {xK} such that xl → x̄ ∈ X . As22

{yi(K)(xK , zK)} ⊂ Y and Y is compact, we can find a subsequence {xj} of {xl} satisfying23

yi(j)(xj , zj) → ȳ for some ȳ ∈ Y . It follows from Lemma 3.1 that for any ε > 0, there exists24

J(ε) > 0 such that for any j > J(ε), we have25

‖Rαy
(xj ,yi(j)(xj , zj))‖ ≤ ε.

By letting j →∞, and sinceRα(x,y) is continuous, we have26

‖Rαy
(x̄, ȳ)‖ ≤ ε.
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As ε is arbitrarily chosen, we have ‖Rαy
(x̄, ȳ)‖ ≤ 0 and thus ȳ ∈ Ŝ(x̄).27

Next, as F is continuous at (x̄, ȳ), for any ε > 0, there exists J(ε) > 0 such that for any j > J(ε),28

it holds29

F (x̄, ȳ) ≤ F (xj ,yi(j)(xj , zj)) + ε.

We define ϕ̂(x) := infy∈Ŝ(x) F (x,y), then for any j > J(ε) and x ∈ X ,30

ϕ̂(x̄) = inf
y∈Ŝ(x̄)

F (x̄,y)

≤ F (x̄, ȳ)

≤ F (xj ,yi(j)(xj , zj)) + ε

≤ max
1≤k≤j

F (xj ,yk(xj , zj)) + ε

= ϕj(xj , zj) + ε

≤ ϕ̂(x) + ε,

(1)

where the lase inequality follows from Lemma 3.2. By taking ε→ 0, we have31

ϕ̂(x̄) ≤ F (x̄, ȳ) ≤ ϕ̂(x), ∀x ∈ X ,

which implies x̄ ∈ arg minx∈X ϕ̂(x) and (x̄, ȳ) ∈ argminx∈X ,y∈YF (x,y), s.t. y ∈ Ŝ(x). By As-32

sumption 3.1(5), we have ȳ ∈ S(x) and thus ϕ̂(x̄) ≥ ϕ(x̄). Next, since Ŝ(x) ⊃ S(x), then ϕ̂(x) ≤33

ϕ(x) for any x ∈ X . Thus we have infx∈X ϕ̂(x) = infx∈X ϕ(x) and x̄ ∈ arg minx∈X ϕ(x).34

We next show that infx∈X ,z∈Y ϕK(x, z) → infx∈X ϕ̂(x) = infx∈X ϕ(x) as K → ∞. According35

to Lemma 3.2, for any x ∈ X ,36

inf
x∈X ,z∈Y

ϕK(x, z) ≤ ϕ̂(x),

by taking K →∞, we have37

lim sup
K→∞

{
inf

x∈X ,z∈Y
ϕK(x, z)

}
≤ ϕ̂(x), ∀x ∈ X,

and thus38

lim sup
K→∞

{
inf

x∈X ,z∈Y
ϕK(x, z)

}
≤ inf

x∈X
ϕ̂(x).

So, if infx∈X ,z∈Y ϕK(x, z) → infx∈X ϕ̂(x) = infx∈X ϕ(x) does not hold, then there exist δ > 039

and subsequence {(xl, zl)} of {(xK , zK)} such that40

inf
x∈X ,z∈Y

ϕl(x, z) = lim
l→∞

ϕl(xl, zl) < inf
x∈X

ϕ̂(x)− δ, ∀l. (2)

Since X is compact, we can assume without loss of generality that xl → x̄ for some x ∈ X by41

considering a subsequence. Then, as shown in above, we have x̄ ∈ arg minx∈X ϕ̂(x). And, by the42

same arguments for deriving (1), we can show that for any ε > 0, there exists k(ε) > 0 such that for43

any l > k(ε), it holds44

ϕ̂(x̄) ≤ ϕl(xl, zl) + ε.

By letting l→∞, ε→ 0 and the definition of xl, we have45

inf
x∈X

ϕ̂(x) = ϕ̂(x̄) ≤ lim inf
l→∞

{
inf

x∈X ,z∈Y
ϕl(x, z)

}
,

which implies a contradiction to (2). Thus we have infx∈X ,z∈Y ϕK(x, z) → infx∈X ϕ̂(x) =46

infx∈X ϕ(x) as K →∞.47
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A.4 Proof of Theorem 3.248

Proof. By using the same arguments as in the proof of Theorem 3.1, for any limit point (x̄, z̄) of49

the sequence {(xK , zK)}, we can find a subsequence {(xj , zj)} of sequence {(xK , zK)} such50

that xj → x̄ ∈ X , zj → z̄ ∈ Y and yi(j)(xj , zj) → ȳ ∈ Y for some ȳ ∈ Ŝ(x̄), where51

i(K) := argmin0≤k≤K‖Rαy
(x,yk(x, z))‖.52

Next, as F is continuous at (x̄, ȳ), for any ε > 0, there exists J(ε) > 0 such that for any j > J(ε),53

it holds54

F (x̄, ȳ) ≤ F (xj ,yi(j)(xj , zj)) + ε.

Then for any j > J(ε),55

F (x̄, ȳ) ≤ F (xj ,yi(j)(xj , zj)) + ε

≤ max
1≤k≤j

F (xj ,yk(xj , zj)) + ε

= ϕj(xj , zj) + ε.

(3)

Next, as (xj , zj) is a local minimum of ϕj(x, z) with uniform neighborhood modulus δ, it follows56

ϕj(xj , zj) ≤ ϕj(x, z), ∀(x, z) ∈ Bδ(xj , zj) ∩ X × Y.

Since Bδ/2(x̄, z̄) ⊆ Bδ/2+‖(xj ,zj)−(x̄,z̄)‖(x̄, z̄) ⊆ Bδ(xj , zj) when ‖(xj , zj) − (x̄, z̄)‖ < δ/2, we57

have that there exists J(δ) > 0 such that whenever j > J(δ), for any (x, z) ∈ Bδ/2(x̄, z̄) ∩X ×Y ,58

ϕj(xj , zj) ≤ ϕj(x, z).

Then, applying the same arguments as in the proof of Lemma 3.2 yields that whenever j > J(δ),59

ϕj(xj , zj) ≤ F (x, z),

for any (x, z) ∈ Bδ̃(x̄, z̄) ∩ {x ∈ X , z ∈ Y | z ∈ Ŝ(x)} with δ̃ = δ/2. Combining with (3) and60

taking j →∞, ε→ 0 gives the conclusion.61

B Proof of results in Section 3.262

Lemma B.1. [3, Lemma 1] Denote f∗(x) := miny f(x, y). If f(x,y) is continuous on X × Rm,63

then f∗(x) is upper semi-continuous on X .64

Lemma B.2. Assume that yk(x, z) satisfies yk(x, z) = z for any z ∈ S(x), x ∈ X and k ≥ 0. Let65

(xK , zK) ∈ argminx∈X ,z∈YφK(x, z) := F (x,yK(x, z)), then66

φK(xK , zK) ≤ ϕ(x), ∀x ∈ X .

Proof. For any x ∈ X , and any ε > 0, there exists yε ∈ S(x) such that F (x,yε) ≤ ϕ(x) + ε. As67

yε ∈ S(x), then by assumption that yk(x,yε) = yε for any k ≥ 0. Since yε ∈ Y , we have68

φK(xK , zK) ≤ φK(x,yε) = F (x,yk(x,yε)) = F (x,yε) ≤ ϕ(x) + ε.

The conclusion follows by letting ε→ 0 in above inequality.69

B.1 Proof of Theorem 3.370

Proof. For any limit point x̄ of the sequence {xK}, let {xl} be a subsequence of {xK} such that71

xl → x̄ ∈ X . As {yK(xK , zK)} ⊂ Y is bounded, we can have a subsequence {xj} of {xl}72

satisfying yj(xj , zj) → ȳ for some ȳ ∈ Y . When the condition (a) holds, for any ε > 0, there73

exists J(ε) > 0 such that for any j > J(ε), we have74

f(xj ,yj(xj , zj))− f∗(xj) ≤ ε.
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By letting j →∞, and since f is continuous and f∗(x) is upper semi-continuous onX from Lemma75

B.1, we have76

f(x̄, ȳ)− f∗(x̄) ≤ ε.
As ε is arbitrarily chosen, we have f(x̄, ȳ)− f∗(x̄) ≤ 0 and thus ȳ ∈ S(x̄).77

On the other hand, if yk(x, z) satisfies condition (b). For any ε > 0, there exists J(ε) > 0 such that78

for any j > J(ε), we have79

‖Rα(xj ,yj(xj , zj))‖ ≤ ε.
By letting j →∞, and sinceRα is continuous, we have80

‖Rα(x̄, ȳ)‖ ≤ ε.
As ε is arbitrarily chosen, we have ‖Rα(x̄, ȳ)‖ ≤ 0 and thus ȳ ∈ S(x̄).81

Next, as F is continuous at (x̄, ȳ), for any ε > 0, there exists J(ε) > 0 such that for any j > J(ε),82

it holds83

F (x̄, ȳ) ≤ F (xj ,yj(xj , zj)) + ε.

Then, we have, for any j > J(ε) and x ∈ X ,84

ϕ(x̄) = inf
y∈S(x̄)

F (x̄,y)

≤ F (x̄, ȳ)

≤ F (xj ,yj(xj , zj)) + ε

= φj(xj , zj) + ε

≤ ϕ(x) + ε,

(4)

where the lase inequality follows from Lemma B.2. By taking ε→ 0, we have85

ϕ(x̄) ≤ ϕ(x), ∀x ∈ X ,
which implies x̄ ∈ arg minx∈X ϕ(x).86

We next show that infx∈X ,z∈Y φK(x, z) → infx∈X ϕ(x) as K → ∞. According to Lemma B.2,87

for any x ∈ X ,88

inf
x∈X ,z∈Y

φK(x, z) ≤ ϕ(x),

by taking K →∞, we have89

lim sup
K→∞

{
inf

x∈X ,z∈Y
φK(x, z)

}
≤ ϕ(x), ∀x ∈ X ,

and thus90

lim sup
K→∞

{
inf

x∈X ,z∈Y
φK(x, z)

}
≤ inf

x∈X
ϕ(x).

So, if infx∈X ,z∈Y φK(x, z)→ infx∈X ϕ(x) does not hold, then there exist δ > 0 and subsequence91

{(xl, zl)} of {(xK , zk)} such that92

inf
x∈X ,z∈Y

φl(x, z) = lim
l→∞

φl(xl, zl) < inf
x∈X

ϕ(x)− δ, ∀l. (5)

Since X is compact, we can assume without loss of generality that xl → x̄ for some x ∈ X by93

considering a subsequence. Then, as shown in above, we have x̄ ∈ arg minx∈X ϕ(x). And, by the94

same arguments for deriving (4), we can show that for any ε > 0, there exists k(ε) > 0 such that for95

any l > k(ε), it holds96

ϕ(x̄) ≤ φl(xl, zl) + ε.

By letting l→∞, ε→ 0 and the definition of xl, we have97

inf
x∈X

ϕ(x) = ϕ(x̄) ≤ lim inf
l→∞

{
inf

x∈X ,z∈Y
φl(x, z)

}
,

which implies a contradiction to (5). Thus we have infx∈X ,z∈Y φK(x, z) → infx∈X ϕ(x) as K →98

∞.99
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B.2 Proof of Theorem 3.4100

Proof. According to [1, Theorem 10.34], when f(x, ·) is convex and Lf -smooth for any x ∈ X ,101

and α = 1
Lf

, {yk(x, z)} admits the following property,102

f(x,yK(x, z))− f∗(x) ≤ 2Lfdist(y0(x, z),S(x))

(k + 1)2
=

2Lfdist(z,S(x))

(k + 1)2
,

where dist(z, S(x)) denotes the distance from z to the set S(x). Since X and Y are both com-103

pact sets, then there exists M > 0 such that dist(z,S(x)) ≤ M for (x, z) ∈ X × Y . Then104

we can easily obtained from the above lemma that {yk(x, z)} satisfies condition (a) in Theo-105

rem 3.3. Next, yk(x, z) ∈ Y follows from the update formula of yk immediately. And when106

u0(x, z) = y0(x, z) = z ∈ S(x), it can be easily verified that uk(x, z) = yk(x, z) = z for any107

k ≥ 0. Thus {yk(x, z)} satisfies all the assumptions required by Theorem 3.3.108

C Experiments109

Our experiments were conducted on a PC with Intel Core i9-10900KF CPU (3.70GHz), 128GB110

RAM, two NVIDIA GeForce RTX 3090 24GB GPUs, and the platform is 64-bit Ubuntu 18.04.5111

LTS.112

C.1 Non-convex Numerical Example113

For the non-convex BLO problem within the text, we follow the parameter settings in Table 1. The114

EG methods and our IAPTT-GM follow the general setting of hyperparameters, and IG methods115

follow the instruction of specific hyperparameters.116

Note that we adopt SGD optimizer for updating UL variables x and initialization auxiliary z. T117

denotes the inner iterations number for IG methods, e.g., LS and NS. µ denotes the ratio between118

UL and LL objectives when aggregating the LL and UL gradients for BDA [3], µ ∈ (0, 1) .119

Table 1: Values for hyper parameters of nonconvex numerical examples.

General setting Value

Outer loop 500

Inner loop 40

Learning rate 0.0005

Meta learning rate 0.1

Specific hyperparameter Value

Inner iteration T 40

Ratio µ 0.4

C.2 Few-Shot Classification120

Datasets. We choose two well-known benchmarks constructed from the ILSVRC-12 dataset named121

miniImageNet [6] and TieredImageNet [5]. The miniImgaenet consists of 100 selected classes,122

and each of the class contains 600 downsampled images of size 84 × 84. The whole dataset is123

divided into three disjoint subsets: 64 classes for training, 16 for validation, and 20 for testing.124

The tieredImageNet is a larger subset with 608 classes, including 779,165 images of the same size125

in total. These classes are split into 20, 6, 8 categories like miniImageNet, resulting in 351, 97,126
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160 classes as training, validation, testing set, respectively. Few shot classification task on the127

tieredImageNet is more challenging due to its dissimilarity between training and testing sets.128

Network Structures. We employ the ConvNet-4 [2] and ResNet-12 [4] network structures, which129

are commonly used in few shot classification tasks. ConvNet-4 is a 4-layer convolutional neural130

network with k filters followed by batch normalization, non-linearity, and max-pooling operation.131

ResNet-12 consists of 4 residual blocks followed by 2 convolutional layers, and each block has132

three repeated groups, including {3 × 3 convolution with k filters, batch normalization, activation133

function}. Both of the network structures adopt the fully connected layer with softmax function as134

the baseline classifier.135

We adopt Adam for updating UL variables x and initialization auxiliary z in our method and UL136

variable x in other methods for fair comparison. Related hyperparameters are stated in Table 2.

Table 2: Values for hyperparameters of few shot classification.

General setting ConvNet-4 ResNet-12
Outer loop 80000 80000
Inner loop 10 10
Learning rate 0.1 0.1
Meta learning rate 0.001 0.001

Meta batch size 4 2
Hidden size 32 48
Ratio µ 0.4 0.4

137

C.3 Data Hyper-Cleaning138

We use the subsets of MNIST dataset and more challenging FashionMNIST dataset for training. The139

MNIST database includes handwritten digits (0 through 9), which is widely used for classification140

tasks. The FashionMNIST contains different categories of clothing, and serves as a direct drop-in141

replacement for the original MNIST dataset. The subsets are randomly split to three disjoint subsets,142

which contain 5000, 5000, 10000 examples, respectively. We adopt Adam for updating variables x143

and z in our method and UL variables x in other methods for fair comparison. The values of hyper144

parameters are listed in Table 3.

Table 3: Values for hyperparameters of data hyper-cleaning.

General setting Value
Outer loop 3000
Inner loop 50
Learning rate 0.03
Meta learning rate 0.01

Specific hyperparameter Value
Inner iteration T 50
Ratio µ 0.4

145
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C.4 Details for Evaluation of IA-GM (A)146

We conduct the acceleration experiments following the parameters setting given in Table 4. Note147

that we adopt SGD for updating variables x and z.148

Table 4: Values for Hyper parameters of convex numerical examples.

General setting Value
Outer loop 1000
Inner loop 20
Learning rate 0.15

Meta learning rate 0.005
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