
A Appendix

A.1 Equivalence in the definition of chordal algorithms

In this short section we show the equivalence of the conditions in the definition of chordal AC
algorithms from section 2.1, and some related easy lemmas. We start by proving a lemma from
section 3.1.

Proof of Lemma 11. Since the algorithm is not chordal, for some input partition one of the aggregated
graphs Gt of the AC algorithm has an induced cycle C of length at least 4. Consider a realization of
Gt where the vertices of C are all in distinct partition classes. Then there is a time t� when four of
the vertices of C form an induced C4 in Gt� .

The next lemma is used both in the proof of the equivalence of the conditions in the definition
of chordal AC algorithms, and in section A.3. Recall that for a graph G = (V,E) we write
G(uv) = (V,E ∪ {uv}).
Lemma 13. Let G be a chordal graph, let u, v ∈ V (G) be distinct and nonadjacent, and assume
G(u, v) is chordal. Then N(u) ∩N(v) is complete and separates u and v (in G).

Proof. Note that N(u) ∩N(v) is complete, as otherwise there are two non-adjacent vertices x, y ∈
N(u) ∩ N(v), and (u, x, v, y) is an induced cycle in G, a contradiction. It remains to show that
N(u) ∩ N(v) separates u from v. Assume this is not the case, then there is an induced path
P = (u, p1, ..., pk, v) that avoids N(u) ∩N(v). In particular, k ≥ 2. Adding the edge uv to P we
obtain an induced cycle of length at least 4, a contradiction to G(u, v) being chordal.

Now we prove the equivalence of the three conditions.
Lemma 14. The following conditions are equivalent for any AC algorithm.

(i) for all input partitions, each aggregated graph is chordal,

(ii) for all input partitions, no aggregated graph has an induced C4,

(iii) for all input partitions, for each query u, v, the intersection of the neighborhoods of u and v
separates u and v.

Proof. By Lemma 11, we know that (ii) implies (i), and by Lemma 13 we know that (i) implies (iii).
So we only need to show that (iii) implies (ii). For this, assume there is an input partition, and a time
t, such that the aggregated graph Gt at time t has an induced cycle (v1, v2, v3, v4). We can assume
that t is the first such time. Then either Gt arose by adding an edge of this cycle, say the edge v1v4,
or by identifying two vertices x and y to a new vertex from the cycle, say v1. In the first case, the
query v1, v4 in step t− 1 did not meet the requirement in (iii), a contradiction. In the second case, x
and y are joined by the induced path (x, v2, v3, v4, y) or (y, v2, v3, v4, x), so the query x, y in step
t− 1 did not meet the requirement in (iii), a contradiction.

A.2 Full proof of Lemma 9

Let P2(n) denote the family of partitions of size n where each element receives a random value in
{0, 1} uniformly and independently, so that two elements belong to the same block if and only if they
share the same value. Thus, all partitions in P2(n) have one or two blocks.
Lemma 15. The expected number of productive queries made by any AC algorithm on a random
partition from P2(n) is exactly n−1

2 .

Proof. Let us consider the (random) sequence of graphs G1, . . . , Gn produced by running the
algorithm on a random element of P2(n). As core queries result in contractions, it follows that (for
every t) every component of Gt is either a single vertex or a nonempty bipartite graph. Note that
for each component there are two possible colorings; thus the number of possible colorings of Gi is
2κ(Gi), where κ denotes the number of components.

We prove by induction that:

1

• For each i, if the ith query joins two components of Gi−1 then it is productive with
probability half.

• The 2κ(Gi) colorings of Gi are equally likely.

The second property holds for G0, so it is enough to prove the inductive step. Consider the query
made at stage t, say joining vertices x and y. If x and y lie in the same component of Gt−1 then the
query is excessive, the components do not change, and the two bullets hold. Thus we may restrict
our attention to queries such that x and y lie in distinct components, say Hx and Hy . There are four
possible colorings of Hx ∪Hy. The four colorings are equally likely and are independent from the
coloring of the rest of the graph. It is now easily checked that x and y have the same color with
probability 1/2, and so the probability that the query is productive is 1/2. Furthermore, adding the
edge xy joins Hx and Hy into a single component, and the two possible colorings of this component
are equally likely (and remain independent from the coloring of the rest of G). Thus the two bullets
hold, and the induction is complete.

There are in total n − 1 steps at which the algorithm makes a query joining distinct components
(as each such query reduces the number of components by 1). So, by linearity of expectation, the
expected number of productive queries is (n− 1)/2.

Lemma 16. The expected number of productive queries of an AC algorithm working on a partition
of a set S containing exactly two blocks chosen uniformly at random is exactly

2|S|

2|S| − 2

|S|− 1

2
.

Proof. Consider an AC algorithm, and let α(|S|) denote the expected number of productive queries.
Now run the algorithm on a partition from P2(|S|). If the algorithm is fed one of the two constant
colorings then it makes exactly |S|− 1 queries, all of which are core (and therefore not productive).

The probability that a partition P ∈ P2(n) is constant is 2/2|S|; and if we condition on P being
nonconstant then it is uniformly distributed among the set of partitions with exactly two blocks. By
Lemma 15, we conclude that the expected number of productive queries satisfies

|S|− 1

2
= α(|S|)P[P nonconstant] + 0P[P constant] =

2|S| − 2

2|S| α(|S|).
The result follows by solving for α(|S|).

We are now ready for the full proof of Lemma 9.

Proof of Lemma 9. Fix k and consider a partition of [n] into exactly k sets C1, C2, . . . , Ck. Let αij

denote the expected number of productive queries that compare a vertex from Ci with a vertex from
Cj . Then all αij are equal, and by linearity of expectation the expected number of productive queries
is
�
k
2

�
α12. Thus it is enough to prove that α12 does not depend on the choice of algorithm.

Let q12 be the number of productive queries comparing a vertex from C1 with a vertex from C2. (so
α12 = Eq12) Then, considering the set S = C1 ∪ C2, and applying Lemma 16, we obtain

α12 =
�

S⊂[n],|S|≥2

E[q12|C1 ∪ C2 = S]P[C1 ∪ C2 = S]

=
�

S⊂[n],|S|≥2

|S|− 1

2

2|S|

2|S| − 2
P[C1 ∪ C2 = S]. (1)

The last line is independent from the choice of algorithm, which concludes the proof.

A.3 Proof of Theorem 3

This section is devoted to the proof of Theorem 3. For this we will need several auxiliary lemmas. We
also recall a useful notation introduced earlier: For a graph G = (V,E) let G(uv) = (V,E ∪ {uv}),
and let Guv be the graph obtained from G by identifying u and v.

The first of our lemmas shows that every chordal graph can ‘grow’ an edge while staying chordal.

2

Lemma 17. Let H be a chordal graph that is not complete. Then H has a non-edge e such that
H(e) is chordal.

Proof. Let u be a non-universal vertex of H . Among all non-neighbors of u, choose p1 such that
|N(u) ∩N(p1)| is maximized. We claim that H(up1) is chordal.

Indeed, otherwise there is an induced cycle C = (u, p1, . . . , pk, u), with k ≥ 3. As pk ∈ N(u) ∩
N(pk−1) \N(p1), our choice of p1 guarantees that there is a vertex w ∈ N(u) ∩N(p1) \N(pk−1).
Let j ≤ k− 2 be the largest index in [k− 2] such that wpj ∈ E(H). Then, depending on whether the
edge wpk is present, either (w, pj , . . . , pk, u, w) or (w, pj , . . . , pk, w) is an induced cycle of length
at least 4 in H , a contradiction.

Our next two lemmas are more technical. They give a structural characterization of those aggregated
graphs where consecutive queries cannot easily be interchanged. In order to make their statement
easier, let us say that a graph G has a complete separation (A,K,B) if V (G) is the disjoint union of
A,B,K so that A �= ∅ �= B, each of A ∪K and B ∪K is complete, and there are no edges from A
to B. (Observe that we allow K to be empty.)

Lemma 18. Let G be a chordal graph that does not have a complete separation. For i = 0, 1 let
uivi be a non-edge of G such that G(uivi) is chordal, and G(u0v0)(u1v1) is non-chordal. Then
there is a non-edge uv of G such that G(uv) is chordal, and G(uivi)(uv) is chordal for i = 0, 1.

Lemma 19. Let G be a chordal graph that does not have a complete separation. Let u0, u1, v ∈ V (G)
such that for i = 0, 1, we have uiv /∈ E(G) and G(uiv) is chordal, and moreover, u0u1 ∈ E(G).
Then there is a non-edge uw of G such that G(uw) is chordal, and G(uivi)(uw) is chordal for
i = 0, 1.

The proofs of these two lemmas rely on purely structural arguments and will be postponed to the end
of the section.

We are now ready to prove Theorem 3. Actually, we will prove a more general result which
allows for the algorithm to start with any aggregated graph instead of starting with the empty
graph. More precisely, if G is an aggregated graph at time t for some AC algorithm for an n-set
S, then we call the restriction of the algorithm to all queries after time t that eventually lead to a
realization of G a AC algorithm starting at G. We define the complexity distribution of this algorithm
analogously to our earlier definition. In particular, if G is complete, then the complexity distribution
is (a0, a1, a2, . . . , a(n2)) = (1, 0, 0, . . . , 0).

Theorem 20. For any G, all chordal AC algorithms starting at G have the same complexity distribu-
tion.

Proof. We proceed by induction on the number of non-edges of G. Proving the base case is trivial
as, starting from a complete graph, the only AC algorithm has distribution (a0, a1, a2, . . . , a(n2)

) =

(1, 0, 0, . . . , 0).

For the induction step assume that for any chordal graph with k or less missing edges, all chordal
AC algorithms have the same complexity distribution, and consider a graph G with k + 1 missing
edges. Let A0, A1 be two distinct chordal AC algorithms for G. If their first queries are the same,
say they query the edge e, then by induction we know that for both Ge and G(e), the two algorithms
have the same distribution if we let them start there. As the distribution for an algorithm starting at G
is uniquely obtained from the complexity distributions of the same algorithm starting at Ge and at
G(e), we see that A0 and A1 have the same complexity distribution.

So we can assume that A0 and A1 differ in their first queries. Say the first query of Ai is ui, vi, for
i = 0, 1. Then G(uivi) is chordal for i = 0, 1. Note that we can assume that u0 �= u1. We will
distinguish two cases.

First, let us assume that G(u0v0)(u1v1) is chordal and moreover, if v0 = v1 then u0u1 /∈ E(G). Then,
for i = 0, 1, the edge uivi can be chosen as the first edge of a chordal AC algorithm for G(u1−iv1−i)
or for Gu1−iv1−i . As the induction hypothesis applies to G(u1−iv1−i) and to Gu1−iv1−i , we can
assume that uivi is the second edge in A1−i. Observe that for each i = 0, 1 after the second query
of Ai, we arrive at one of the four graphs (Gu0v0)u1v1 , G(u0v0)u1v1 , G(u1v1)u0v0 , G(u0v0)(u1v1).

3

Thus the complexity distribution of A0 and A1 is identical (as is can be computed from the complexity
distribution for the algorithms starting at these four graphs).

Now, let us assume that either G(u0v0)(u1v1) is chordal, v0 = v1 and u0u1 ∈ E(G), or
G(u0v0)(u1v1) is not chordal. Then, by Lemmas 18 and 19, we know that either there is an
edge uv ∈ E(G) such that G(uv), G(uv)(u0v0) and G(uv)(u1v1) are chordal, or V (G) can be
partitioned into three sets, A, B and K, such that A ∪K and B ∪K are complete and K separates
A from B. If the former is the case, we can proceed as in the previous paragraph to see that every
chordal AC algorithm starting with u0v0 has the same complexity distribution as any of the chordal
AC algorithms starting with uv (note that such algorithms exist by Lemma 17), which, in turn, has
the same complexity distribution as any of the chordal AC algorithms starting with u1v1, leading to
the desired conclusion.

So assume there are sets A, B and K as above. By symmetry, we can assume that u0, u1 ∈ A and
v0, v1 ∈ B. Consider the automorphism σ of G that maps u0 to u1 and v0 to v1 while keeping all
other vertices fixed. We can now view A0 as an algorithm in σ(G) that starts with the edge u1v1. By
the induction hypothesis, we conclude that A1 (for G) has the same distribution as A0 (for σ(G), and
thus also for G).

It remains to prove Lemmas 18 and 19. We start by giving a characterization of graphs that remain
chordal when we add either one of two edges, but not if we add both.

Lemma 21. Let G be a chordal graph and let u0, u1, v0, v1 ∈ V (G) such that for i = 0, 1, vertices
u0, u1, vi are all distinct, uivi /∈ E(G), and G(uivi) is chordal. If G(u0v0)(u1v1) is not chordal,
then K := N(u0) ∩N(u1) ∩N(v0) ∩N(v1) is complete, and G−K has two distinct components
A and B, such that either u0, u1 ∈ A and v0, v1 ∈ B, or u0, v1 ∈ A and u1, v0 ∈ B.

Proof. As G(u0v0)(u1v1) is not chordal, we know that G(u0v0)(u1v1) has an induced cycle C =
(u1, v1, ..., v�−1, v�, ..., vk, u1), with k ≥ � ≥ 2, where either v�−1 = v0 and v� = u0, or v�−1 = u0

and v� = v0. According to Lemma 13, since G(uivi) is chordal, the set Ki := N(ui) ∩ N(vi) is
complete and separates ui and vi in G, for each i ∈ {0, 1}. Since C has at least four vertices, and Ki

has neighbors ui, vi, we know that V (C) ∩Ki = ∅, for i = 0, 1.

Assume there is a vertex x ∈ K0 \ K1. Then (v1, ..., v�−1, x, v�, ..., vk, u1) is a path in G − K1,
in contradiction to the fact that K1 separates u1 from v1. So K0 ⊆ K1, and with the help of a
symmetric argument we see that K0 = K1. In order to finish the proof it suffices to note that the
paths (v1, ..., v�−1) and (v�, ..., vk) ensure that there are components A and B as desired.

We now see that a graph that is obtained by gluing two graphs along a complete subgraph is chordal
if and only if the two smaller graphs are.

Lemma 22. Let G be a graph, let A,B,K be a partition of V (G) such that K is complete and there
are no edges between A and B. Then G is chordal if and only if G[A ∪K] and G[K ∪B] are both
chordal.

Proof. As induced subgraphs of chordal graphs are chordal, we only need to show that if both
G[A ∪K] and G[K ∪ B] are both chordal, then also G is. For this, it suffices to observe that any
cycle of G that contains vertices from both A and B has to pass twice through K.

We are now ready to prove Lemmas 18 and 19.

Proof of Lemma 18. Use Lemma 21 to see that the intersection K of the neighborhoods of u0, v0, u1,
v1 is either a clique or empty, and G−K has two connected components A, B such that u0, u1 ∈ A
and v0, v1 ∈ B (after possibly changing the roles of u0 and v0).

As G has no complete separation, and as there are no edges from A to B, one of A ∪K, B ∪K has
to have a non-edge; because of symmetry we can assume this is A ∪K. According to Lemma 22, the
subgraph of G induced by A ∪K is chordal. Then, according to Lemma 17, there is also a non-edge
uv with u, v ∈ A ∪K having the additional property that G(uv) is chordal. As K is complete, we
can assume that u ∈ A.

4

If there is no non-edge uv as desired, we have that G(uivi)(uv) is non-chordal for some i ∈ {0, 1};
by symmetry, let us assume G(u1v1)(uv) is non-chordal. So, we may apply Lemma 21 to see that
the intersection K � of the neighborhoods of u, v, u1, v1 is either a clique or empty, and G−K � has
two connected components A�, B� such that u, u1 ∈ A� and v, v1 ∈ B� (after possibly changing the
roles of u and v). Note that K � ⊆ N(u1) ∩N(v1) ⊆ K. Furthermore, K ⊆ K �, since K � separates
u1 from v1 and K ⊆ N(u1) ∩N(v1). So K = K �.

In particular, v /∈ K, that is, v ∈ A. So, as v1 ∈ B, we know that v, v1 lie in distinct components of
G−K. However, we also have that v, v1 belong to the same component (namely, A) of G−K � =
G−K, a contradiction. So the desired non-edge uv exists.

Proof of Lemma 19. We start by proving that N(u0) ∩ N(v) = N(u1) ∩ N(v). For this assume
there is an i ∈ {0, 1} and a vertex x ∈ (N(u1−i) ∩ N(v)) \ N(ui). Then (u1−i, x, v, ui, u1−i) is
an induced cycle of length 4 in G(uiv), a contradiction since this graph is chordal. This proves the
equality, and we set K := N(u0) ∩N(v) = N(u1) ∩N(v).

Because of Lemma 13, K is complete and separates u0, u1 from v. Since G does not have a complete
separation, at least one of G[A ∪K], G[B ∪K] is not complete, but by Lemma 22 both are chordal.
So by Lemma 17 and, again, Lemma 22, there is a non-edge uw such that G(uw) is chordal. Now, if
uw is not as desired, say because G(u0v)(uw) is non-chordal, then there is an induced cycle C of
length at least 4 going through both uw and u0v. However, C has to meet K, which implies C is a
triangle, a contradiction.

A.4 Proof of Theorem 4

Symbolic method. To any sequence of numbers can be associated a generating function. For
example, consider the sequence (Bn)n≥0, where the Bell number Bn denotes the number of partitions
of size n. The exponential generating function of partitions is then defined as

P (z) =
�

n≥0

Bn
zn

n!
.

The sum can be expressed at the partition level as well

P (z) =
�

p∈Partitions(n)

z|p|

|p|! .

The symbolic method, presented in [14], translates combinatorial descriptions into generating function
equations. For example, since a partition is a set of nonempty sets, the exponential generating function
of partitions is equal to

P (z) = eexp(z)−1.

The reader unfamiliar with the symbolic method can verify this result by working on recurrences at
the coefficient level. In this example, choosing a partition of size n is equivalent with choosing its
number of blocks k, the size nj ≥ 1 of the jth block for each 1 ≤ j ≤ k, and finally the content of
those blocks, so

Bn =

n�

k=0

�

n1+···+nk=n
∀j, nj≥1

1

k!

�
n

n1, . . . , nk

�
.

Multiplying by zn/n!, summing over n and reorganizing the terms, we indeed recover

�

n≥0

Bn
zn

n!
= eexp(z)−1.

In the rest of the combinatorial proofs, the symbolic method will be preferred and we will let the
motivated reader translate those proofs at the recurrence level.

5

def universal_ac(element_set):
if is_empty(element_set):

return EMPTY_PARTITION
u = element_set.pop()
block = {u}
for v in element_set:

if query(u, v):
block.add(v)
element_set.remove(v)

partition = universal_ac(element_set)
partition.add_block(block)
return partition

Figure 2: The universal AC algorithm considers an element, compare it to the other elements to find
its block, then partition the remaining elements. It is named after the graph theory convention to call
“universal” a vertex linked to all vertices of a graph.

q-analogs. Several families of integer identities have been generalized by introducing q-analogs.
An introduction can be found in [12]. The q-analog of integer n is defined as

[n]q = 1 + q + · · ·+ qn−1 =
1− qn

1− q
.

The q-factorial of the integer n is

[n]q! =

n�

j=1

[j]q.

The q-exponential is defined as

eq(z) =
�

n≥0

zn

[n]q!
.

The q-Pochhammer symbol is defined as

(a; q)n =

n−1�

k=0

(1− aqk)

Observe that the q-analog reduce to their classic counterparts for q = 1.

Lemma 23. The q-analogs satisfy the following classic identities

[n]q! =
(q; q)n
(1− q)n

,
1

(x; q)∞
=

�

n≥0

xn

(q; q)n
, eq(x) = ((1− q)x; q)−1

∞ .

Characterizing the complexity generating function. According to Theorem 3, all chordal AC
algorithms share the same distribution on the number of queries for random partitions of size n
chosen uniformly. Thus, we study one particular chordal algorithm: the universal AC algorithm,
presented in Figure 2. Let Partitions(n) denote the set of all partitions of size n, |p| the size of the
partition p, and queries(p) the number of queries used by the universal AC algorithm to reconstruct
the partition p.

Theorem 24. The generating function

P (z, q) =
�

p∈Partitions(n)

qqueries(p)
z|p|

|p|!

is characterized by the differential equation

∂zP (z, q) = P (qz, q)eqz

and the initial condition P (0, q) = 1.

6

Proof. Consider a partition p of size n. Let b denote the set of all elements of the block of p containing
n, except n. Let r denote the partition p without the block containing n. Then p can be recovered
from the pair (r, b) as follows. The size n of p is |r| + |b| + 1, so the block containing n in p was
b∪ {n} and adding this block to r recovers p. We have just proven that this construction is a bijection
between the partitions and the relabeled pairs containing a partition and a set. This bijection translates
into the following identity on the generating function P (z) of partitions

∂zP (z) = P (z)ez.

This is no surprise, as we already know the expression of this generating function

P (z) = eexp(z)−1

from the paragraph on the symbolic method, and it indeed satisfies this differential equation. However,
the same approach is useful to study the generating function of the number of queries used by the
universal AC algorithm.

Consider a partition p and its decomposition as a pair (r, b) described above. The universal AC
algorithm starts by comparing one element, which is assumed to have the largest label without
loss of generality, to the other elements. This requires |r| + |b| queries. Then the algorithm is
called recursively on the partition r. Thus, the generating function of partitions with an additional
parameter q marking the number of queries used by the universal AC algorithm is characterized by
the differential equation

∂zP (z, q) = P (qz, q)eqz.

If the initial partition is empty, then there are no queries to ask, which implies the initial condition
P (0, q) = 1.

Exact expressions. The following theorem provides a solution for the differential equation from
last Theorem.
Theorem 25. Let Poch(z, a, q) denote the exponential generating function associated to the q-
Pochhammer symbol

Poch(z, a, q) =
�

k≥0

(a; q)k
zk

k!
,

then the generating function of the universal AC algorithm complexity is

P (z, q) = Poch

�
− q

1− q
z,

1− q

q
, q

�
e

q
1−q z

Proof. The function f(z, q) = e
q

1−q z satisfies a similar differential equation

∂zf(z, q) =
q

1− q
f(qz, q)eqz.

Thus, we investigate solutions of the differential equation from Theorem 24 of the form P (z, q) =

A(z, q)e
q

1−q z . The differential equation on P (z, q) implies the following differential equation for
A(z, q)

∂zA(z, q) +
q

1− q
A(z, q) = A(qz, q).

with initial condition A(0, q) = 1. Decomposing A(z, q) as a series in z

A(z, q) =
�

k≥0

ak(q)
zk

k!
,

we obtain a recurrence on the ak(q)

ak+1(q) = − q

1− q
ak(q) + qkak(q) = − q

1− q

�
1− (1− q)qk−1

�
ak(q),

with a0(q) = 1. We deduce

ak(q) =

�
− q

1− q

�k k−1�

j=0

�
1− 1− q

q
qj
�

=

�
− q

1− q

�k �
1− q

q
; q

�

k

.

7

To conclude, we observe that Poch
�
− q

1−q z,
1−q
q , q

�
e

q
1−q z is indeed solution of the differential

equation characterizing P (z, q).

Extracting the coefficient n![zn] from the solution, we obtain a first exact expression for Pn(q) in
the following Theorem, and another one will be provided in Theorem 27. This first expression is
well suited for exact computations using a computer algebra system (we used [22] to verify our
calculations). In particular, the kth factorial moment of the random variable Xn counting the number
of queries used by the universal AC algorithm on partitions of size n chosen uniformly at random is

E(Xn(Xn − 1) · · · (Xn − k + 1)) =
1

Bn
∂k
q=1Pn(q).

Theorem 26. The generating function of the number of queries used by the universal AC algorithm
on partitions of size n is

Pn(q) =

�
q

1− q

�n �

k≥0

�
n

k

�
(−1)k

�
1− q

q
; q

�

k

.

We provide a second expression for the complexity generating function, more elegant and better
suited for asymptotics analysis. It is a q-analog of the following classic formula for the Bell numbers,
which counts the number of partitions of size n

Bn =
1

e

�

m≥0

mn

m!
.

This formula is obtained from the generating function of partitions P (z) = eexp(z)−1

Bn = n![zn]eexp(z)−1 =
n!

e
[zn]eexp(z) =

n!

e
[zn]

�

m≥0

emz

m!
=

1

e

�

m≥0

mn

m!
.

Theorem 27. The generating function of the number of queries used by the universal AC algorithm
on partitions of size n is

Pn(q) =
1

eq(1/q)

�

m≥0

[m]nq
[m]q!

qn−m

The sum converges for q > 1/2.

Proof. The q-Pochhammer generating function is rewritten as

Poch(z, a, q) =
�

k≥0

(a; q)k
zk

k!

= (a; q)∞
�

k≥0

1

(aqk; q)∞

zk

k!

= (a; q)∞
�

k≥0

�

m≥0

[xm]
1

(ax; q)∞
qmk z

k

k!

= (a; q)∞
�

m≥0

am[xm]
1

(x; q)∞
eq

mz

Applying Lemma 23 we conclude

Poch(z, a, q) = (a; q)∞
�

m≥0

am

(q; q)m
eq

mz

8

Injecting this in the expression of Pn(q), we obtain

Pn(q) = n![zn] Poch

�
− q

1− q
z,

1− q

q
, q

�
e

q
1−q z

=

�
q

1− q

�n �
1− q

q
; q

�

∞
n![zn]

�

m≥0

�
1−q
q

�m

(q; q)m
e−qmzez

=

�
q

1− q

�n �
1− q

q
; q

�

∞

�

m≥0

�
1−q
q

�m

(q; q)m
(1− qm)n

= qn
�
1− q

q
; q

�

∞

�

m≥0

�
1−q
q

�m

(q; q)m
[m]nq .

To conclude, Lemma 23 is applied

Pn(q) =
1

eq(1/q)

�

m≥0

[m]nq
[m]q!

qn−m.

We apply d’Alembert’s criteria to find the values of q for which this formal sum converges:

lim
m→∞

[m+1]nq
[m+1]q !

qn−m−1

[m]nq
[m]q !

qn−m
=

1− q

q

is smaller than 1 when q > 1/2.

Limit law.
Lemma 28. As n and m tend to infinity, q = es, ms and ns tend to 0, we have

[m]nq = mn exp

�
1

2
nms+

1

12
nm2 s

2

2

��
1 +O(nm3s3 + ns)

�

[m]q! = mme−m
�
2π[m]q exp

�
1

4
m2s+

1

36
m3 s

2

2

��
1 +O(m4s3 +ms) + o(1)

�
.

Proof. Let S(x) denote the function (ex − 1− x)/x, then

[m]nq =

�
1− esm

1− es

�n

= mn

�
1 + S(sm)

1 + S(s)

�n

= mnen log(1+S(sm))−n log(1+S(s)).

We use the development

log(1 + S(x)) = log

�
1 +

x

2
+

x2

6
+O(x3)

�
=

x

2
+

x2

24
+O(x3)

to obtain

[m]nq = mn exp

�
1

2
nms+

1

12
nm2 s

2

2
+O(nm3s3 + ns)

�

According to Moak [20], we have the following q-analog of Stirling formula when x → ∞ while
x log(q) → 0

log(Γq(x)) = (x− 1/2) log([x]q) +
Li2(1− qx)

log(q)
+

1

2
log(2π) + o(1)

where Li2(z) denotes the Dilogarithm function

Li2(z) =
�

k≥1

zk

k2

9

We deduce

[m]q! = [m]qΓq(m) = [m]q exp

�
(m− 1/2) log([m]q) +

Li2(1− qm)

log(q)
+

1

2
log(2π) + o(1)

�

= [m]mq exp

�
Li2(1− qm)

log(q)

��
2π[m]q(1 + o(1))

The first part of the lemma provides

[m]mq = mm exp

�
1

2
m2s+

1

12
m3 s

2

2

��
1 +O(m4s3 +ms)

�
.

The Dilogarithm is expanded as

Li2(1− qm)

log(q)
=

1

s

�

k≥1

1

k2
(−ms (1 + S(ms)))

k
= −m

�
1 +

1

4
ms+

1

18
m2 s

2

2
+O(ms)3

�
.

Injecting those past two expansions in the previous one concludes the proof.

Theorem 29. The asymptotic mean En and standard deviation σn of the number Xn of queries used
by the universal AC algorithm on a partition of size n chosen uniformly at random are

En =
1

4
(2ζ − 1)e2ζ and σn =

1

3

�
3ζ2 − 4ζ + 2

ζ + 1
e3ζ ,

where ζ is the unique positive solution of

ζeζ = n.

The normalized random variable

X�
n =

Xn − En

σn

follows in the limit a normalized Gaussian law.

Those results are tested numerically in Figures 3 and 4.

Proof. To prove the limit law, we show that the Laplace transform E(esX
�
n) converges pointwise to

the Laplace transform of the normalized Gaussian es
2/2. We have

E(esX
�
n) = e−sEn/σnE(esXn/σn) =

e−sEn/σn

Bn
Pn(e

s/σn)

For any fixed real value s, we compute the asymptotics of Pn(e
s/σn). Let q := es/σn , so q tends to 1,

then

Pn(e
s/σn) =

1

eq(e−s/σn)

�

m≥0

[m]nq
[m]q!

e(n−m)s/σn .

Motivated by the asymptotics from Lemma 28, we rewrite this expression as

Pn(e
s/σn) =

1

eq(e−s/σn)

�

m≥0

An,s(m)e−φn,s(m) (2)

where

An,s(m) =
[m]nq

mn exp
�

1
2nm

s
σn

+ 1
12nm

2 (s/σn)2

2

�
mme−m exp

�
1
4m

2 s
σn

+ 1
36m

3 (s/σn)
2

2

�

[m]q!
e(n−m)s/σn ,

φn,s(m) = −n log(m) +m log(m)−m− 1

4
(2n−m)m

s

σn
− 1

36
(3n−m)m2 (s/σn)

2

2
.

10

The dominant contribution to the sum comes from integers m close to the minimum of φn,s(m), so
we study this function. The successive derivatives of φn,s(m) are

φ�
n,s(m) = − n

m
+ log(m)− 1

2
(n−m)

s

σn
− 1

12
(2n−m)m

(s/σn)
2

2
,

φ��
n,s(m) =

n

m2
+

1

m
+

s

2σn
− 1

6
(n−m)

(s/σn)
2

2

φ���
n,s(m) = − 2n

m3
− 1

m2
+

(s/σn)
2

12

When n is large enough, the second derivative of φn,s(m) is strictly positive for all m > 0, so the
function is convexe. It reaches its unique minimum at a value denoted by m(s) and characterized by
φ�
n,s(m(s)) = 0. Injecting the Taylor expansion

m(s) = m0 +m1
s

σn
+m2

(s/σn)
2

2
+ · · ·

in this equation, rewriting n as ζeζ and extracting the coefficients of the powers of s, we obtain

m0 = eζ , m1 =
1

2

ζ − 1

ζ + 1
e2ζ , m2 =

1

3

2ζ3 − 3ζ2 + 2

(ζ + 1)3
e3ζ

The dominant contribution to the sum defining Pn(e
s/σn) comes from values m close to m(s). The

central part Cn is defined as the integers m such that |m−m(s)| < cn. A heuristic proposed by [14]
is to find cn such that

|φ��
n,s(m(s))|c2n → +∞ and |φ���

n,s(m(s))|c3n → 0.

As n, and thus ζ, tend to infinity, we have

m(s) ∼ eζ ∼ n

log(n)
, |φ��

n,s(m(s))| ∼ ζe−ζ ∼ log(n)2

n
, |φ���

n,s(m(s))| ∼ ζe−2ζ ∼ log(n)3

n2
,

so we choose cn = e3ζ/5. Uniformly for m in Cn, we have

m(s) = eζ +
1

2

ζ − 1

ζ + 1
e2ζ

s

σn
+

1

3

2ζ3 − 3ζ2 + 2

(ζ + 1)3
e3ζ

(s/σn)
2

2
+O(e−ζ/2),

φn,s(m) = −(ζ2 − ζ + 1)eζ − En
s

σn
− s2

2
+ (ζ + 1)e−ζ (m−m(s))2

2
+O(e−ζ/4),

An,s(m) =
1√
2πeζ

(1 + o(1)) .

In fact, computing the Taylor expansion of φn,s(m) at m(s) came first. We chose the values of En

and σn so that the coefficients in s and s2 are the ones presented in the above equation. The error
term is then obtained using the Lagrange form of the remainder in Taylor’s Theorem. We deduce the
following asymptotics for the central part of the sum

�

m∈Cn

An,s(m)e−φn,s(m) ∼ 1√
2πeζ

e(ζ
2−ζ+1)eζ+En

s
σn

+ s2

2

�

m∈Cn

e−(ζ+1)e−ζ (m−m(s))2

2 .

Applying the Euler-Maclaurin formula to turn the sum into an integral, we obtain

�

m∈Cn

An,s(m)e−φn,s(m) ∼ 1√
2πeζ

e(ζ
2−ζ+1)eζ+Ens/σn+s2/2

� cn

−cn

e−(ζ+1)e−ζ x2

2 dx.

After the variable change y =
�
(ζ + 1)e−ζx, observing that

�
(ζ + 1)e−ζcn tends to infinity, the

integral is approximated as a Gaussian integral and we conclude
�

m∈Cn

An,s(m)e−φn,s(m) ∼ 1√
ζ + 1

e(ζ
2−ζ+1)eζ+Ens/σn+s2/2.

11

When we compare the asymptotics of the central part to the asymptotics of the Bell numbers (see,
e.g., [14])

Bn ∼ e(ζ
2−ζ+1)eζ−1

√
ζ + 1

,

we see from Equation (2) that, as expected,

e−sEn/σn

Bn

1

eq(e−s/σn)

�

m∈Cn

An,s(m)e−φn,s(m) ∼ es
2/2.

Let us now prove that the part of the sum corresponding to m ≤ m(s)− cn is negligible compared to
the central part. According to Lemma 28, we have

An,s(m) =
�
1 +O(nm3/σ3

n)
� �

1 +O(m4/σ3
n)
� 1�

2π[m]q
= O(m8).

Since φn,s(m) is convexe (for large enough n), we have φn,s(m) ≥ φn,s(m(s) − cn) for all
m < m(s)− cn. Since

φn,s(m(s)− cn) = −(ζ2 − ζ + 1)eζ − En
s

σn
− s2

2
+ (ζ + 1)e−ζ c

2
n

2
+O(e−ζ/4)

and e−ζc2n tends to infinity as eζ/5, we obtain for all m < m(s)− cn

φn,s(m) ≥ −(ζ2 − ζ + 1)eζ − En
s

σn
− s2

2
+Θ(eζ/5).

We conclude�

m<m(s)−cn

An,s(m)e−φn,s(m) ≤
�

m<m(s)−cn

O(m8)e(ζ
2−ζ+1)eζ+Ens/σn+s2/2−Θ(exp(ζ/5))

≤ e(ζ
2−ζ+1)eζ+Ens/σn+s2/2m(s)9e−Θ(exp(ζ/5)).

Since m(s) ∼ eζ , this result is exponentially small, with respect to n, compared to the central part.
Let us now prove that the part of the sum beyond the central part is negligible as well. There is a
constant C such that for n large enough and any m ≥ Ce3ζ/2, we have

−1

4
(2n−m)m

s

σn
− 1

36
(3n−m)m2 (s/σn)

2

2
≥ 0.

In that case, we obtain the simple bound

φn,s(m) ≥ −n log(m) +m log(m)−m ≥ m− n log(m).

Injecting this bound and An,s(m) = O(m8) in the sum, we obtain
�

m≥Ce3ζ/2

An,s(m)e−φn,s(m) ≤ O(1)
�

m≥Ce3ζ/2

mn+8e−m.

The sum is bounded by an integral and n+ 8 integration by part are applied
�

m≥Ce3ζ/2

An,s(m)e−φn,s(m) ≤ O(1)(n+ 8)!(Ce3ζ/2)n+8e−C exp(3ζ/2)

≤ O(1)nn(Ce3ζ/2)n+8e−C exp(3ζ/2)

Since n = ζeζ , we have nn = eO(ζ2) exp(ζ), so
�

m≥Ce3ζ/2

An,s(m)e−φn,s(m) ≤ O(1)e−Θ(exp(3ζ/2))

which is negligible compared to the central part of the sum. The last part we consider is m(s) + cn ≤
m ≤ Ce3ζ/2. Since φn,s(m) is decreasing there and An,s(m) = O(m8), we have

Ce3ζ/2�

m=m(s)+cn

An,s(m)e−φn,s(m) = O(e27ζ/2)e−φn,s(m(s)+cn)

12

Figure 3: In green, the probability density function of the normal distribution. In blue, purple and red,
the empirical density functions for the number of queries, normalized by their mean and standard
deviation, for n in {100, 300, 600}. We observe a slow convergence to the Gaussian limit law.

As for the case m = m(s)− cn, we find

φn,s(m(s) + cn) = −(ζ2 − ζ + 1)eζ − En
s

σn
− s2

2
+Θ(eζ/5)

and conclude

Ce3ζ/2�

m=m(s)+cn

An,s(m)e−φn,s(m) = e(ζ
2−ζ+1)eζ+En

s
σn

+ s2

2 O(e27ζ/2)e−Θ(eζ/5),

which is negligible compared to the central part. In conclusion, we have

E(esX
�
n) =

e−sEn/σn

Bn
Pn(e

s/σn) ∼
�

m∈Cn

An,s(m)e−φn,s(m) ∼ es
2/2.

Since the Laplace transform of X�
n converges pointwise to the Laplace transform of the normalized

Gaussian law, X�
n converges in distribution to this Gaussian.

A.5 Proof of Theorem 6

Suppose first that p1 > · · · > pk. At time t, we have identified classes Ct
1, . . . , C

t
k, say with sizes

c + it = |Ct
i . It takes time at most k

√
n to process the first

√
n vertices, and at that point and all

subsequent times we have (with exponentially small failure probability) that cti ∼ pi
√
n for each

i, where Ct
i consists of elements of type i. In particular |Ct

1| > |Ct
2| > · · · > |Ct

k|. The expected
number of comparisons used for each subsequent element is

�
i = 1kpi, as the probability that the

element is of type i is pi, and in this case we need i comparisons to place it in Ct
i .

The case where some of the pi are the same is similar, except that if pi = pj then cti and ctj may
switch order over time. However this is fine: we need only have the property that if pi > pj then
cti > ctj , and the same argument then works, possibly permuting colors for classes i, j with pi = pj .

13

Figure 4: A plot testing the asymptotic mean and standard deviations stated by Theorem 4. Let
αn and βn denote the sequences defined by E(Xn) =

1
4 (2W (n) − 1 + αn)e

2W (n) and σ(Xn) =

1
3

�
3W (n)2−4W (n)+2−βn

W (n)+1 e3W (n). Plot of αn in blue, βn in red, for n from 3 to 2000. We observe a
slow convergence to 0.

A.6 Proof of Theorem 12

The idea of the proof is as follows: we estimate the behaviour of the process until large linear time,
and then note that it finishes in negligible time. Let us note first that in any partition of a set of size t,
where t is large, a fraction of at least (about) 1/k of the pairs lie inside classes. It follows that at each
time step, we reduce the number of vertices by 1 with constant probability, and so the the algorithm
finishes in expected time O(kt). When handling an instance of size n, it is therefore enough to run
the algorithm until o(n) vertices remain, and then note that expected time to complete is still o(n).

We consider an instance of size n, and analyze the following process. Begin with all vertices marked
active. At each time step, pick (with replacement) a random pair {u, v} and:

• If u, v are active and from distinct classes i, j then say we have generated an ij-crossedge.

• If u, v, are both active and in class i then mark exactly one of u and v inactive.

• If one of u, v is inactive, then do nothing.

Note that as the process runs, the number of active vertices is monotonic decreasing, and we are
increasingly likely to choose pairs where one vertex is inactive. These contribute to the new process,
but do not generate new comparisons between pairs. So we are looking at a (randomly) slowed down
version of the random algorithm; but this makes the analysis much simpler!

Let xi(t) denote the number of active class i vertices after t time steps, and xij(t) denote the number
of ij-crossedges that are generated in the first t time steps. Then at step t+ 1, the probability that we
pick two active vertices in class i is

�
xi(t)

2

���
n

2

�
∼ xi(t)

2

n2
.

14

Writing p = pi, we estimate xi(t) via a function x = x(t) satisfying the differential equation

x(0) = pn

x�(t) = −x(t)2

n2
.

This has solution

x(t) =
n2

t+ n/p
=

pn

1 + pt/n
.

Note that at time λn, as λ gets large, we get

x(λn) ∼ pn

1 + λp
.

The actual value of xi(t) closely tracks the differential equation with very high probability. This
follows straightforwardly from a standard application of the Rödl nibble or differential equation
method (see for example [3]): we throw in the edges in batches of size �n, and note that a Chernoff
bound implies that we stick close to the the differential equation as we are in total making O(n)
comparisons.

Now let’s estimate the number of ij-crossedges. Using our estimates for xi(t) and xj(t), we see that
the probability of an ij crossedge at step t+ 1 is

xi(t)xj(t)/

�
n

2

�
∼ 2xi(t)xj(t)

n2
≈ 2n2

(t+ n/pi)(t+ n/pj)
.

Let p = pi and q = pj . We can model the growth of xij(t) by a function c = c(t) satisfying the
differential equation

c(0) = 0

c�(t) =
2n2

(t+ n/p)(t+ n/q)
.

If p = q, we have

c�(t) =
2n2

(t+ n/p)2

and

c(t) =

� t

0

c�(s)ds =
� t

0

2n2

(s+ n/p)2
ds =

� −2n2

s+ n/p

�t

0

,

giving

c(t) = 2pn

�
1− 1

2 + 2pt/n

�
∼ 2pn

as t/n → ∞.

If p �= q, we have

c(t) =

� t

0

2n2

(s+ n/p)(s+ n/q)
ds

=
2npq

p− q

� t

0

1

s+ n/p
− 1

s+ n/q
ds

=
2npq

p− q
ln

�
1 + pt/n

1 + qt/n

�

∼ 2npq ln(p/q)

p− q

as t/n → ∞. Combining this with the remarks at the beginning of the proof gives the result.

15

A.7 Proofs of Section 2.3

Consider an AC algorithm applied to a set of size n. Let Q denote the set of queries with their
answers when the algorithm terminates. We associate to Q a graph G where each vertex corresponds
to an element of the starting set, each edge is either positive or negative and corresponds to the
answers from Q. As stated in Paragraph Correcting errors, a contradiction is detected in Q if and
only if G contains a contradictory cycle (a cycle where all edges except one are positive). In that case,
additional queries are submitted until the responsible answers are identified and corrected.

If Q contains no more contradiction, it characterizes a set partition p (otherwise, the AC algorithm
has not terminated) of size n with a number of blocks denoted by b. However, this partition might not
be the correct solution if Q contains undetected errors. Assume each answer is wrong with a small
probability p and let P(undetected error | Q) denote the probability that Q contains errors but no
contradictory cycle. Its Taylor coefficients at p = 0 are denoted by (ci)i≥0

P(undetected error | Q) = c0 + c1p+ c2p
2 + · · ·

We would like Q to contain few additional queries compared to the noiseless case, while ensuring that
P(undetected error | Q) is small. Since p is assumed to be small, the second conditions corresponds
to minimizing the vector (c0, c1, . . .) for the lexicographic order. Indeed, if we consider a larger
vector (c�0, c

�
1, . . .), then there is a positive � such that for any 0 < p < �, we have

c0 + c1p+ c2p
2 + · · · < c�0 + c�1p+ c2p

2 + · · ·
Let dk denote the number of sets of k edges from G which could be switched (positive edges become
negative ones, negative edges become positive ones) without creating a contradictory cycle. This
corresponds to the number of ways to change k answers in Q and obtain a result without contradiction.
Let m denote the total number of edges in G. Then the probability that there is an undetected error is

�

k≥0

dkp
k(1− p)m−k.

Since this probability is c0 + c1p+ c2p
2 + · · · , we deduce for all k ≥ 0

ck =

k�

j=0

dj [x
k]xj(1− x)m−j .

The triangular shape of this system of equations implies that the vector (c0, c1, . . .) is minimal for the
lexicographic order if and only if the vector (d0, d1, . . .) is minimal for the lexicographic order.

Since G contains no contradictory cycle, we have d0 = 0. If all positive components of G not reduced
to one vertex are 2-edge-connected (i.e. they have no vertex of degree 1), then switching a positive
answer must create a contradictory cycle. If every pair of positive components from G is linked by at
least 2 negative edges, then switching a negative answer must create a contradictory cycle. Thus, if G
satisfies those two conditions, we have d1 = 0.

In order to make d2 vanish, we would need every positive component of G to be 3-edge-connected,
so to have minimal degree at least 3 (unless the component is reduced to one vertex). As we saw in
Paragraph Bounded number of errors from Section 2.3, this would substantially increase the number
of queries. Thus, we choose a different approach, fixing a parameter r that influences the number
of queries added compared to the noiseless case, then constructing Q so that d2 (and hence c2)
is minimized. We will first describe the structure of G (and hence Q), then provide an algorithm
reaching this structure.

First, we ensure that each pair of positive components of G are linked by at least 3 negative answers.
This adds at most 2

�
b
2

�
queries, but should in practice be small, as in our random models, in the

noiseless case, all pairs of positive components are typically already linked by more than 3 negative
edges. This ensures that there are no pairs of negative answers from Q that can be switched to create
a contradictory cycle. Thus, d2 counts the number of pairs of positive edges that can be switched
without creating a contradictory cycle. Let n denote the number of vertices of G and m its number
of positive edges. If the partition p characterized by G contains b blocks, then the minimal possible
value of m is n − b. It corresponds to all positive components being trees and is reached in the
noiseless case. Since we want m to not grow too far from this lower bound, we assume m < 3n/2.

16

According to [6, Section 4], the structure of G minimizing d2 is a graph where all vertices have
degree 2 or 3, and there is an integer s such that the maximal paths or cycles containing only vertices
of degree 2 all have length s or s− 1. In practice, during the query of human experts, this constraint
might be difficult to satisfy exactly. So let us denote by r the average length of those 2-paths, and by
r� an upper-bound. The number of positive edges is then

m = n

�
1 +

1

3r + 2

�
,

so the number of edges added compared to the noiseless case is

m− (n− b) =
n

3r + 2
+ b.

The number of 2-paths is
3n

3r + 2
,

so a bound on d2 is �
r� + 1

2

�
3n

3r + 2
.

We now describe an algorithm reaching this desirable structure. It inputs a positive parameter r. The
largest r is, the smaller the number of additional edges is compared to the noiseless case, but also
the higher the probability of undetected error becomes. We start with an AC algorithm designed for
the noiseless case (the clique algorithm for example) and maintain the graph G described above. In
the first phase, the positive components of G are trees. Whenever the noiseless algorithm proposes a
query between two positive components of G, we choose one vertex on each of those components
such that a positive answer would create a positive component that is a tree where all vertices have
degree at most 3, and all 2-paths have length close to r. The second phase starts when the noiseless
algorithm has terminated. Additional queries are added

• between positive components so that each pair is linked by at least 3 negative answers,
• between the leaves of each tree corresponding to a positive component of G. No vertex

should be left with positive degree 1, the 2-paths should have length close to r, and each
positive component should be 2-edge-connected.

If at any point a contradictory cycle is detected, queries cutting it in two are submitted until the
conflict is resolved.

17

