
A Completing the Proof of Theorem 3.1
In Section 4 we give the proof of Theorem 3.1 based on several technical propositions and lemmas.
Here we present the complete proof of these propositions and lemmas.

A.1 Proof of Proposition 4.1

Here we present the proof of Proposition 4.1. We begin with the following lemma, which is studied
by [19, 12].

Lemma A.1 ([12]). θ̂SVM = θ̂LS if and only if y>(XX>)−1eiyi > 0 for all i ∈ [n].

According to Lemma A.1, to study the equivalence between the maximum margin classifier and the
minimum norm interpolator, it suffices to derive sufficient conditions such that y>(XX>)−1eiyi,
i ∈ [n] are strictly positive with high probability. We have the following lemma which summarizes
some calculations regarding the quantity y>(XX>)−1eiyi.

Lemma A.2. Suppose that tr(Σ) > C max{n3/2‖Σ‖2, n‖Σ‖F , n‖µ‖Σ} for some absolute con-
stant C. Then with probability at least 1−O(n−2),

y>(XX>)−1eiyi ≥ G
[
1− C ′n

∣∣µ>Q>(QQ>)−1ei
∣∣]

for all i ∈ [n], where G = G(µ,Q,y,Σ) > 0 is a strictly positive factor and C ′ > 0 is an absolute
constant.

By Lemma A.2, we can see that in order to ensure y>(XX>)−1eiyi > 0, it suffices to establish
an upper bound for |µ>Q>(QQ>)−1ei|. However, deriving tight upper bounds for this term turns
out to be challenging, as a simple application of the Cauchy-Schwarz inequality can lead to a loose
bound with an additional

√
n factor. In the following, we establish a refined bound on the term

|µ>Q>(QQ>)−1ei|.
Lemma A.3. Suppose that tr(Σ) > C max{n3/2‖Σ‖2, n‖Σ‖F } for some absolute constant C.
Then with probability at least 1−O(n−2),

∣∣µ>Q>(QQ>)−1ei
∣∣ ≤ C ′‖µ‖Σ ·

√
log(n)

tr(Σ)

for all i ∈ [n], where C ′ > 0 is an absolute constant.

We are now ready to present the proof of Proposition 4.1

Proof of Proposition 4.1. By the union bound, we have that with probability at least 1− 2n−2, the
results in Lemma A.2 and Lemma A.3 both hold. Therefore, for any i ∈ [n], we have

y>(XX>)−1eiyi ≥ G
[
1− c1n

∣∣µ>Q>(QQ>)−1ei
∣∣] ≥ G[1−

c2n
√

log(n) · ‖µ‖Σ
tr(Σ)

]
∝ tr(Σ)− c2n

√
log(n) · ‖µ‖Σ.

By the assumption tr(Σ) ≥ Cn
√

log(n) · ‖µ‖Σ for some large enough absolute constant C, we
have y>(XX>)−1eiyi > 0. Finally, applying Lemma A.1, we conclude that θ̂SVM = θ̂LS.

A.2 Proof of Lemmas in Section 4

We denote ν = Qµ and A = QQ>. Based on these notations, in the following we present several
basic lemmas that are used in our proof. We have the following lemma which gives concentration
inequalities for the the eigenvalues of A.

Lemma A.4. With probability at least 1− n−2,∥∥A− tr(Σ) · I
∥∥
2
≤ ελ := Cσ2

u

(
n · ‖Σ‖2 +

√
n · ‖Σ‖F

)
,

where C is an absolute constant.
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The following lemma presents some calculations on the quantity y>(XX>)−1. It utilizes a result
introduced in [25], which is based on the application of the Sherman–Morrison–Woodbury formula.
Lemma A.5. The following calculation of y>(XX>)−1 holds:

y>(XX>)−1 = D−1[(1 + y>A−1ν) · y>A−1 − y>A−1y · ν>A−1],

where D = y>A−1y · (‖µ‖22 − ν>A−1ν) + (1 + y>A−1ν)2 > 0.

Motivated by Lemma A.5, we estimate the orders of the terms y>A−1y, ν>A−1ν, and y>A−1ν.
The results are given in the following lemma.
Lemma A.6. Let ελ be defined in Lemma A.4, and suppose that tr(Σ) > ελ. Then with probability
at least 1−O(n−2), the following inequalities hold:

n

tr(Σ) + ελ
≤ y>A−1y ≤ n

tr(Σ)− ελ
,

n− C
√
n log(n)

tr(Σ) + ελ
· ‖µ‖2Σ ≤ ν>A−1ν ≤

n+ C
√
n log(n)

tr(Σ)− ελ
· ‖µ‖2Σ,

|y>A−1ν| ≤ Cn

tr(Σ)− ελ
‖µ‖Σ,

where C is an absolute constant.

A.2.1 Proof of Lemma 4.2

Here we give the detailed proof of Lemma 4.2, which is based on the one-side sub-Gaussian tail
bound.

Proof of Lemma 4.2. By definition, we have

R(θ) = P(y · θ>x < 0) = P[y · θ>(y · µ + q) < 0] = P[θ>µ < y · θ>q] = P[θ>µ < y · θ>VΛ1/2u],

where in the second and last equations we plug in the definitions of x and q according to our data
generation procedure described in Section 2. Note that u has independent, σu-sub-Gaussian entries.
Therefore we have

‖θ>VΛ1/2u‖ψ2
≤ c1‖θ>VΛ1/2‖2 = c1

√
θ>VΛV>θ = c1

√
θ>Σθ.

Applying the one-side sub-Gaussian tail bound (e.g., Theorem A.2 in [6]) completes the proof.

A.2.2 Proof of Lemma 4.3

The proof of Lemma 4.3 is given as follows, where we utilize Proposition 4.1 and Lemma 4.2 to
derive the desired bound.

Proof of Lemma 4.3. By Proposition 4.1, we have

θ̂SVM = θ̂LS = X>(XX>)−1y.

Plugging it into the risk bound in Lemma 4.2, we obtain

R(θ̂SVM) ≤ exp

{
− C[y>(XX>)−1Xµ]2

‖X>(XX>)−1y‖2Σ

}
.

Note that based on our model, we have X = yµ> + Q, and
‖X>(XX>)−1y‖2Σ = ‖(yµ> + Q)>(XX>)−1y‖2Σ

≤ 2‖µy>(XX>)−1y‖2Σ + 2‖Q>(XX>)−1y‖2Σ
= 2(y>(XX>)−1y)2 · ‖µ‖2Σ + 2‖Q>(XX>)−1y‖2Σ.

Therefore we have

R(θ̂SVM) ≤ exp

{
−(C/2) · [y>(XX>)−1Xµ]2

(y>(XX>)−1y)2 · ‖µ‖2Σ + ‖Q>(XX>)−1y‖2Σ

}
.

This completes the proof.
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A.2.3 Proof of Lemma 4.4

In this subsection we present the proof of Lemma 4.4. We first give the following lemma, which
follows by exactly the same proof as Lemma A.4.

Lemma A.7. Suppose that Z ∈ Rn×d is a random matrix with i.i.d. sub-Gaussian entries with
sub-Gaussian norm σu. Then with probability at least 1−O(n−2),∥∥ZΛ2Z> − ‖Σ‖2F · I

∥∥
2
≤ ε′λ := Cσ2

u

(
n · ‖Σ‖22 +

√
n · ‖Σ2‖F

)
,

where C is an absolute constant.

Based on Lemma A.7, we can give the proof of Lemma 4.4 as follows.

Proof of Lemma 4.4. We first derive the lower bound for I1. By Lemma A.5 and the model definition
X = yµ> + Q, we have

y>(XX>)−1Xµ = D−1[(1 + y>A−1ν)y>A−1 − y>A−1y · ν>A−1](yµ> + Q)µ

= D−1[(1 + y>A−1ν)y>A−1 − y>A−1y · ν>A−1](y · ‖µ‖22 + Qµ)

= D−1[(1 + y>A−1ν)y>A−1y − y>A−1y · ν>A−1y] · ‖µ‖22
+D−1[(1 + y>A−1ν)y>A−1ν − y>A−1y · ν>A−1ν])

= D−1 · [(‖µ‖22 − ν>A−1ν)y>A−1y + (1 + y>A−1ν)y>A−1ν], (A.1)

where the third equality follows by the notation ν = Qµ. By Lemma A.6 and the assumption that
tr(Σ) ≥ C max{ελ, n‖Σ‖2, n‖µ‖Σ} for some large enough constant C, when n is large enough
we have

|y>A−1ν| ≤ c1n

tr(Σ)− ελ
‖µ‖Σ ≤

2c1n

tr(Σ)
‖µ‖Σ ≤ 1,

0 ≤ ν>A−1ν ≤
n+ c2

√
n log(n)

tr(Σ)− ελ
· ‖µ‖2Σ ≤

2n

tr(Σ)
· ‖µ‖2Σ ≤

2n‖Σ‖2
tr(Σ)

· ‖µ‖22 ≤
1

2
· ‖µ‖22,

y>A−1y ≥ n

tr(Σ) + ελ
≥ n

2 tr(Σ)
,

where c1, c2 are absolute constants. Plugging the bounds above into (A.1), we obtain

|y>(XX>)−1Xµ| ≥ D−1 ·
(

1

2
· ‖µ‖22 · y>A−1y − 2 · |y>A−1ν|

)
≥ D−1 ·

[
n

4 tr(Σ)
· ‖µ‖22 −

4n

tr(Σ)
‖µ‖Σ

]
≥ D−1 · n

4 tr(Σ)
· (‖µ‖22 − 16‖µ‖Σ)

≥ D−1 · n

8 tr(Σ)
· ‖µ‖22,

where the last inequality follows by the assumption that ‖µ‖22 ≥ C‖µ‖Σ for some large enough
absolute constant C. Therefore we have

[y>(XX>)−1Xµ]2 ≥ D−2 · n2

64[tr(Σ)]2
· ‖µ‖42 =

H(µ,Q,y,Σ)

64
· n2‖µ‖42,

where we define

H(µ,Q,y,Σ) := [D · tr(Σ)]−2 > 0.

This completes the proof of the lower bound of I1.
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For I2, by Lemma A.5 we have

y>(XX>)−1y = D−1[(1 + y>A−1ν)y>A−1y − y>A−1y · ν>A−1y]

= D−1[(1 + y>A−1ν)y>A−1y − y>A−1y · ν>A−1y]

= D−1 · y>A−1y

≤ D−1 · n

tr(Σ)− ελ
≤ 2D−1 · n

tr(Σ)
,

where the first inequality follows by Lemma A.6, and the second inequality follows by the assumption
that tr(Σ) ≥ Cελ for some large enough constant C. Therefore we have

I2 = (y>(XX>)−1y)2 · ‖µ‖2Σ ≤ 4D−2 · n
2 · ‖µ‖2Σ
[tr(Σ)]2

= 4H(µ,Q,y,Σ) · n2 · ‖µ‖2Σ,

where we use the definition H(µ,Q,y,Σ) = [D · tr(Σ)]−2. This proves the upper bound of I2.

For I3, by our calculation in Lemma A.5, we have

y>(XX>)−1 = D−1[(1 + y>A−1ν)y − y>A−1y · ν]>A−1.

Denote a = D−1[(1 + y>A−1ν) · y − y>A−1y · ν]. Then

I3 = y>(XX>)−1QΣQ>(XX>)−1y

= a>(QQ>)−1QΣQ>(QQ>)−1a

= a>(ZΛZ>)−1ZΛ2Z>(ZΛZ>)−1a, (A.2)

where we plug in Σ = VΛV> and Q = ZΛ1/2V> for Z with independent sub-Gaussian entries.
By Lemma A.4, Lemma A.7 and (A.2), when tr(Σ) ≥ ελ we have

I3 = a>(ZΛZ>)−1ZΛ2Z>(ZΛZ>)−1a

≤ a>(ZΛZ>)−2a ·
[
‖Σ‖2F + ε′λ

]
≤ ‖a‖22 ·

‖Σ‖2F + ε′λ
[tr(Σ)− ελ]2

. (A.3)

Here the first inequality follows by Lemma A.7, and the second inequality follows by Lemma A.4.
By definition, we have

‖a‖22 = ‖D−1(1 + y>A−1ν)y − y>A−1y · ν‖22
≤ 2D−2(1 + y>A−1ν)2‖y‖22 + 2D−2(y>A−1y)2 · ‖Qµ‖22.

Then with the same proof as in Lemma A.6, when n is sufficiently large, with probability at least
1−O(n−2) we have

‖Qµ‖22 ≤ 2n‖µ‖2Σ.

Therefore we have

‖a‖22 ≤ 2D−2(1 + y>A−1ν)2‖y‖22 + 2D−2(y>A−1y)2 · ‖Qµ‖22
≤ 2D−2(1 + y>A−1ν)2 · n+ 4D−2(y>A−1y)2 · n · ‖µ‖2Σ. (A.4)

Moreover, by Lemma A.6 and the assumption that tr(Σ) ≥ C max{ελ, n, n‖µ‖Σ} for some large
enough constant C, we have

|y>A−1ν| ≤ c3n

tr(Σ)− ελ
‖µ‖Σ ≤

√
2− 1,

y>A−1y ≤ n

tr(Σ)− ελ
≤ 2n

tr(Σ)
,
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where c3 is an absolute constant. Plugging the above bounds into (A.4), we obtain

‖a‖22 ≤ 2D−2(1 + y>A−1ν)2 · n+ 4D−2(y>A−1y)2 · n · ‖µ‖2Σ

≤ 4D−2 · n+ 8D−2 · n ·
[

n

tr(Σ)
· ‖µ‖Σ

]2
≤ 5D−2 · n,

where the last inequality utilizes the assumption tr(Σ) ≥ Cn‖µ‖Σ for some large enough constant
C again. Further plugging this bound into (A.3), we obtain

I3 ≤ ‖a‖22 ·
‖Σ‖2F + ε′λ

[tr(Σ)− ελ]2
≤ 5D−2n · ‖Σ‖

2
F + ε′λ

[tr(Σ)− ελ]2

≤ c4D−2 ·
n · ‖Σ‖2F + n2 · ‖Σ‖22 + n3/2 · ‖Σ2‖F

[tr(Σ)]2
, (A.5)

where c4 is an absolute constant. Note that we have

n3/2 · ‖Σ2‖F ≤ n · ‖Σ‖F · (
√
n · ‖Σ‖2) ≤ n · (‖Σ‖2F + n · ‖Σ‖22)/2.

Plugging this bound into (A.5), we have

I3 ≤ c5D−2 ·
n · ‖Σ‖2F + n2 · ‖Σ‖22

[tr(Σ)]2
= c5H(µ,Q,y,Σ) · (n · ‖Σ‖2F + n2 · ‖Σ‖22),

where we use the definition H(µ,Q,y,Σ) = [D · tr(Σ)]−2, and c4 is an absolute constant. This
finishes the proof of the upper bound of I3.

A.3 Proof of Lemmas in Appendix A.1

We present the proofs of Lemmas A.2 and A.3.

A.3.1 Proof of Lemma A.2

Here we present the proof of Lemma A.2. The proof utilizes Lemma A.5 and an argument based on
the polarization identity.

Proof of Lemma A.2. By Lemma A.5, we have

y>(XX>)−1eiyi = D−1[(1 + y>A−1ν)y>A−1eiyi − y>A−1y · ν>A−1eiyi]. (A.6)

Moreover, by definition we have

y>A−1eiyi =
1

4
√
n

(y +
√
neiyi)

>A−1(y +
√
neiyi)−

1

4
√
n

(y −
√
neiyi)

>A−1(y −
√
neiyi)

≥ 1

4
√
n

[
‖y +

√
neiyi‖22

tr(Σ) + ελ
− ‖y −

√
neiyi‖22

tr(Σ)− ελ

]
=

1

4
√
n

[
2n+ 2

√
n

tr(Σ) + ελ
− 2n− 2

√
n

tr(Σ)− ελ

]
=

1

2
√
n
· (n+

√
n)(tr(Σ)− ελ)− (n−

√
n)(tr(Σ) + ελ)

tr(Σ)2 − ε2λ

=
1

2
√
n
· 2
√
n tr(Σ)− 2nελ
tr(Σ)2 − ε2λ

=
tr(Σ)−

√
nελ

tr(Σ)2 − ε2λ
, (A.7)

where we use the polarization identity a>Mb = 1/4(a + b)>M(a + b)− 1/4(a− b)>M(a− b)
in the first equality and use Lemma A.4 to derive the inequality.
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Plugging (A.7) and the inequalities in Lemmas A.6 into (A.6), we have that as long as tr(Σ) >
c1 max{n‖µ‖Σ, ελ} for some large enough constant c1, y>A−1ν ≤ 1/2 and therefore

y>(XX>)−1eiyi = D−1[(1 + y>A−1ν)y>A−1eiyi − y>A−1y · ν>A−1eiyi]

≥ D−1 ·
[

1

2
· y>A−1eiyi −

c2n

tr(Σ)
· |ν>A−1eiyi|

]
, (A.8)

where c2 is an absolute constant. By (A.7), we can see that as long as tr(Σ) ≥ c3
√
nελ for some

large enough absolute constant c3, we have

y>A−1eiyi ≥
tr(Σ)−

√
nελ

tr(Σ)2 − ε2λ
≥ 1

2 tr(Σ)
.

Plugging the bound above into (A.8), we obtain

y>(XX>)−1eiyi ≥
1

4D tr(Σ)
· [1− c4n · |ν>A−1eiyi|].

Since D > 0, we see that G(µ,Q,y,Σ) := [4D tr(Σ)]−1 > 0. This completes the proof.

A.3.2 Proof of Lemma A.3

Here we give the detailed proof of Lemma A.3 to backup the proof sketch presented in Section 4.
The proof is based on the polarization identity.

Proof of Lemma A.3. We have the following calculation,

µ>Q>A−1eiyi =
1

‖Qµ‖2
· (Qµ)>A−1(‖Qµ‖2 · eiyi)

=
1

4‖Qµ‖2
· (Qµ + ‖Qµ‖2 · eiyi)>A−1(Qµ + ‖Qµ‖2 · eiyi)

− 1

4‖Qµ‖2
· (Qµ− ‖Qµ‖2 · eiyi)>A−1(Qµ− ‖Qµ‖2 · eiyi)

≤ 1

4‖Qµ‖2
·
[
‖Qµ + ‖Qµ‖2 · eiyi‖22

tr(Σ)− ελ
− ‖Qµ− ‖Qµ‖2 · eiyi‖22

tr(Σ) + ελ

]
=

1

4‖Qµ‖2
·
[

2‖Qµ‖22 + 2yi‖Qµ‖2 · e>i Qµ

tr(Σ)− ελ
− 2‖Qµ‖22 − 2yi‖Qµ‖2 · e>i Qµ

tr(Σ) + ελ

]
=

1

2‖Qµ‖2
· 2‖Qµ‖22 · ελ + 2yi‖Qµ‖2 · e>i Qµ · tr(Σ)

tr(Σ)2 − ε2λ

=
‖Qµ‖2 · ελ + yie

>
i Qµ · tr(Σ)

tr(Σ)2 − ε2λ
, (A.9)

where the first equality holds due to the polarization identity a>Mb = 1/4(a + b)>M(a + b)−
1/4(a − b)>M(a − b), and the first inequality follows by Lemma A.4. Based on our model
assumption, we can denote Q = ZΛ1/2V>, where the entries of Z are independent sub-Gaussian
random variables with ‖Zij‖ψ2

≤ σu for all i ∈ [n] and j ∈ [p]. Denote µ̃ = Λ1/2V>µ. Then with
the same proof as in Lemma A.6, we have

‖Qµ‖22 = ‖Zµ̃‖22 ≤ 2n‖µ̃‖22 = 2n‖µ‖2Σ
when n is large enough. Moreover, we also have

‖yie>i Qµ‖ψ2
=

∥∥∥∥∥
p∑
j=1

Zij µ̃j

∥∥∥∥∥
ψ2

≤ ‖µ̃‖2 · σu.

Therefore by Hoeffding’s inequality, with probability at least 1− n−1, we have

|yie>i Qµ| ≤ c1‖µ̃‖2 ·
√

log(n) = c1‖µ‖Σ ·
√

log(n),
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where c1 is an absolute constant. Therefore we have

ν>A−1eiyi ≤
√

2n‖µ‖Σ · ελ + c2‖µ‖Σ
√

log(n) · tr(Σ)

tr(Σ)2 − ε2λ
.

With the exact same proof, we also have

−ν>A−1eiyi ≤
√

2n‖µ‖Σ · ελ + c2‖µ‖Σ
√

log(n) · tr(Σ)

tr(Σ)2 − ε2λ
.

Therefore by the assumption that tr(Σ) > C
√
nελ for some large enough absolute constant C, we

have

|ν>A−1ei| ≤
c3‖µ‖Σ ·

√
log(n)

tr(Σ)

for some absolute constant c3. This completes the proof.

A.4 Proof of Lemmas in Appendix A.2

Here we present the proofs of lemmas we used in Appendix A.2.

A.4.1 Proof of Lemma A.4

The proof of Lemma A.4 is motivated by the analysis given in [2]. However here in Lemma A.4 we
give a slightly tighter bound. The proof is as follows.

Proof of Lemma A.4. Let N be a 1/4-net on the unit sphere sn−1. Then by Lemma 5.2 in [24], we
have |N | ≤ 9n. Denote zj = λ

−1/2
j Qvj ∈ Rn. Then by definition, for any fixed unit vector â ∈ N

we have â>Aâ = QQ> = â>
∑p
j=1 λjzjz

>
j â =

∑p
j=1 λj(â

>zj)
2. By Lemma 5.9 in [24], there

exists an absolute constant c1 such that ‖â>zj‖ψ2
≤ c1σu. Therefore by Lemma 21 and Corollary

23 in [2], for any t > 0, with probability at least 1− 2 exp(−t) we have∣∣â>Aâ− tr(Σ)
∣∣ ≤ c2σ2

u max
(
t · ‖Σ‖2,

√
t · ‖Σ‖F

)
.

Applying an union bound over all â ∈ N , we have that with probability at least 1− 2 · 9n exp(−t),∣∣â>Aâ− tr(Σ)
∣∣ ≤ c2σ2

u max
(
t · ‖Σ‖2,

√
t · ‖Σ‖F

)
for all â ∈ N . Therefore by Lemma 25 in [2], with probability at least 1− 2 · 9n exp(−t), we have∥∥A− tr(Σ)I

∥∥
2
≤ c3σ2

u

(
t · ‖Σ‖2 +

√
t · ‖Σ‖F

)
,

where c3 is an absolute constant. Setting t = c4n for some large enough constant c4, we have that
with probability at least 1− n−2,∥∥A− tr(Σ)I

∥∥
2
≤ c5σ2

u

(
n · ‖Σ‖2 +

√
n · ‖Σ‖F

)
,

where c5 is an absolute constant. This completes the proof.

A.4.2 Proof of Lemma A.5

Here we present the proof of Lemma A.5. Our proof utilizes a key lemma by [25], and gives further
simplifications of the result.

Proof of Lemma A.5. Denote s = y>A−1y, t = ν>A−1ν, h = y>A−1ν. Then we have D =
‖µ‖22s− st+ (h+ 1)2. By Lemma 3 in [25], we have

y>(XX>)−1 = y>A−1 −D−1 · [‖µ‖22s+ h2 + h− st] · y>A−1 −D−1s · ν>A−1.

19



Rearranging terms, we obtain

y>(XX>)−1 =

[
1− ‖µ‖

2
2s+ h2 + h− st

‖µ‖22s− st+ (h+ 1)2

]
· y>A−1 −D−1s · ν>A−1

=
h+ 1

‖µ‖22s− st+ (h+ 1)2
· y>A−1 −D−1s · ν>A−1

= D−1[(h+ 1)y>A−1 − s · ν>A−1].

At last, by the definition of D, we have

D = y>A−1y · (‖µ‖22 − µ>Q>(QQ>)−1Qµ) + (1 + y>A−1ν)2

≥ (1 + y>A−1ν)2,

where we utilize the fact that y>A−1y ≥ 0 and ‖µ‖22 ≥ µ>Q>(QQ>)−1Qµ. Since y>A−1ν 6= 1
with probability 1, we see that D > 0 almost surely. This completes the proof.

A.4.3 Proof of Lemma A.6

The proof of Lemma A.6 is based on the application of eigenvalue concentration results in Lemma A.4.
We present the details as follows.

Proof of Lemma A.6. The bounds on y>A−1y are directly derived from Lemma A.4 and the fact
that ‖y‖22 = n. To derive the bounds for νA−1ν, we note that by definition, ν = Qµ and

ν>A−1ν = µ>Q>(QQ>)−1Qµ.

Denote zi = λ
−1/2
i Qvi ∈ Rn, Z = [z1, . . . , zp] ∈ Rn×p, and µ̃ = Λ1/2V>µ. Then Q =

ZΛ1/2V>, Qµ = Zµ̃, and

µ>Q>(QQ>)−1Qµ = µ>VΛ1/2Z>(ZΛZ>)−1ZΛ1/2V>µ

= µ̃>Z>(ZΛZ>)−1Zµ̃

≤ ‖Zµ̃‖22
tr(Σ)− ελ

.

Similarly, we have

µ>Q>(QQ>)−1Qµ ≥ ‖Zµ̃‖22
tr(Σ) + ελ

.

We now proceed to give upper and lower bounds for the term ‖Zµ̃‖22 =
∑n
i=1(

∑p
j=1 Zij µ̃j)

2.
Note that by definition, Zij for i ∈ [n] and j ∈ [p] are independent sub-Gaussian vectors with
‖Zij‖ψ2 ≤ σu. By Lemma 5.9 in [24], we have∥∥∥∥∥

p∑
j=1

Zij µ̃j

∥∥∥∥∥
ψ2

≤ c1‖µ̃‖2 · σu,

where c1 is an absolute constant. Therefore by Lemma 5.14 in [24], we have∥∥∥∥∥
(

p∑
j=1

Zij µ̃j

)2

− ‖µ̃‖22

∥∥∥∥∥
ψ1

≤ c2‖µ̃j‖22,

where we merge σu into the absolute constant c2. By Bernstein’s inequality, with probability at least
1− n−2, ∣∣‖Zµ̃‖22 − E‖Zµ̃‖22

∣∣ ≤ c3‖µ̃‖22 ·√n log(n),

where c3 is an absolute constant. Therefore we have

n‖µ̃‖22 − c3‖µ̃‖22 ·
√
n log(n) ≤ ‖Qµ‖22 = ‖Zµ̃‖22 ≤ n‖µ̃‖22 + c3‖µ̃‖22 ·

√
n log(n), (A.10)
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and
n− c3

√
n log(n)

tr(Σ) + ελ
· ‖µ̃‖2 ≤ ν>A−1ν ≤

n+ c3
√
n log(n)

tr(Σ)− ελ
· ‖µ̃‖2

Similarly for y>A−1ν, by Cauchy-Schwarz inequality, for large enough n we have

|y>A−1ν| = |y>(QQ>)−1Qµ| ≤ ‖y‖2 · ‖(QQ>)−1Qµ‖2 =
√
n ·
√
µ>Q>(QQ>)−2Qµ.

Applying Lemma A.4 and the inequality (A.10), we have

|y>A−1ν| ≤
√
n

tr(Σ)− ελ
‖Qµ‖2 ≤

√
n ·
√
n+ c3

√
n log(n)

tr(Σ)− ελ
‖µ̃‖2 ≤

c4n

tr(Σ)− ελ
‖µ̃‖2,

where c4 is an absolute constant. Note that ‖µ̃‖2 = ‖µ‖Σ. This completes the proof.

B Proof of Theorem 3.2
Here we present the proof of Theorem 3.2.

Proof of Theorem 3.2. By the lower bound of the Gaussian cumulative distribution function [7], we
have that for any θ ∈ Rd,

R(θ) ≥ c1 exp

(
− c2(θ>µ)2

‖θ‖2Σ

)
, (B.1)

where c1, c2 > 0 are absolute constants. By Proposition 4.1, we have

θ̂SVM = θ̂LS = X>(XX>)−1y.

Plugging it into (B.1), we obtain

R(θ̂SVM) ≥ c1 exp

{
− c2[y>(XX>)−1Xµ]2

‖X>(XX>)−1y‖2Σ

}
. (B.2)

Note that based on our model, we have X = yµ> + Q, and
‖X>(XX>)−1y‖Σ = ‖(yµ> + Q)>(XX>)−1y‖Σ

≥
∣∣‖µy>(XX>)−1y‖Σ − ‖Q>(XX>)−1y‖Σ

∣∣
=
∣∣y>(XX>)−1y · ‖µ‖Σ − ‖Q>(XX>)−1y‖Σ

∣∣ (B.3)
Plugging the above bound into (B.2), we obtain

R(θ) ≥ c1 exp

{
− c2[y>(XX>)−1Xµ]2

(y>(XX>)−1y · ‖µ‖Σ − ‖Q>(XX>)−1y‖Σ)2

}
. (B.4)

Denote ν = Qµ and A = QQ>. Then by Lemma A.5 and the model definition X = yµ> + Q, we
have

y>(XX>)−1Xµ = D−1[(1 + y>A−1ν)y>A−1 − y>A−1y · ν>A−1](yµ> + Q)µ

= D−1[(1 + y>A−1ν)y>A−1 − y>A−1y · ν>A−1](y · ‖µ‖22 + Qµ)

= D−1[(1 + y>A−1ν)y>A−1y − y>A−1y · ν>A−1y] · ‖µ‖22
+D−1[(1 + y>A−1ν)y>A−1ν − y>A−1y · ν>A−1ν])

= D−1 · [(‖µ‖22 − ν>A−1ν)y>A−1y + (1 + y>A−1ν)y>A−1ν], (B.5)
where the third equality follows by the notation ν = Qµ. By Lemma A.6 and the assumption that
tr(Σ) ≥ C max{ελ, n‖Σ‖2, n‖µ‖Σ} for some large enough constant C, when n is large enough
we have

|y>A−1ν| ≤ c3n

tr(Σ)− ελ
‖µ‖Σ ≤

2c4n

tr(Σ)
‖µ‖Σ ≤ 1,

0 ≤ ν>A−1ν ≤
n+ c5

√
n log(n)

tr(Σ)− ελ
· ‖µ‖2Σ ≤

2n

tr(Σ)
· ‖µ‖2Σ ≤

2n‖Σ‖2
tr(Σ)

· ‖µ‖22 ≤
1

2
· ‖µ‖22,

0 ≤ y>A−1y ≤ n

tr(Σ)− ελ
≤ 2n

tr(Σ)
,
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where c3, c4 are absolute constants. Plugging the bounds above into (A.1), we obtain

|y>(XX>)−1Xµ| ≤ D−1 ·
(
‖µ‖22 · y>A−1y + 2 · |y>A−1ν|

)
≤ D−1 ·

[
2n

tr(Σ)
· ‖µ‖22 +

4n

tr(Σ)
‖µ‖Σ

]
≤ D−1 · 2n

tr(Σ)
· (‖µ‖22 + 2‖µ‖Σ)

≤ D−1 · 4n

tr(Σ)
· ‖µ‖22,

where the last inequality follows by the assumption that ‖µ‖22 ≥ C‖µ‖Σ for some large enough
absolute constant C. Therefore we have

[y>(XX>)−1Xµ]2 ≤ D−2 · n2

64[tr(Σ)]2
· ‖µ‖42 =

H(µ,Q,y,Σ)

64
· n2‖µ‖42, (B.6)

where
H(µ,Q,y,Σ) := [D · tr(Σ)]−2 > 0.

We now proceed to study the two terms in the denominator of the exponent in (B.4). We denote

J1 = y>(XX>)−1y · ‖µ‖Σ,
J2 = ‖Q>(XX>)−1y‖Σ)2.

Then for J1, with the same derivation as the proof of Lemma 4.4 for I2, we have

J1 =
√
I2 ≤ 2

√
H(µ,Q,y,Σ) · n · ‖µ‖Σ.

Moreover we also have

y>(XX>)−1y = D−1 · y>A−1y ≥ D−1 · n

tr(Σ) + ελ
≥ (2D)−1 · n

tr(Σ)
,

where the first inequality follows by Lemma A.6, and the second inequality follows by the assumption
that tr(Σ) ≥ Cελ for some large enough constant C. Then we have

J1 = y>(XX>)−1y · ‖µ‖Σ ≥ (2D)−1 · n · ‖µ‖Σ
tr(Σ)

= (1/2) ·
√
H(µ,Q,y,Σ) · n · ‖µ‖Σ,

where we use the definition H(µ,Q,y,Σ) = [D · tr(Σ)]−2. Therefore in summary we have

(1/2) ·
√
H(µ,Q,y,Σ) · n · ‖µ‖Σ ≤ J1 ≤ 2

√
H(µ,Q,y,Σ) · n · ‖µ‖Σ, (B.7)

where c5 is an absolute constant. Similarly, for J2, with the same derivation as the proof of Lemma 4.4
for I3, we have

J2
2 = I3 ≤ c5H(µ,Q,y,Σ) · (n · ‖Σ‖2F + n2 · ‖Σ‖22). (B.8)

Moreover, we denote a = D−1[(1 + y>A−1ν) · y − y>A−1y · ν]. Then with the same derivation,

J2
2 = y>(XX>)−1QΣQ>(XX>)−1y

= a>(QQ>)−1QΣQ>(QQ>)−1a

= a>(ZΛZ>)−1ZΛ2Z>(ZΛZ>)−1a, (B.9)

where we plug in Σ = VΛV> and Q = ZΛ1/2V> for Z with independent sub-Gaussian entries.
We have

J2
2 = a>(ZΛZ>)−1ZΛ2Z>(ZΛZ>)−1a

≥ a>(ZΛZ>)−2a ·
[
‖Σ‖2F − ε′λ

]
≥ ‖a‖22 ·

‖Σ‖2F − ε′λ
[tr(Σ) + ελ]2

≥ ‖a‖22 ·
‖Σ‖2F − ε′λ
2[tr(Σ)]2

. (B.10)
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Here the first inequality follows by Lemma A.7, the second inequality follows by Lemma A.4, and
the third inequality follows by the assumption that tr(Σ) ≥ Cελ for some large enough absolute
constant C. By the definition of ε′λ in Lemma A.7 and Cauchy-Schwarz inequality, we have

ε′λ := c6
(
n · ‖Σ‖22 +

√
n · ‖Σ2‖F

)
≤ c6

(
n · ‖Σ‖22 +

√
n · ‖Σ‖2 · ‖Σ‖F

)
≤ c6

(
n · ‖Σ‖22 + 2c6n · ‖Σ‖22 + ‖Σ‖2F /(2c6)

)
≤ c7n · ‖Σ‖22 + ‖Σ‖2F /2,

where c6, c7 are absolute constants. Plugging the above bound into (B.10) gives

J2
2 ≥ ‖a‖22 ·

‖Σ‖2F − c8n · ‖Σ‖22
4[tr(Σ)]2

(B.11)

for some absolute constant c8. Moreover, by the definition a and the triangle inequality, we have

‖a‖22 = ‖D−1(1 + y>A−1ν)y − y>A−1y · ν‖22
≥
[
D−1(1 + y>A−1ν)‖y‖2 −D−1(y>A−1y) · ‖Qµ‖2

]2
= D−2

[
(1 + y>A−1ν) ·

√
n− (y>A−1y) · ‖Qµ‖2

]2
. (B.12)

By Lemma A.6 and the assumption that tr(Σ) ≥ C max{ελ, n, n‖µ‖Σ} for some large enough
constant C, we have

|y>A−1ν| ≤ c9n

tr(Σ)− ελ
‖µ‖Σ ≤ 1/2,

y>A−1y ≤ n

tr(Σ)− ελ
≤ 2n

tr(Σ)
,

where c9 is an absolute constant. Moreover, with the same proof as in Lemma A.6, when n is
sufficiently large, with probability at least 1−O(n−2) we have

‖Qµ‖22 ≤ 2n‖µ‖2Σ.
Utilizing these inequalities above, we have

(1 + y>A−1ν) ·
√
n ≥
√
n/2,

(y>A−1y) · ‖Qµ‖2 ≤
2n

tr(Σ)
·
√

2n‖µ‖Σ ≤
√
n/4,

where the second line above follows the assumption that tr(Σ) ≥ Cn‖µ‖Σ for some large enough
constant C. Combining these bounds with (B.12), we have

‖a‖22 ≥ D−2
[
(1 + y>A−1ν) ·

√
n− (y>A−1y) · ‖Qµ‖2

]2 ≥ D−2n/16.

Further plugging this bound into (B.11), we have

J2
2 ≥

n

16D2
· ‖Σ‖

2
F − c8n · ‖Σ‖22
4[tr(Σ)]2

= H(µ,Q,y,Σ) · (c10n · ‖Σ‖2F − c11n2 · ‖Σ‖22), (B.13)

where c10, c11 are absolute constants, and we use the definition H(µ,Q,y,Σ) = [D · tr(Σ)]−2.
Combining (B.8) and (B.13), we obtain

H(µ,Q,y,Σ) · (c10n‖Σ‖2F − c11n2‖Σ‖22) ≤ J2
2 ≤ c5H(µ,Q,y,Σ) · (n‖Σ‖2F + n2‖Σ‖22).

(B.14)

In the rest of the proof, we consider the two cases in Theorem 3.2 separately based on (B.7) and
(B.14).

Case 1. Suppose that n‖µ‖2Σ ≥ C(‖Σ‖2F + n‖Σ‖22) for some large enough constant C. Then by
(B.7) and (B.14), we have

J1 ≥ (1/2) ·
√
H(µ,Q,y,Σ) · n · ‖µ‖Σ

J2 ≤ 2
√
c5
√
H(µ,Q,y,Σ) ·

√
n · ‖Σ‖2F + n2 · ‖Σ‖22 ≤ (1/4) ·

√
H(µ,Q,y,Σ) · n · ‖µ‖Σ
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Plugging the above inequalities and (B.6) into (B.4), we obtain Therefore by

R(θ) ≥ c1 exp

{
− c2n

2‖µ‖42/64

(n · ‖µ‖Σ/4)2

}
= c1 exp

{
− c12‖µ‖42
‖µ‖2Σ

}
,

where c12 is an absolute constant. This completes the proof of the first case in Theorem 3.2.

Case 2. Suppose that ‖Σ‖2F ≥ Cn(‖µ‖2Σ + ‖Σ‖22) for some large enough constant C. Then by
(B.7) we have

J1 ≤ 2
√
H(µ,Q,y,Σ) · n · ‖µ‖Σ ≤

√
H(µ,Q,y,Σ) ·

√
c10‖Σ‖F /4. (B.15)

Moreover for J2, by (B.14) we have

J2
2 ≥ H(µ,Q,y,Σ) · (c10n‖Σ‖2F − c11n2‖Σ‖22) ≥ H(µ,Q,y,Σ) · c10n‖Σ‖2F /4,

and therefore

J2 ≥
√
H(µ,Q,y,Σ) ·

√
c10n‖Σ‖F /2. (B.16)

Plugging (B.6), (B.15) and (B.16) into (B.4), we obtain

R(θ) ≥ c1 exp

{
− c2n

2‖µ‖42/64

(
√
c10n‖Σ‖F /4)2

}
= c1 exp

{
− c13n‖µ‖42
‖Σ‖2F

}
,

where c13 is an absolute constant. This completes the proof of the second case in Theorem 3.2.

C Proof of Corollaries
Here we provide the proof of the Corollaries 3.3, 3.5 and 3.7 in Section 3.

C.1 Proof of Corollary 3.3

The proof of Corollary 3.3 is a direct application of Theorem 3.1. The detailed proof is as follows.

Proof of Corollary 3.3. When Σ = I, we have tr(Σ) = d, ‖Σ‖2 = 1, ‖Σ‖F =
√
d and ‖µ‖Σ =

‖µ‖2. Under the condition in Corollary 3.3 that d ≥ C max
{
n2, n

√
log(n) · ‖µ‖2

}
and ‖µ‖2 ≥ C

for some large enough absolute constant C, it is easy to check that the conditions of Theorem 3.1

tr(Σ) = Ω
(

max
{
n3/2‖Σ‖2, n‖Σ‖F , n

√
log(n) · ‖µ‖Σ

})
, ‖µ‖2 ≥ C‖Σ‖2

hold. Therefore by Theorem 3.1, we have

R(θ̂SVM) ≤ exp

(
−c1n‖µ‖42

n‖µ‖2Σ + ‖Σ‖2F + n‖Σ‖22

)
≤ exp

(
−c2n‖µ‖42
n‖µ‖22 + d

)
,

where c1, c2 are absolute constants. This completes the proof.

C.2 Proof of Corollary 3.5

Here we present the proof of Corollary 3.5, which is mostly based on the estimation of the order of
the summations

∑d
k=1 k

−α and
∑d
k=1 k

−2α. We first present the full version of the corollary with
detailed dependency in the sample size n as follows.
Corollary C.1. [Full version of Corollary 3.5] Suppose that λk = k−α, and one of the following
conditions hold:

1. α ∈ [0, 1/2), d = Ω̃(n
3

2(1−α) + n2 + (n‖µ‖Σ)
1

1−α ), and ‖µ‖2 = ω(1 + n−1/4d1/4−α/2).

2. α = 1/2, d = Ω̃(n3 + n2‖µ‖2Σ), and ‖µ‖2 = ω(1 + n−1/4(log(d))1/4).

3. α ∈ (1/2, 1), d = Ω̃(n
3

2(1−α) + (n‖µ‖Σ)
1

1−α ), and ‖µ‖2 = ω(1).

Then with probability at least 1− n−1, the population risk of the maximum margin classifier satisfies
R(θ̂SVM) = o(1).
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Proof of Corollary C.1. We first consider the case when α ∈ [0, 1/2). We have

tr(Σ) =

d∑
k=1

λk =

d∑
k=1

k−α ≥
∫ d

t=1

t−αdt =
d1−α

1− α
− 1

1− α
>

d1−α

2(1− α)

when d is sufficiently large. Similarly, we have

‖Σ‖2F =

d∑
k=1

λ2k = 1 +

d∑
k=2

k−2α ≤ 1 +

∫ d−1

t=1

t−2αdt = 1 +
(d− 1)1−2α

1− 2α
− 1

1− 2α
≤ 1 +

d1−2α

1− 2α
.

Therefore, a sufficient condition for the assumptions in Theorem 3.1 to hold is that ‖µ‖2 = ω(1) and

d1−α

2(1− α)
≥ Cn3/2,

d1−α

2(1− α)
≥ Cn ·

√
1 +

d1−2α

1− 2α
,

d1−α

2(1− α)
≥ Cn

√
log(n) · ‖µ‖Σ.

After simplifying the result, we derive the condition that d = Ω̃(n
3

2(1−α) + n2 + (n‖µ‖Σ)
1

1−α ). We
further check the conditions on ‖µ‖2 that lead to o(1) population risk. Note that when ‖µ‖2 = ω(1),
‖µ‖42/‖µ‖2Σ = ω(1). We also check the condition that n‖µ‖42/‖Σ‖2F = ω(1). A sufficient condition
is that

n‖µ‖42 = ω

(
1 +

d1−2α

1− 2α

)
.

Simplifying the condition completes the proof for the case α ∈ [0, 1/2).

For the case α = 1/2, we have

tr(Σ) =

d∑
k=1

λk =

d∑
k=1

k−1/2 ≥
∫ d

t=1

t−1/2dt =
d1−1/2

1− 1/2
− 1

1− 1/2
>
√
d

when d is sufficiently large. Moreover,

‖Σ‖2F =

d∑
k=1

λ2k = 1 +

d∑
k=2

k−1 ≤ 1 +

∫ d−1

t=1

t−1dt = 1 + log(d− 1) ≤ 1 + log(d).

Verifying the conditions
√
d ≥ Cn3/2,
√
d ≥ Cn ·

√
1 + log(d),

√
d ≥ Cn

√
log(n) · ‖µ‖Σ

then gives a sufficient condition d = Ω̃(n3 + n2‖µ‖2Σ), ‖µ‖2 = ω(1) for the assumptions in
Theorem 3.1 to hold. It is also easy to verify that when ‖µ‖2 = ω(1 + n−1/4(log(d))1/4) we have
R(θ̂SVM) = o(1).

Finally for the case α ∈ (1/2, 1), we have

tr(Σ) =

d∑
k=1

λk =

d∑
k=1

k−α ≥
∫ d

t=1

t−αdt =
d1−α

1− α
− 1

1− α
.

Moreover, in this setting we have ‖Σ‖2F ≤ c1 for some absolute constant c1. It is therefore easy to
check that ‖µ‖2 = ω(1) and

d = Ω̃(n
3

2(1−α) + (n‖µ‖Σ)
1

1−α )

are sufficient for the assumptions in Theorem 3.1 to hold, and we also have R(θ̂SVM) = o(1).

25



C.3 Proof of Corollary 3.7

The proof of Corollary 3.7 for the rare/weak feature model is rather straightforward.

Proof of Corollary 3.7. Note that in the rare/weak feature model we have ‖µ‖2 = γ
√
s. Therefore

the conditions of Corollary 3.3 are satisfied and we have

R(θ̂SVM) ≤ exp

(
− c1n‖µ‖42
n‖µ‖22 + d

)
= exp

(
− c1nγ

4s2

nγ2s+ d

)
,

where c1 is an absolute constant. This completes the proof.

D Experiments
In this section we present simulation results to backup our population risk bound in Theorem 3.1. We
generate u as a standard Gaussian vector, and set Σ = diag{λ1, . . . , λd} with λk = k−α for some
parameter α ∈ [0, 1), which matches the setting studied in Section 3. The mean vector µ is generated
uniformly from the sphere centered at the origin with radius r. All population risks are calculated by
taking the average of 100 independent experiments. Note that under our setting, θ̂SVM = θ̂LS can
be easily calculated. Moreover, since we are considering Gaussian mixtures in our experiments, the
population risk can be directly calculated with the Gaussian cumulative distribution function:

R(θ̂SVM) = P[θ>µ < y · θ̂>SVMΛ1/2u].

The derivation of the above result is in the proof of Lemma 4.2 in Appendix A.2.1.

Population risk versus the norm of the mean vector ‖µ‖2. We first present experimental results
on the relation between the population risk and the norm of the mean vector ‖µ‖2. Note that in our
setting, the risk bound in Theorem 3.1 reduces to the following bound:

R(θ̂SVM) ≤ exp

(
−C ′n‖µ‖42

n‖µ‖2Σ +
∑d
k=1 k

−2α

)
.

Based on this bound, we can first see that the population risk should be smaller when α is larger.
Moreover, the dependency of R(θ̂SVM) depends on the comparison between the scaling of the two
terms in the denominator. When

d∑
k=1

k−2α ≥ n‖µ‖2Σ, (D.1)

we can expect that − log(R(θ̂SVM)) should be roughly of order ‖µ‖42. On the other hand, if (D.1)
does not hold, then − log(R(θ̂SVM)) should be roughly of order ‖µ‖22. It is also clear that whether
(D.1) holds heavily depends on the values of the sample size n and α: when n is large, then (D.1)
is less likely to be satisfied. Moreover, when α > 1/2, (D.1) cannot hold because in this case∑d
k=1 k

−2α is upper bounded by a constant.

In Figure 2, we verify the above argument by verifying the dependency of the population riskR(θ̂SVM)
on the norm of the mean vector ‖µ‖2 with different values of α and sample size n. From Figures 2(a)
and 2(c), we can see that R(θ̂SVM) decreases with ‖µ‖2 and α. From 2(b), we verify that when
n = 10 (which is rather small) and when α = 0, 0.2, 0.4, − log(R(θ̂SVM)) is linear in ‖µ‖22. This
verifies our discussion for the setting when (D.1) holds. On the other hand, when α = 0.6, 0.8,
− log(R(θ̂SVM)) has a higher order dependency in ‖µ‖22, which is because

∑d
k=1 k

−2α is upper
bounded by a constant and (D.1) cannot hold. In Figure 2(d), we further verify that when n = 100,
(D.1) never hold and − log(R(θ̂SVM)) is of order ‖µ‖22 for all choices of α. This set of experiments
verifies our risk bound in Theorem 3.1.

Verification of the dimension-dependent and dimension-free settings. In Corollary 3.5, we have
discussed that when α < 1/2, achieving a small population risk requires a larger ‖µ‖2 when d is
larger. On the other hand, when α > 1/2, the requirement on ‖µ‖2 to achieve small population error
is dimension-free. Here we present experimental results to verify our claim. The results are given
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(a) R(θ̂SVM) versus ‖µ‖2, n = 10, d =
2000
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(b) − log(R(θ̂SVM)) versus ‖µ‖22, n = 10,
d = 2000
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(c) R(θ̂SVM) versus ‖µ‖2, n = 100, d =
2000
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(d) − log(R(θ̂SVM)) versus ‖µ‖22, n = 100,
d = 2000

Figure 2: Experiments on the dependency of the population risk R(θ̂SVM) on the norm of the mean
vector ‖µ‖2 with different values of α and sample size n. (a) and (b) gives the curves with n = 10,
while (c) and (d) are for the case n = 100. Moreover, (a) and (c) gives the curves of R(θ̂SVM) versus
‖µ‖2, and to further test the tightness of our risk bound, in (c) and (d) we also study the relation
between − log(R(θ̂SVM)) and ‖µ‖22. The dimension d is set to 2000 in all these figures. In (d) we
omit the last point ‖µ‖2 = 16 in the curve for α = 0.8 because the population risk in this case is too
small and is dominated by the numerical accuracy.

in Figure 3. We can see very clearly that when α = 0.2, the risk curves for different d are different,
and larger d results in worse population risk. However, when α = 0.8, all the risk curves are almost
exactly the same, which indicates that the population risk is dimension-free. This verifies our claim
in Corollary 3.5.
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(a) R(θ̂SVM) versus ‖µ‖2, α = 0.2, n = 10
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(b) R(θ̂SVM) versus ‖µ‖2, α = 0.8, n = 10

Figure 3: The population risk curve with respect to ‖µ‖2 with different values of α and dimension d.
(a) shows the result for α = 0.2, while (b) is for the case α = 0.8. The sample size n is set to 10 in
both experiments.
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