
A Additional Experiments

A.1 Further evaluation on uncertainty

Predictive uncertainty for out-of-distribution examples For reliable deployment in real-world
decision making systems, deep neural networks should not make over-confident predictions when
inputs are far from the training data. Following Lakshminarayanan et al. [2017], we evaluate the
entropy of predictions on out-of-distribution examples from unseen classes to quantify the quality
of the predictive uncertainty. We use the test split of the SVHN dataset as out-of-distribution data;
it consists of 26,032 digit images with the same image size as CIFAR-10/1002. As shown in Fig. 7
and Fig. 8, while DE exhibits the highest out-of-distribution entropy, our models show comparable
out-of-distribution entropy. Especially, for WideResNet-28x10 models trained on CIFAR-100, our
method almost matches the predictive uncertainty of DE teachers (i.e., 2.072 versus 2.093).

Calibration on corrupted datasets We also evaluate predictive uncertainty on the corrupted
versions of CIFAR datasets; it consists of 15 types of corruptions on the original test examples of
CIFAR datasets where each corruption type has five intensities [Hendrycks and Dietterich, 2019]. In
order to compare models in terms of calibration on corrupted datasets, we draw box-and-whisker
plots for NLL and ECE measuring calibration across corruption types and intensities in Fig. 9. It
clearly shows that BE students distilled with ODS are better calibrated than the baselines. We also
include standard metrics averaged over all corruption types and intensities in Table 3. A remarkable
result on CIFAR-100 is that BE students with ODS achieve comparable calibration to DE teachers
both in Fig. 9 and Table 3.

A.2 Adversarial perturbation instead of ODS

The ODS perturbation is very similar to the adversarial perturbation; if we replace the uniform vector
with the one-hot class labels in Eq. (3), we get an adversarial perturbation. The difference is that
the adversarial perturbation is meant to worsen the predictive performance by design because it
takes a step toward the directions increasing the classification loss. We empirically found that the
perturbations just increasing diversity without maintaining prediction accuracy can actually harm
the performance of student models (this is also related to the performance gain of ConfODS). In
specific, we tested the KD with adversarial perturbations (i.e., non-targeted attack) instead of ODS
perturbations using ResNet-32 on CIFAR-10. This achieved ACC of 93.32 ± 0.22 and NLL of
0.194± 0.003, which is much worse than vanilla KD with no perturbation presented in Table 1.

A.3 Changing student’s architecture

We performed additional experiments using the Multi-Input Multi-Output (MIMO) architecture [Havasi
et al., 2021]. The biggest difference between MIMO and BE is in how subnetworks are constructed.
In short, unlike BE, MIMO constructs its subnetworks without any explicit weight parameterization.
Even though MIMO constructs its multiple subnetworks implicitly, it can still be trained using our
method. We applied KD from DE-3 teachers to MIMO-3 students with Gaussian and ODS perturbations
using WideResNet-28x10 on CIFAR-100, and the results are summarized in Table 4. Again, ours
significantly improved the performance compared to the vanilla KD or KD with Gaussian perturbation.
This result demonstrates that our proposed method is broadly beneficial independently of multi-
network architecture and is not specific to BE.

A.4 Comparison with Ensemble Distribution Distillation (END2)

To address the issue of distilling diversity more thoroughly, we performed additional experiments
comparing to the recently proposed Ensemble Distribution Distillation (END2) [Malinin et al., 2020],
which considers the distribution of DE teacher predictions. Here, we adopted the publicly available
PyTorch implementation of END2, and compared it with our method using ResNet-32 on CIFAR-
103. Quantitative results in Table 5 show that ours significantly outperforms END2 in terms of both
accuracy and uncertainty estimation metrics.

2http://ufldl.stanford.edu/housenumbers/
3https://github.com/lennelov/endd-reproduce/tree/d61d298b52c4338e07d7cd4a3fdc65f1de1bcbf1

12

http://ufldl.stanford.edu/housenumbers/
https://github.com/lennelov/endd-reproduce/tree/d61d298b52c4338e07d7cd4a3fdc65f1de1bcbf1

0 21
entropy of prediction

0.0

0.2

0.4

0.6

0.8

ra
tio

 o
f e

xa
m

pl
es

BatchEns-4

Mean-ENT = 0.139
Mean-ENT = 0.072

0 21
entropy of prediction

0.0

0.2

0.4

0.6

0.8

BatchEns-4
(KD)

Mean-ENT = 0.139
Mean-ENT = 0.059

0 21
entropy of prediction

0.0

0.2

0.4

0.6

0.8

BatchEns-4
(KD + Gaussian)

Mean-ENT = 0.139
Mean-ENT = 0.061

0 21
entropy of prediction

0.0

0.2

0.4

0.6

0.8

BatchEns-4
(KD + ODS)

Mean-ENT = 0.139
Mean-ENT = 0.091

0 21
entropy of prediction

0.0

0.2

0.4

0.6

0.8

BatchEns-4
(KD + ConfODS)

Mean-ENT = 0.139
Mean-ENT = 0.085

0 21
entropy of prediction

0.0

0.1

0.2

0.3

0.4

ra
tio

 o
f e

xa
m

pl
es

BatchEns-4

Mean-ENT = 0.814
Mean-ENT = 0.403

0 21
entropy of prediction

0.0

0.1

0.2

0.3

0.4

BatchEns-4
(KD)

Mean-ENT = 0.814
Mean-ENT = 0.381

0 21
entropy of prediction

0.0

0.1

0.2

0.3

0.4

BatchEns-4
(KD + Gaussian)

Mean-ENT = 0.814
Mean-ENT = 0.359

0 21
entropy of prediction

0.0

0.1

0.2

0.3

0.4

BatchEns-4
(KD + ODS)

Mean-ENT = 0.814
Mean-ENT = 0.586

0 21
entropy of prediction

0.0

0.1

0.2

0.3

0.4

BatchEns-4
(KD + ConfODS)

Mean-ENT = 0.814
Mean-ENT = 0.579

Figure 7: Histogram of the predictive entropy of ResNet-32 models on test examples from known
classes, i.e., CIFAR-10 (top row), and unknown classes, i.e., SVHN (bottom row). The histograms
with mean entropies of 0.139 on CIFAR-10 and 0.814 on SVHN denote DeepEns-4 teacher.

0 42
entropy of prediction

0.0

0.2

0.4

0.6

ra
tio

 o
f e

xa
m

pl
es

BatchEns-4

Mean-ENT = 0.894
Mean-ENT = 0.330

0 42
entropy of prediction

0.0

0.2

0.4

0.6

BatchEns-4
(KD)

Mean-ENT = 0.894
Mean-ENT = 0.425

0 42
entropy of prediction

0.0

0.2

0.4

0.6

BatchEns-4
(KD + Gaussian)

Mean-ENT = 0.894
Mean-ENT = 0.446

0 42
entropy of prediction

0.0

0.2

0.4

0.6

BatchEns-4
(KD + ODS)

Mean-ENT = 0.894
Mean-ENT = 0.816

0 42
entropy of prediction

0.0

0.2

0.4

0.6

BatchEns-4
(KD + ConfODS)

Mean-ENT = 0.894
Mean-ENT = 0.808

0 42
entropy of prediction

0.00

0.05

0.10

0.15

ra
tio

 o
f e

xa
m

pl
es

BatchEns-4

Mean-ENT = 2.093
Mean-ENT = 0.989

0 42
entropy of prediction

0.00

0.05

0.10

0.15

BatchEns-4
(KD)

Mean-ENT = 2.093
Mean-ENT = 1.226

0 42
entropy of prediction

0.00

0.05

0.10

0.15

BatchEns-4
(KD + Gaussian)

Mean-ENT = 2.093
Mean-ENT = 1.301

0 42
entropy of prediction

0.00

0.05

0.10

0.15

BatchEns-4
(KD + ODS)

Mean-ENT = 2.093
Mean-ENT = 2.072

0 42
entropy of prediction

0.00

0.05

0.10

0.15

BatchEns-4
(KD + ConfODS)

Mean-ENT = 2.093
Mean-ENT = 2.024

Figure 8: Histogram of the predictive entropy of WideResNet-28x10 models on test examples from
known classes, i.e., CIFAR-100 (top row), and unknown classes, i.e., SVHN (bottom row). The
histograms with mean entropies of 0.894 on CIFAR-100 and 2.093 on SVHN denote DeepEns-4
teacher.

B Experimental Details

Code is available at https://github.com/cs-giung/giung2/tree/main/projects/Diversity-Matters.

B.1 Training

CIFAR-10/100 CIFAR-10/100 consists of a train set of 50,000 images and a test set of 10,000
images from 10/100 classes, with images size of 32× 32× 34. All models are trained on the first 45k
examples of the train split of CIFAR datasets and the last 5k examples of the train split are used as
the validation split. We follow the standard data augmentation policy [He et al., 2016] which consists
of random cropping of 32 pixels with a padding of 4 pixels and random horizontal flipping.

TinyImageNet TinyImageNet is a subset of ImageNet dataset consisting of 100,000 images from
200 classes with images resized to 64×64×35. Since the labels of the official test set are not publicly
available, we use the official validation set consisting of 10,000 images as a test set for experiments.
All models are trained on the first 450 examples for each class and the last 50 examples for each
class are used as validation examples, i.e., train and validation splits consist of 90k and 10k examples,
respectively. We use a data augmentation which consists of random cropping of 64 pixels with a
padding of 8 pixels and random horizontal flipping.

4https://www.cs.toronto.edu/ ~kriz/cifar.html
5http://cs231n.stanford.edu/tiny-imagenet-200.zip

13

https://github.com/cs-giung/giung2/tree/main/projects/Diversity-Matters
https://www.cs.toronto.edu/~kriz/cifar.html
http://cs231n.stanford.edu/tiny-imagenet-200.zip

1 2 3 4 5
intensity

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
N

LL
DeepEns-4
BatchEns-4
BatchEns-4 (KD)

BatchEns-4 (KD + Gaussian)
BatchEns-4 (KD + ODS)
BatchEns-4 (KD + ConfODS)

1 2 3 4 5
intensity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EC
E

DeepEns-4
BatchEns-4
BatchEns-4 (KD)

BatchEns-4 (KD + Gaussian)
BatchEns-4 (KD + ODS)
BatchEns-4 (KD + ConfODS)

(a) ResNet-32 models on CIFAR-10-C.

1 2 3 4 5
intensity

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

N
LL

DeepEns-4
BatchEns-4
BatchEns-4 (KD)

BatchEns-4 (KD + Gaussian)
BatchEns-4 (KD + ODS)
BatchEns-4 (KD + ConfODS)

1 2 3 4 5
intensity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

EC
E

DeepEns-4
BatchEns-4
BatchEns-4 (KD)

BatchEns-4 (KD + Gaussian)
BatchEns-4 (KD + ODS)
BatchEns-4 (KD + ConfODS)

(b) WideResNet-28x10 models on CIFAR-100-C.

Figure 9: Calibration on CIFAR-10-C and CIFAR-100-C: box-and-whisker plot shows medians of
NLL and ECE across corruption types for five levels of intensity.

14

Table 3: Evaluation results on CIFAR-10-C and CIFAR-100-C: ACC and standard metrics including
NLL, BS, and ECE. All values for ResNet-32 and WideResNet-28x10 are averaged over four and three
experiments, respectively.

BatchEns-4 « DeepEns-4 (ResNet-32 on CIFAR-10)

Method # Params ACC (↑) NLL (↓) BS (↓) ECE (↓)
T : DeepEns-4 1.86 M 73.51 1.036 0.380 0.093
S : BatchEns-4 0.47 M 70.39±0.65 1.723±0.086 0.485±0.012 0.204±0.006

+ KD 72.68±0.49 1.485±0.051 0.455±0.010 0.196±0.006

+ KD + Gaussian 72.71±0.38 1.487±0.026 0.453±0.008 0.194±0.004

+ KD + ODS 70.50±0.46 1.406±0.044 0.462±0.009 0.178±0.006

+ KD + ConfODS 70.80±0.36 1.404±0.038 0.459±0.008 0.180±0.005

BatchEns-4 « DeepEns-4 (WRN28x10 on CIFAR-100)

Method # Params ACC (↑) NLL (↓) BS (↓) ECE (↓)
T : DeepEns-4 146.15 M 53.86 2.091 0.609 0.096
S : BatchEns-4 36.62 M 52.36±0.44 2.953±0.124 0.708±0.009 0.255±0.006

+ KD 53.00±0.33 2.585±0.023 0.677±0.005 0.216±0.003

+ KD + Gaussian 52.81±0.65 2.654±0.009 0.682±0.004 0.218±0.001

+ KD + ODS 53.87±1.00 2.109±0.073 0.614±0.013 0.104±0.009

+ KD + ConfODS 54.19±0.75 2.083±0.073 0.610±0.015 0.101±0.011

Table 4: Knowledge distillation from DE-3 into MIMO-3: ACC, standard metrics and calibrated
metrics. All values are measured one time.

Standard Metrics Calibrated Metrics

Method # Params ACC (↑) NLL (↓) BS (↓) ECE (↓) NLL (↓) BS (↓) ECE (↓)
T : DeepEns-3 109.61 M 82.43 0.690 0.253 0.036 0.677 0.251 0.025
S : MIMO-3 36.67 M 80.63 0.720 0.271 0.027 0.716 0.270 0.014

+ KD 80.75 0.723 0.271 0.029 0.720 0.271 0.021
+ KD + Gaussian 80.69 0.726 0.272 0.024 0.723 0.271 0.016
+ KD + ODS 81.17 0.715 0.270 0.037 0.692 0.267 0.020

Learning rate schedules We use the following learning rate scheduling suggested in Ashukha et al.
[2020] for all experiments.

1. For the first five epochs, linearly increase the learning rate from 0.01×base_lr to base_lr.

2. Until 0.5× total_epochs, keep the learning rate as base_lr.

3. From 0.5 × total_epochs to 0.9 × total_epochs, linearly decay the learning rate to
0.01× base_lr.

4. From 0.9× total_epochs to total_epochs, keep the learning rate as 0.01× base_lr,
and save the model with the best validation accuracy.

Optimization We use SGD optimizer with momentum 0.9 for all experiments. Specifically,

• We use the optimizer with batch size 512, base_lr 0.4 and weight decay parameter 4×10−4
to train ResNet-32 on CIFAR-10. The total_epochs is set to 200.

• We use the optimizer with batch size 256, base_lr 0.2 and weight decay parameter 5×10−4
to train WideResNet-28x10 on CIFAR-100. The total_epochs is set to 300.

• We use the optimizer with batch size 512, base_lr 0.4 and weieght decay parameter
5× 10−4 to train WideResNet-28x10 on TinyImageNet. The total_epochs is set to 300.

15

Table 5: Comparison between END2 and ours (i.e., ConfODS) distilling from DE-M teachers where
M denotes the size of ensembles using ResNet-32 on CIFAR-10: ACC and calibrated metrics
including NLL, BS, and ECE. All values are measured one time.

END2 Ours (ConfODS)

Teacher ACC (↑) NLL (↓) BS (↓) ECE (↓) ACC (↑) NLL (↓) BS (↓) ECE (↓)
T : DeepEns-4 92.10 0.260 0.121 0.017 94.01 0.180 0.093 0.007
T : DeepEns-8 93.11 0.225 0.104 0.013 94.18 0.174 0.091 0.007
T : DeepEns-16 93.21 0.221 0.104 0.016 - - - -
T : DeepEns-32 93.49 0.218 0.102 0.014 - - - -

To obtain DE-M teacher models, we repeat the described training procedure M times with different
random seeds. For BE-M models, we follow the latest official implementation6. In specific, we train
all the subnetworks with the same mini-batches; it can be done by repeating the training of a single
batch M times during training. As a result,

• We use the optimizer with batch size 128 × 4, base_lr 0.1 and weight decay parameter
4× 10−4 to train BE-4 for ResNet-32 on CIFAR-10. The total_epochs is set to 250, as
suggested in Wen et al. [2020].

• We use the optimizer with batch size 64 × 8, base_lr 0.05 and weight decay parameter
4× 10−4 to train BE-8 for ResNet-32 on CIFAR-10. The total_epochs is set to 250.

• We use the optimizer with batch size 64 × 4, base_lr 0.05 and weight decay parameter
5× 10−4 to train BE-4 for WideResNet models on CIFAR-100 and TinyImageNet.

Hyperparameters for knowledge distillation We searched for several (α, τ) pairs via grid search
to run our experiments with the best hyperparameters. As shown in Table 6, we did not find a
significant effect of different hyperparameter settings on performance for ResNet-32 on CIFAR-10.
We therefore decided to stay consistent with the convention, i.e., α = 0.9 and τ = 4. However, as
shown in Table 7, we empirically found that τ = 4 is not suitable to perform knowledge distillation
for WideResNet-28x10 on CIFAR-100, and decided to use τ = 1 which achieved the best NLL across
temperature values. From this, we decided to use α = 0.9 and τ = 4 for WideResNet models on
CIFAR-100 and TinyImageNet.

B.2 Evaluation

For further metric descriptions, we denote a neural network as F(x) : RD → [0, 1]K ; F outputs
class probabilities over K classes, and we denote the logits before softmax as F̂(x).

Standard metrics For a model F , standard metrics including accuracy, negative log-likelihood,
Brier score and expected calibration error are defined as follows:

• Accuracy (ACC):

ACC(F) = Pr
(x,y)∈D

[
argmax
k∈{1...K}

{
F (k)(x)

}
= argmax
k∈{1...K}

{
y(k)

}]
. (12)

• Negative Log-Likelihood (NLL):

NLL(F) = E(x,y)∈D

[
−

K∑
k=1

y(k) logF (k)(x)

]
. (13)

• Brier Score (BS):

BS(F) = E(x,y)∈D

[
1

K

K∑
k=1

(
F (k)(x)− y(k)

)2]
. (14)

6https://github.com/google/uncertainty-baselines/tree/ffa818a665655c37e921b411512191ad260cfb47

16

https://github.com/google/uncertainty-baselines/tree/ffa818a665655c37e921b411512191ad260cfb47

Table 6: Validation ACC and calibrated NLL for different values of hyperparameters α and τ for
knowledge distillation from DE-4 into BE-4 of ResNet-32 on CIFAR-10. All values are measured
four times.

ACC@Valid NLL@Valid

α = 0.8 α = 0.9 α = 1.0 α = 0.8 α = 0.9 α = 1.0

τ = 2 94.67±0.18 94.68±0.17 94.59±0.16 0.169±0.005 0.170±0.003 0.171±0.003

τ = 3 94.64±0.16 94.59±0.11 94.57±0.11 0.172±0.003 0.173±0.003 0.174±0.006

τ = 4 94.48±0.20 94.60±0.14 94.58±0.15 0.172±0.002 0.174±0.003 0.176±0.001

τ = 5 94.50±0.22 94.46±0.15 94.45±0.20 0.172±0.001 0.175±0.004 0.176±0.005

Table 7: Validation ACC and calibrated NLL for different values of hyperparameters τ for knowledge
distillation from DE-4 into BE-4 of WideResNet-28x10 on CIFAR-100 where α is fixed to 0.9. All
values are measured one time.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

ACC@Valid 80.29 80.32 80.08 80.52 80.98
NLL@Valid 0.757 0.835 0.831 0.827 0.818

• Expected Calibration Error (ECE):

ECE(F) =
L∑
l=1

|Bl|
N

∣∣∣∣acc(Bl)− conf(Bl)
∣∣∣∣, (15)

where N is the total number of examples; |Bl| denotes the number of predictions in lth
bin; acc(Bl) and conf(Bl) respectively denote the mean accuracy and mean confidence of
predictions in lth bin.

Calibrated metrics For a model F , we first compute the optimal temperature which minimizes a
negative log-likelihood over validation set Dval as

τ∗ = argmin
τ>0

{
E(x,y)∈Dval

[
−

K∑
k=1

y(k) log softmax
(
F̂ (k)(x)/τ

)]}
, (16)

and then, compute evaluation metrics with temperature scaled outputs:

F (k)(x ; τ∗)← softmax
(
F̂ (k)(x)/τ∗

)
, where k ∈ {1, . . . ,K}. (17)

Evaluation for ensemble models DE and BE construct a prediction by averaging the outputs of
ensemble members (subnetworks) as follows:

F (k)(x)←
M∑
m=1

F (k)
m (x)/M, (18)

where k ∈ {1...K} and Fm denotes mth ensemble member. Therefore, we define the logits of the
ensemble predictions as

F̂ (k)(x)← log

(
M∑
m=1

F (k)
m (x)/M

)
, where k ∈ {1...K}, (19)

with which both standard and calibrated metrics can be computed. Also, we also compute the Deep
Ensemble Equivalent (DEE) score [Ashukha et al., 2020]; for a model S, DEE score is defined as

DEE(S) = min{` ≥ 0 |NLL(Ensemble of ` models) ≤ NLL(S)}. (20)
That is, DEE computes the minimum number of independent ensemble members needed to achieve
the same performance as a given model S. The NLL values of ensembles with non-integer ` values
are obtained by linear interpolation. Refer to Table 8 and Table 9 for evaluation results with standard
metrics, and Table 1 and Table 2 for evaluation results with calibrated metrics.

17

Table 8: Knowledge distillation from DE-M into BE-M where M denotes the size of ensembles:
ACC and standard metrics including NLL, BS, ECE, and DEE. Refer to Table 1 for the results with
calibrated metrics.

BatchEns « DeepEns (ResNet-32 on CIFAR-10)
Method # Params ACC NLL BS ECE DEE

T : DeepEns-4 1.86 M 94.42 0.170 0.081 0.008 -
S : BatchEns-4 0.47 M 93.37±0.11 0.282±0.003 0.107±0.001 0.039±0.001 0.994±0.001

+ KD 93.98±0.20 0.252±0.005 0.099±0.002 0.038±0.001 1.261±0.074
+ KD + Gaussian 93.93±0.12 0.248±0.004 0.099±0.002 0.038±0.002 1.316±0.062
+ KD + ODS 93.89±0.10 0.206±0.004 0.094±0.001 0.028±0.001 1.938±0.067
+ KD + ConfODS 94.01±0.19 0.211±0.002 0.093±0.001 0.029±0.001 1.865±0.036

T : DeepEns-8 3.71 M 94.78 0.157 0.077 0.004 -
S : BatchEns-8 0.48 M 93.47±0.14 0.263±0.011 0.104±0.003 0.035±0.002 1.123±0.123

+ KD 94.15±0.13 0.243±0.003 0.095±0.001 0.035±0.002 1.394±0.039
+ KD + Gaussian 94.09±0.08 0.245±0.003 0.097±0.001 0.037±0.000 1.361±0.045
+ KD + ODS 94.13±0.08 0.200±0.005 0.090±0.001 0.028±0.001 2.105±0.158
+ KD + ConfODS 94.18±0.12 0.205±0.004 0.091±0.001 0.029±0.001 1.950±0.066

BatchEns « DeepEns (WideResNet-28x10 on CIFAR-100)
Method # Params ACC NLL BS ECE DEE

T : DeepEns-4 146.15 M 82.52 0.676 0.250 0.035 -
S : BatchEns-4 36.62 M 80.34±0.08 0.900±0.005 0.298±0.002 0.094±0.001 0.972±0.001

+ KD 80.51±0.22 0.803±0.010 0.283±0.001 0.073±0.005 1.000±0.007
+ KD + Gaussian 80.39±0.12 0.816±0.010 0.286±0.000 0.070±0.003 0.994±0.003
+ KD + ODS 81.88±0.32 0.680±0.016 0.257±0.006 0.023±0.003 3.987±1.325
+ KD + ConfODS 81.85±0.32 0.678±0.009 0.257±0.003 0.023±0.001 3.990±0.770

Table 9: Cross-architecture knowledge distillation for a model compression on CIFAR-100 and
TinyImageNet: ACC and standard metrics including NLL, BS, ECE, and DEE. Refer to Table 2 for the
results with calibrated metrics.

BatchEns-4 « DeepEns-4 (WRN-28x2 on CIFAR-100)

Method # Params ACC (↑) NLL (↓) BS (↓) ECE (↓)
T : DeepEns-4 146.15 M 82.52 0.676 0.250 0.035
S : BatchEns-4 1.50 M 75.17±0.27 1.245±0.024 0.383±0.004 0.141±0.004

+ KD 75.19±0.36 1.207±0.021 0.377±0.007 0.136±0.005

+ KD + Gaussian 74.50±0.17 1.247±0.012 0.389±0.004 0.137±0.003

+ KD + ODS 76.03±0.22 0.899±0.013 0.333±0.003 0.027±0.002

+ KD + ConfODS 76.01±0.16 0.901±0.006 0.334±0.002 0.028±0.004

BatchEns-4 « DeepEns-4 (WRN-28x5 on CIFAR-100)

Method # Params ACC (↑) NLL (↓) BS (↓) ECE (↓)
T : DeepEns-4 146.15 M 82.52 0.676 0.250 0.035
S : BatchEns-4 9.20 M 78.75±0.11 1.031±0.022 0.324±0.004 0.112±0.003

+ KD 78.89±0.10 0.932±0.021 0.314±0.004 0.095±0.001

+ KD + Gaussian 78.80±0.41 0.929±0.018 0.313±0.007 0.090±0.006

+ KD + ODS 80.24±0.05 0.744±0.007 0.279±0.002 0.026±0.003

+ KD + ConfODS 80.62±0.25 0.735±0.007 0.275±0.003 0.023±0.001

BatchEns-4 « DeepEns-4 (WRN-28x5 on TinyImageNet)

Method # Params ACC (↑) NLL (↓) BS (↓) ECE (↓)
T : DeepEns-4 146.40 M 69.90 1.243 0.404 0.027
S : BatchEns-4 9.23 M 64.86 2.019 0.520 0.179

+ KD 65.86 1.782 0.493 0.149
+ KD + Gaussian 65.72 1.792 0.494 0.148
+ KD + ODS 65.98 1.440 0.460 0.059±0.000

18

	Additional Experiments
	Further evaluation on uncertainty
	Adversarial perturbation instead of ODS
	Changing student's architecture
	Comparison with Ensemble Distribution Distillation (END2)

	Experimental Details
	Training
	Evaluation

