
A Proofs

A.1 Technical Results

We state a technical result about the product of i.i.d. random variables with Beta distribution.
Lemma 6. Let V1, ..., Vm i.i.d. with distribution Vi ∼ Beta(α, 1). Then for all ∆ ∈ [0, 1]:

P

(
m∏
i=1

Vi ≥ 1−∆

)
≤ αm

m(m!)

[
ln

(
1

1−∆

)]m
.

Proof. Taking logarithms:

P

(
m∏
i=1

Vi ≥ 1−∆

)
= P

(
m∑
i=1

ln
1

Vi
≤ ln

(
1

1−∆

))
Now if Vi ∼ Beta(α, 1) then ln 1

Vi
∼ Exp(α) and since Vi are i.i.d. we have
m∑
i=1

ln
1

Vi
∼ Erlang (m,α) .

Therefore:

P

(
m∑
i=1

ln
1

Vi
≤ ln

(
1

1−∆

))
=
αm

m!

∫ ln( 1
1−∆ )

0

xm−1e−αxdx

≤ αm

m!

∫ ln( 1
1−∆ )

0

xm−1dx

=
αm

(m)!m

[
ln

(
1

1−∆

)]m
.

which concludes the proof.

We state another technical result about the Beta distribution near 1.
Lemma 7. Consider V ∼ Beta(α+ 1, β + 1) with α, β > 0. Define T = α+ β and M = α

α+β .

For all c ∈]0, 1[

P(V ≤ c) ≤ e
1
12√

2πTM(1−M)

∫ c

0

e−TD(M |x)dx,

with D the Kullback-Leibler divergence between Bernoulli distributions:

D(M | x) = M ln
M

x
+ (1−M) ln

1−M
1− x

.

We also have the simpler bound for c ≤M :

P(V ≤ c) ≤ e
1
12

√
T√

2π
e−T (M−c)2

.

Remark 1. This proves that for any ν ∈ (0, 1]

P

V ≤M −
√√√√ 1

T
ln

(
e1/12

√
T

ν
√

2π

) ≤ ν.
Remark 2. Consider Vi ∼ Beta(αi + 1, βi + 1) with V1, . . . , Vm independent, by negation and
union bound we have for all c ∈ [0, 1] :

P

(
m∑
i=1

Vi ≤
m∑
i=1

ci

)
≤

m∑
i=1

P (Vi ≤ ci) .
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so that the above bound easily extends to the multidimensional case:

P

 m∑
i=1

Vi ≤
∑
i

Mi −

√√√√m2

T
ln

(
e1/12m

√
T

ν
√

2π

) ≤ ν.
Proof. The density of V is given by:

f(x) =
(α+ β)!

α!β!
xα(1− x)β .

The Stirling approximation yields for all n (see [19])
√

2πnn+1/2 ≤
√

2πnn+1/2e
1

12π+1 ≤ n! ≤
√

2πnn+1/2e
1

5π ≤
√

2πnn+1/2e
1
12 .

Therefore:

(α+ β)!

α!β!
≤
√

2π(α+ β)α+β+1/2e
1
12

(2π)(α)α+1/2(β)β+1/2

=
TT+1/2e

1
12

√
2π(TM)TM+1/2(T (1−M))T (1−M)+1/2

=
e

1
12√

2πTM(1−M) [MM (1−M)1−M ]
T
.

Furthermore:

xα(1− x)β = eα ln(x)+β ln(1−x)

= eT [M ln(x)+(1−M) ln(1−x)]

= MTM (1−M)(1−M)T e−TD(M |x).

Replacing:

f(x) ≤ e
1
12 e−TD(M |x)√

2πTM(1−M)
.

Therefore:

P(V ≤ c) =

∫ c

0

f(x)dx ≤ e
1
12√

2πTM(1−M)

∫ c

0

e−TD(M |x)dx.

The simpler bound comes from TM(1−M) = αβ
T ≥

1
T and using Pinsker’s inequality D(x |M) ≥

2(x−M)2, for c ≤M

P(V ≤ c) ≤ e
1
12

√
T√

2π
e−2T (M−c)2

.

We recall a result on the Irwin-Hall distribution.
Remark 3. Consider U1, ..., Um i.i.d. uniformly distributed in [0, 1]. Then their sum follows the
Irwin-Hall distribution and for any ∆ ≤ 1 we have that:

P
( m∑
i=1

Ui ≥ m−∆
)

= P
( m∑
i=1

Ui ≤ ∆
)

=
∆m

m!
.

We present a technical result on the tail behaviour of the sum of beta random variables.
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Lemma 8. Consider V1, ..., Vm independent random variables following beta laws of parameters
(α1, β1), ..., (αm, βm). For ε < 1 we have that :

P
( m∑
i=1

Vi ≥ m− ε
)
≤ ε

∑m
i=1 βi

m!
∏m
i=1B(αi, βi)

.

where B(α, β) = Γ(α)Γ(β)/Γ(α+ β) is the beta function.

Proof. We define Aε , {(u1, ..., um) ∈ [0, 1]m,m − ε ≤
∑m
i=1 ui ≤ m}. It is noted that if

(u1, ..., um) ∈ Aε we have that ui ≥ 1 − ε for all i. We recall that the probability density of a
Beta(αi, βi) law is pi(u) = uαi−1(1− u)βi−1/B(αi, βi).

We have

P
( m∑
i=1

Vi ≥ m− ε
)

=

∫
Aε

Πm
i=1pi(ui)du1...dum

=

∫
Aε

Πm
i=1

uαi−1
i (1− ui)βi−1

B(αi, βi)
du1...dum

≤
∫
Aε

Πm
i=1

εβi−1

B(αi, βi)
du1...dum

=
ε
∑m
i=1(βi−1)∏m

i=1B(αi, βi)

∫
Aε

1du1...um.

But we know that the integral
∫
At

1du1...um corresponds to the cumulative distribution function of
the sum of m uniform random variables in [0, 1]. This is known as the Irving Hall distribution. So we
have that

∫
At

1du1...um = εm

m!

Which proves the announced result

P
( m∑
i=1

Vi ≥ m− ε
)
≤ ε

∑m
i=1 βi

m!
∏m
i=1B(αi, βi)

.

Finally we make an important remark about the link between regret and the first time the optimal
decision is selected.

Remark 4. Define τ the first time the optimal decision is selected. Then we have that:

R(T, θ) = E(

T∑
t=1

∆x(t)) ≥ ∆minE(

T∑
t=1

1{∆x(t) 6= 0}) ≥ ∆min

T∑
t=1

P(τ ≥ t).

A.2 Proof of Theorem 1

Proof. Define b = 1 − ∆
m . Consider ε > 0 such that b − ε ≥ 1

2 and denote the two decisions as
x1 = (1, ..., 1, 0, ..., 0) and x2 = (0, ..., 0, 1, ..., 1). Consider the event where the empirical mean of
decision x2 does not deviate too much from its expectation when it is selected:

A =

{
∃t ≥ 0 : x(t) = x2,

d∑
i=m+1

Ai(t)

Ni(t)
≤ (b− ε)m

}
.
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We decompose A as ∪n≥1An where

An =

{
∃t ≥ 0 : x(t) = x2, Ni(t) = n, i = m+ 1, ..., d,

1

n

d∑
i=m+1

Ai(t) ≤ (b− ε)m

}
.

Using Hoeffding’s inequality we have that:

P(A) ≤
∑
n≥1

P(An) ≤
∑
n≥1

exp(−2mnε2) =
exp(−2mε2)

1− exp(−2mε2)
.

where we have used the fact that if Ni(t) = n for i = m+ 1, ..., d then
∑d
i=m+1Ai(t) is a sum of

mn i.i.d. Bernoulli variables with parameter b. Let us control the probability that decision x1 is never
selected between time 0 and time t, which is the probability of event:

Bt = {x(s) = x2 : s = 1, ..., t}.

Let us assume that Bt occurs and A does not occur. Since decisions x1 and x2 have been selected 0
and t times respectively, the probability of selecting x2 is lower bounded by:

P(Bt+1|Bt, Ā) ≥ P(

m∑
i=1

Vi(t) ≤
d∑

i=m+1

Vi(t)|Bt, Ā).

where V1(t), ..., Vd(t) are independent, distributed in [0, 1]. For i = 1, ...,m, Vi(t) is uniformly
distributed in [0, 1] and has mean 1/2. For i = m+ 1, ..., d, Vi(t) has Beta(Ai(t) + 1, t−Ai(t) + 1)

distribution with mean Ai(t)+1
t+2 so that expectations verify:

d∑
i=m+1

E(Vi(t)|Bt, Ā)−
m∑
i=1

E(Vi(t)|Bt, Ā) =

d∑
i=m+1

Ai(t) + 1

t+ 2
−

m∑
i=1

1

2

≥ tm(b− ε) +m

t+ 2
− m

2

=
mt(b− ε− 1/2)

t+ 2

≥ m(b− ε− 1/2)

3
,

since
∑d
i=m+1Ai(t) ≥ tm(b− ε).

Using Hoeffding’s inequality once again we have:

P
( m∑
i=1

Vi(t) ≥
d∑

i=m+1

Vi(t)|Bt, Ā
)

= P
( m∑
i=1

Vi(t)−
d∑

i=m+1

Vi(t) ≥ 0|Bt, Ā
)

≤ exp{−2m(b− ε− 1/2)2/9}
≡ p∆.

We have proven that for all t > 1:

P(Bt+1|Bt, Ā) ≥ 1− p∆,

and since P(B1|Ā) = 1/2:

P(Bt) ≥ P(Bt, Ā) = P(Ā)P(Bt|Ā) ≥ P(Ā)P(B1|Ā)(1− p∆)t−1 =
P(Ā)

2
(1− p∆)t−1.

Denote by τ the first time that x1 is selected. If Bt occurs then τ ≥ t and using Remark 4 yields the
lower bound:

R(T, θ) ≥ ∆

T∑
t=1

P(τ ≥ t) ≥ ∆P(Ā)

2

T∑
t=1

(1− p∆)t−1.
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Setting ε = 1√
m

we get that

P(A) ≤ e−2

1− e−2
≤ 1

2
,

and we get the announced result:

R(T, θ) ≥ ∆

4

T∑
t=1

(1− p∆)t.

A.3 Proof of Theorem 2

Proof. Consider m ≥ 5. We denote by N1(t) and N2(t) the number of times that decisions x1

and x2 have been respectively selected, and it is noted that Ni(t) = N1(t) for i = 1, ...,m and
Ni(t) = N2(t) for i = m + 1, ..., d. Consider the event where the empirical mean of decision x2

deviates significantly from its expectation when it is selected:

A =

{
∃t ≥ 0 : x(t) = x2,

1

N2(t)

d∑
i=m+1

Ai(t) ≤ m−∆−

√
m ln(2N2(t))

N2(t)

}
.

We decompose A as ∪n≥1An where

An =

{
∃t ≥ 0 : x(t) = x2, N2(t) = n,

1

n

d∑
i=m+1

Ai(t) ≤ m−∆−
√
m ln(2n)

n

}
.

Using Hoeffding’s inequality we have that :

P(A) ≤
∑
n≥1

P(An) ≤
∑
n≥1

1

(2n)2
=
π2

24
≤ 1

2
,

where we have used the fact that if N2(t) = n then
∑d
i=m+1Ai(t) is a sum of mn i.i.d. Bernoulli

random variables with parameter 1 − ∆
m . Let us control the probability that decision x1 is never

selected between time 0 and time t, which is the probability of event:

Bt = {x(s) = x2 : s = 1, ..., t}.

We have that:

P(Bt+1|Bt, Ā) ≥ P
( m∑
i=1

Vi(t) ≤
d∑

i=m+1

Vi(t)|Bt, Ā
)
≥ (1− pt,1)(1− pt,2),

with

pt,1 = P

(
m∑
i=1

Vi(t) ≥ m−∆− h(m, t)|Bt, Ā

)
,

pt,2 = P

(
d∑

i=m+1

Vi(t) ≤ m−∆− h(m, t)|Bt, Ā

)
,

h(m, t) =

√
m ln(2t)

t
+

√√√√m2

t
ln

(
e1/12m

√
t

1
t2

√
2π

)
.

It is noted that there exists a universal constant C1 > 0 such that

h(m, t) ≤
√
C1m2(ln t+ lnm)

t
.

Let us define T0 = C0m
2 lnm with C0 > 0 a universal constant such that the five following

inequalities are true:
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• T0 ≥ m,

• h(m, t) ≤ 1
3 for all t ≥ T0,

• C18e2 ln t
t ≤ 1 for all t ≥ T0,

•
∑+∞
t=T0

(
C18e2 ln t

t

) 3
2 ≤ 1

3 .

•
∑+∞
t=T0

1
t2 ≤

1
2 .

Consider pt,2, and recall that for i = 1, ..., d

Mi(t) ,
Ai(t)

Ai(t) +Bi(t)
=
Ai(t)

Ni(t)
.

is the mode of Vi(t). If event Ā occurs then

d∑
i=m+1

Mi(t) > m−∆−

√
m ln(2N2(t))

N2(t)
.

So using lemma 7 and remark 2 we have that:

pt,2 ≤
1

t2
.

Consider pt,1. Since ∆ ≤ 1
6 and h(m, t) ≤ 1

3 we have

m−∆− h(m, t) ≥ m− 1

2
≥ m− 1.

If event Bt occurs, then Ai(t) = Bi(t) = 0 for all i = 1, ...,m therefore
∑m
i=1 Vi(t) follows the

Irwin-Hall distribution of size m, so from remark 3, for t ≥ T0 we have:

pt,1 =
1

m!
(∆ + h(m, t))

m ≤ 1

m!
((2∆)m + (2h(m, t))m) ,

where we used the convexity inequality (x+y
2 )m ≤ xm+ym

2 .

We have, for T > T0 :

P(BT |Ā)

P(BT0
|Ā)

=

T−1∏
t=T0

P(Bt+1|Bt, Ā) ≥
T−1∏
t=T0

(1− pt,1)(1− pt,2).

Using the union bound and the definition of T0:

T−1∏
t=T0

(1− pt,1) ≥ 1−
T−1∑
t=T0

pt,1 ≥ 1−
T−1∑
t=T0

1

t2
≥ 1−

+∞∑
t=T0

1

t2
≥ 1

2
.

Now:

1− pt,2 = 1− (2∆)m

m!
− (2h(m, t))m

m!

= (1− (2∆)m

m!
)
1− (2∆)m

m! −
(2h(m,t))m

m!

1− (2∆)m

m!

≥ (1− (2∆)m

m!
)(1− 3

2

(2h(m, t))m

m!
),

where we used the fact that ∆ ≤ 1
6 so that (2∆)m

m! ≤ 1
3 .
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Using the union bound once more:

T−1∏
t=T0

(1− pt,2) ≥
T−1∏
t=T0

(1− (2∆)m

m!
)(1− 3

2

(2h(m, t))m

m!
)

≥ (1− (2∆)m

m!
)T−T0(1− 3

2

T−1∑
t=T0

(2h(m, t))m

m!
)

≥ (1− (2∆)m

m!
)T−T0(1− 3

2

∞∑
t=T0

(2h(m, t))m

m!
).

We turn to the last sum in the right hand side of the equation above. Since t ≥ T0 ≥ m we have

h(m, t) ≤
√
C1m2(ln t+ lnm)

t
≤
√
C12m2 ln t

t
.

Using Stirling’s approximation we have m! ≥ (m/e)m so that

∞∑
t=T0

(2h(m, t))m

m!
≤
∞∑
t=T0

(
C18e2 ln t

t

)m
2

≤
∞∑
t=T0

(
C18e2 ln t

t

) 3
2

≤ 1

3
,

where we used twice the definition of T0 and m ≥ 5 ≥ 3.

Putting things together we have proven that :

P(BT |Ā)

P(BT0
|Ā)
≥ 1

4

(
1− (2∆)m

m!

)T−T0

.

We showed previously with Theorem 1 that :

P(BT0 |Ā) ≥ 1

2
(1− p∆)T0−1

Let us lower bound the r.h.s. of this inequality. Since m ≥ 5 and ∆ ≤ 1/6 we have, by definition

p∆ = exp

{
−2m

9

[1

2
−
(∆

m
+

1√
m

)]2}
≤ exp {−ξm} ,

with

ξ =
2

9

[
1

2
−
(

1

30
+

1√
5

)]2

> 0.

Using the definition of T0 this yields

1

2
(1− p∆)T0−1 ≥ 1

2
(1− e−ξm)C0m

2 lnm−1 ≥ min
m≥5

{
1

2
(1− e−ξm)C0m

2 lnm−1

}
≡ C2,

where C2 is a universal constant and C2 > 0 since

lim
m→∞

{
1

2
(1− e−ξm)C0m

2 lnm−1

}
=

1

2
> 0.

We have proven that:

P(BT0 |Ā) ≥ 1

2
(1− p∆)T0−1 ≥ C2.

which gives

P(BT ) ≥ C2

(
1− (2∆)m

m!

)T−T0

,

and applying Remark 4 concludes the proof.
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A.4 Proof of Corollary 3

Proof. Using the same notation as above, we recall that

P(BT ) ≥ C3

(
1− (2∆)m

m!

)T
.

If BT occurs, decision x1 is never played, resulting in a regret of ∆T , therefore:

R(T, θ) ≥ ∆TP(BT ) ≥ C3∆T

(
1− (2∆)

m

m!

)T
.

(i) If T ≥ 3mm! let us set

∆ =
1

2

(
m!

T

) 1
m

,

so that we have ∆ ≤ 1
6 and, using Stirling’s approximation m! ≥ (m/e)m we get

max
θ∈[0,1]d

R(T, θ) ≥ C3

3
(m!)

1
m T 1− 1

m

(
1− 1

T

)T
≥ C3

3

m

e
(1− e−1)T 1− 1

m .

this yields
max
θ∈[0,1]d

R(T, θ) ≥ O(mT 1− 1
m ).

(ii) If T ≤ 3mm! let us set ∆ = 1/6, which yields

max
θ∈[0,1]d

R(T, θ) ≥ O(T ).

and completes the proof.

A.5 Proof of Theorem 4

Proof. To simplify notation, we assume that the ` rounds of exploration are done before the algorithm
starts, so that at time t = 0 each decision has been explored `/2 times and the TS algorithm starts.

We consider the following event :

C =

{
∀i ∈ [d], Ai(0) =

`

2

}
.

We know that Ai(0), i = 1, ..., d are independent with a Binomial(`/2, θi) distribution so that

P(C) =
(

1− ∆

m

) `m
2

.

Define ε = 1√
m

. We consider again the event where the empirical mean of decision x2 deviates
significantly from its expectation when it is selected, accounting for the rounds of forced exploration:

A =

{
∃t ≥ 0 : x(t) = x2,

d∑
i=m+1

Ai(t) ≤ (1− ∆

m
− ε)(N2(t)− `

2
)m+

`

2
m

}
.

We decompose A as ∪n≥1An where

An =

{
∃t ≥ 0 : x(t) = x2, N2(t) = n+

`

2
,

d∑
i=m+1

Ai(t) ≤ (1− ∆

m
− ε)nm+

`

2
m

}
Since ε = 1√

m
, using Hoeffding’s inequality we have that :

P(A|C) ≤
∑
n≥1

P(An|C) ≤
∑
n≥1

exp(−2mnε2) =
exp(−2mε2)

1− exp(−2mε2)
≤ 1

2
.

18



where we have used the fact that if N2(t) = n+ `/2, then
∑d
i=m+1Ai(t) equals `

2m plus the sum
of mn i.i.d Bernoulli random variables with parameter 1 − ∆

m . Let us control the probability that
decision x1 is never selected between time 0 and time t, which is the probability of event:

Bt = {x(s) = x2 : s = 1, ..., t}.
Let us assume that Bt and C occurs but A does not occur. Since decisions x1 and x2 have been
selected `/2 and `/2 + t times respectively, the probability of selecting x2 is lower bounded by:

P(Bt+1|Bt, Ā, C) ≥ P
( m∑
i=1

Vi(t) ≤
d∑

i=m+1

Vi(t)|Bt, Ā, C
)
.

where V1(t), ..., Vd(t) are independent, distributed in [0, 1]. For i = 1, ...,m, Vi(t) follows a

Beta( `2 , 1) law and has mean
`
2 +1
`
2 +2

. For i = m + 1, ..., d, Vi(t) follows a Beta(Ai(t) + 1, t + `
2 −

Ai(t) + 1) distribution with mean Ai(t)+1

t+ `
2 +2

so that the expectations verify:

d∑
i=m+1

E(Vi(t)|Bt, Ā, C)−
m∑
i=1

E(Vi(t)|Bt, Ā, C) ≥ m
t(1− ∆

m − ε) + `
2 + 1

t+ `
2 + 2

−m
`
2 + 1
`
2 + 2

≥ m
(1− ∆

m − ε) + `
2 + 1

`
2 + 3

−m
`
2 + 1
`
2 + 2

= m

(
1
`
2 +2
− ( ∆

m + ε)
)

( `2 + 3)
,

since
∑d
i=m+1Ai(t) ≥ tm(1 − ∆

m − ε) + m`
2 . Recall that ε = 1√

m
so that 1

`
2 +2
− ( ∆

m + ε) ≥ 0.
Using Hoeffding’s inequality:

P
( m∑
i=1

Vi(t) ≥
d∑

i=m+1

Vi(t)|Bt, Ā, C
)

= P
( m∑
i=1

Vi(t)−
d∑

i=m+1

Vi(t) ≥ 0
)

≤ exp

−2m

(
1
`
2 +2
− ( ∆

m + ε)
)2

( `2 + 3)2

 ≡ p`∆.
We have proven that for all t > 1:

P(Bt+1|Bt, Ā) ≥ 1− p`∆.
so that:

P(Bt) ≥ P(Bt, Ā, C)
= P(Ā|C)P(C)P(Bt|Ā, C)

≥ P(Ā|C)P(B1|Ā, C)(1− p`∆)t−1(1− ∆

m
)
`m
2

=
P(Ā|C)

2
(1− p`∆)t−1(1− ∆

m
)
`m
2 .

Denote by τ the first time that x1 is selected. If Bt occurs then τ ≥ t and using Remark 4 yields the
lower bound:

R(T, θ) ≥ ∆

T∑
t=1

P(τ ≥ t) ≥ ∆
P(Ā|C)

2
(1− ∆

m
)
`m
2

T∑
t=1

(1− p`∆)t−1.

From above, P(A|C) ≤ 1
2 , and we get the announced result:

R(T, θ) ≥ ∆

4
(1− ∆

m
)
`m
2

T∑
t=1

(1− p`∆)t.
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A.6 Proof of Theorem 5

Proof. To simplify notation, we assume that the ` rounds of exploration are done before the algorithm
starts, so that at time t = 0 each decision has been explored `/2 times and the TS algorithm starts.

We consider the following event :

C =

{
∀i ∈ [d], Ai(0) =

`

2

}
.

We know that Ai(0), i = 1, ..., d are independent with a Binomial(`/2, θi) distribution so that

P(C) =
(

1− ∆

m

) `m
2

.

We consider the event where the empirical mean of decision x2 deviates significantly from its
expectation when it is selected, accounting for the rounds of forced exploration:

A =

{
∃t ≥ 0 : x(t) = x2,

d∑
i=m+1

Ai(t) ≤ (m−∆)
(
N2(t)− `

2

)
+
`m

2
−
√
m ln(2(N2(t)− `

2
))

}
.

We decompose A as ∪n≥1An where

An =

{
∃t ≥ 0 : x(t) = x2, N2(t) = n+

`

2
,

d∑
i=m+1

Ai(t) ≤ (m−∆)n+
`m

2
−
√
m ln(2n)

}
.

Using Hoeffding’s inequality we have that :

P(A|C`) ≤
∑
n≥1

P(An|C`) ≤
∑
n≥1

1

(2n)2
=
π2

24
≤ 1

2
,

where we have used the fact that if N2(t) = n+ `/2, then
∑d
i=m+1Ai(t) equals `

2m plus the sum
of mn i.i.d Bernoulli random variables with parameter 1 − ∆

m . Let us control the probability that
decision x1 is never selected between time 0 and time t, which is the probability of event:

Bt = {x(s) = x2 : s = 1, ..., t},

We have that:

P(Bt+1|Bt, Ā) ≥ P

(
m∑
i=1

Vi(t) ≤
d∑

i=m+1

Vi(t)|Bt, Ā

)
≥ (1− pt,1)(1− pt,2),

with

pt,1 = P

(
m∑
i=1

Vi(t) ≥ m−∆− h(m, `, t)|Bt, Ā, C`

)
,

pt,2 = P

(
d∑

i=m+1

Vi(t) ≤ m−∆− h(m, `, t)|Bt, Ā, C`

)
,

h(m, `, t) = −m`
2t

+

√
m ln(2t)

t
+

√√√√ m2

t+ `
ln

(
e1/12m

√
t+ `

1
t2

√
2π

)
.

It is noted that there exists a constant C1 ≥ 0 such that

h(m, `, t) ≤
√
C1m2(lnm+ ln(t+ `))

t
.

Let us define T0(m, `) = C0m
2(lnm)`

1
1
4
− 1
m with C0 a universal constant such that the following

inequalities are true
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• T0 ≥ max(m, `, 7),

• h(m, `, t) ≤ 1
6` , for all t ≥ T0,

•
∑+∞
t=T0

1
t2 ≤

1
2 ,

• 4

(
`e
√

2C1

(T0−1)
1
4
− 1
m

)
≤ 1

3 .

First consider pt,2, and recall that ∀i ∈ [d],∀t,Mi(t) ,
Ai(t)

Ai(t)+Bi(t)
= Ai(t)

Ni(t)
is the mode of Vi(t). If

event Ā occurs then
d∑

i=m+1

Mi(t) > m−∆−

√
m ln(2N2(t))

N2(t)
+

m`

2N2(t)
.

So using lemma 7 and remark 2 we have that: pt,2 ≤ 1
t2 .

Consider pt,1. Since ∆ < 1
6` and for t ≥ T0 we have h(m, `, t) ≤ 1

6` , hence

m−∆− h(m, `, t) ≥ m− 1

3`
.

If event Bt and Ct occurs then Ai(t) = `
2 and Bi(t) = 0 for all i = 1, ...,m therefore we may control

the tail behaviour of
∑d
i=m+1 Vi(t) thanks to lemma 8. So we have for t ≥ T0:

pt,1 ≤
`m

2mm!
(∆ + h(m, `, t))

m ≤ 1

2(m!)
((`∆)m + (`h(m, `, t))m) .

where we used the convexity inequality (x+y
2 )m ≤ xm+ym

2 .

We have, for T > T0 :

P(BT |Ā, C)
P(BT0 |Ā, C)

=

T−1∏
t=T0

P(Bt+1|Bt, Ā, C) ≥
T−1∏
t=T0

(1− pt,1)(1− pt,2).

Using the union bound and the definition of T0:
T−1∏
t=T0

(1− pt,2) ≥ 1−
T−1∑
t=T0

pt,2 ≥ 1−
T−1∑
t=T0

1

t2
≥ 1−

+∞∑
t=T0

1

t2
≥ 1

2
.

Now:

1− pt,1 = 1− (`∆)m

m!
− (`h(m, `, t))m

m!

= (1− (`∆)m

m!
)
1− (`∆)m

m! −
(`h(m,`,t))m

m!

1− (`∆)m

m!

≥ (1− (`∆)m

m!
)(1− 3

2

(`h(m, `, t))m

m!
).

where we used the fact that ∆ ≤ 1
6 so that (`∆)m

m! ≤
1
3 .

Using the union bound once more:
T−1∏
t=T0

(1− pt,2) ≥
T−1∏
t=T0

(1− (`∆)m

m!
)(1− 3

2

(`h(m, `, t))m

m!
)

≥ (1− (`∆)m

m!
)T−T0(1− 3

2

T−1∑
t=T0

(`h(m, `, t))m

m!
)

≥ (1− (`∆)m

m!
)T−T0(1− 3

2

∞∑
t=T0

(`h(m, `, t))m

m!
).
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We turn to the last sum in the right hand side of the equation above. It is noted that log(2t) ≤
√
t for

all t ≥ 7. Since t ≥ T0 ≥ max(m, `, 7) we have

h(m, `, t) ≤
√
C1m2(ln(t+ `) + lnm)

t
≤
√
C12m2 ln(2t)

t
≤ m

√
2C1 t−

1
4 .

We now upper bound the sum as follows:
∞∑
t=T0

(`h(m, t))m

m!

(i)

≤ (`m
√

2C1)m

m!

∞∑
t=T0

t−
m
4

(ii)

≤ (`e
√

2C1)m
∞∑
t=T0

t−
m
4

(iii)

≤ 4

(
`e
√

2C1

(T0 − 1)
1
4−

1
m

)m
(iv)

≤ 4

(
`e
√

2C1

(T0 − 1)
1
4−

1
m

)
≤ 1

3
,

where we used (i) the bound above, (ii) Stirling’s approximation m! ≥ (m/e)m, (iii) the following
sum-integral comparison, for any m ≥ 5:

+∞∑
t=T0

t−
m
4 ≤

∫ +∞

T0−1

t−
m
4 dt =

(T0 − 1)1−m4
m
4 − 1

≤ 4(T0 − 1)1−m4 ,

and (iv) the definition of T0.

Putting things together we have proven that

P(BT |Ā, C)
P(BT0 |Ā)

≥ 1

4

(
1− (`∆)m

m!

)T−T0

.

We showed previously that

P(BT0 |Ā) ≥ 1

2
(1− p∆)T0−1 ≥ C2(`,m),

with
C2(`,m) =

1

2
(1− p`∆)T0−1,

and it is noted that limm→∞ C2(`,m) = 1 for any fixed ` ≥ 0.

Therefore

P(BT |Ā, C) ≥
C2(`,m)

4

(
1− (`∆)m

m!

)T−T0

.

Since P(C) = (1− ∆
m )

`m
2 we get

P(BT |Ā) ≥ C2(`,m)

4
(1− ∆

m
)
`m
2

(
1− (`∆)m

m!

)T−T0

,

and applying Remark 4 concludes the first part of the proof.

Now choose:

∆ =
1

`
min

((
m!

T

) 1
m

,
1

6

)
,

and lower bound the regret by

max
θ∈[0,1]d

R(T, θ) ≥ ∆TP(BT ).

If ∆ = 1
`

(
m!
T

) 1
m , then replacing

max
θ∈[0,1]d

R(T, θ) ≥ ∆T
C2(`,m)

4

(
1− ∆

m

) `m
2
(

1− (`∆)m

m!

)T
=

(m!)
1
mT 1− 1

m

`

C2(`,m)

4

(
1− ∆

m

) `m
2
(

1− 1

T

)T
.
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Using the facts that (i)
(
1− 1

T

)T ≥ e, that (ii) (m!)
1
m ≥ m

e which follows from Stirling’s approxi-
mation m! ≥ (me )m and that (iii) since ∆ ≤ 1

6` :(
1− ∆

m

) `m
2

≥
(

1− 1

6m`

) `m
2

≥ e− 1
12 ,

which yields the minimax regret bound

max
θ∈[0,1]d

R(T, θ) ≥ O
(
C2(`,m)

m

`
T 1− 1

m

)
.

Otherwise ∆ = 1
6` and we simply have

max
θ∈[0,1]d

R(T, θ) ≥ O
(
C2(`,m)

T

`

)
.

which completes the proof.

B Linear Bandits: Regret Upper Bound for ESCB

We first recall a regret upper bound for ESCB found in [8], based on the more general analysis of [9].
Theorem 9. Consider a linear combinatorial bandit problem.

Then the regret of ESCB is upper bounded by:

R(T, θ) ≤ C(m) +
2dm3

∆2
min

+
24d(lnT + 4m ln lnT )

∆min

⌈
lnm

1.61

⌉2

,

with C(m) a positive number that depends solely on m.

C Non linear Combinatorial bandits

C.1 Non-Linear Combinatorial Bandits without Forced Exploration

We here provide a non-linear combinatorial bandits example. The example is inspired by [21]: there
are two decisions, the optimal decision has an expected reward of 1 and the other one an expected
reward of 1−∆. Theorem 10 shows that the regret of TS for this problem scales super-exponentially
with the dimension d which is an improvement over [21][Theorem 3]. By corollary, we prove that TS
does not outperform random choice (i.e. a trivial algorithm which chooses one of the two decisions
uniformly at random at each time) until t ≥ T0(m), where T0(m) grows super-exponentially with
m, As an illustration of how large this number might be, for ∆ = 1

2 , the value of T0(9) is greater
than a million, and the value of T0(20) is greater than the estimated age of the universe in seconds.
Therefore, in practice as well as in theory, TS does not outperform random choice in high dimensions
which is perhaps even more surprising.

The proof of Theorem 10 is based on the fact that there exists a non zero probability that the optimal
decision will never be selected for an exponentially large amount of time. Indeed, if the optimal
decision has never been selected, it is chosen with a probability equal to P(

∏m
i=1 Ui ≥ 1−∆) where

U1, ..., Um are i.i.d. uniformly distributed on [0, 1], and since this probability is exponentially small
in d, one must wait for an exponentially large time before selecting the optimal decision and the
regret must scale accordingly. It is noted that this proof technique of lower bounding the expected
value of the first time the optimal decision is ever selected is very powerful and will be used many
times to prove our results.
Theorem 10. Consider a non-linear combinatorial bandit problem over combinatorial set X =
{
∑m
i=1 ei, em+1} where (ei)i∈[m+1] is the canonical base of Rm+1 with parameter θ = (1, ..., 1)

and reward function f(x, θ) =
∏m
i=1 θi if x =

∑m
i=1 ei and f(x, θ) = 1−∆ otherwise.

Then the regret of TS is lower bounded by

R(T, θ) ≥ ∆

p∆
(1− (1− p∆)T ) with p∆ =

1

mm!

[
ln

(
1

1−∆

)]m
.
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Corollary 11. For any T ≤ T0(m) ≡ 1
p∆

TS performs strictly worse than random choice in the
sense that

R(T, θ) ≥ T∆

(
1− 1

e

)
>
T∆

2
.

It is noted that Theorem 10 is a parameter-dependent lower bound, where we consider a fixed
parameter θ and we let the time horizon T grow. From Theorem 10 we deduce Corollary 12 which is
a lower bound on the minimax regret of TS. The minimax regret of TS scales at least as Ω(T 1− 1

d ),
so that it is almost linear in high dimensions when d is large. This also proves that, as long as the
dimension d is strictly greater than 2, TS is not minimax optimal, since there exists algorithms such
as CUCB whose minimax regret scales at most as O(poly(d)

√
T lnT ). This demonstrates that TS

has a tendency to be too "greedy" which prevents it from exploring enough, and while this is not a
problem in low dimensions, in high dimensions this matters a great deal, and causes it to perform
much worse than optimistic algorithms. Corollary 12 is proven simply by letting ∆ = T−

1
d in

Theorem 10 and the regret upper bound for CUCB follows directly from [14].
Corollary 12. Consider F the class of 1-Lipschitz functions.

The minimax regret of TS is lower bounded by:

max
θ∈[0,1]d,f∈F

R(T, θ, f) ≥ C1T
1− 1

d ,

with C1 > 0 a universal constant, the minimax regret of CUCB is upper bounded by

max
θ∈[0,1]d,f∈F

R(T, θ, f) ≤ C ′1d
√
T lnT ,

where C ′1 is a universal constant. Hence TS is not minimax optimal.

C.2 Proof of Theorem 10

Proof. At round t ≥ 1, if the optimal decision has never been played then Ai(t) = Bi(t) = 0
for i = 1, ...,m. In turn the samples Vi(t) are independent and uniformly distributed in [0, 1] for
i = 1, ...,m.

Lemma 6 shows that at time t the optimal decision is played with probability

P

(
m∏
i=1

Vi(t) ≥ 1−∆

)
≤ p∆ ≡

1

mm!

[
ln

(
1

1−∆

)]m
.

So the distribution of the first time the optimal decision is played

τ = min{t ≥ 1 : x(t) = x?},

is lower bounded by a geometric law

P(τ ≥ t) ≥ (1− p∆)t−1.

Combining this with Remark 4 yields the announced regret bound

R(T, θ) ≥ ∆

T∑
t=1

P(τ ≥ t) ≥
T∑
t=1

(1− p∆)t−1 =
∆

p∆
(1− (1− p∆)T ).

C.3 Non-Linear Combinatorial Bandits with Forced Exploration

Our results above show that the regret of TS scales exponentially in the dimension since the expecta-
tion of the first time at which the optimal decision is selected can grow exponentially in the dimension.
Therefore it is natural to assume that forcing some exploration initially would alleviate the problem.
Theorem 13 considers the same non linear bandit problem as that considered in Theorem 10, and
shows that, while forced exploration does bring some improvement, for any fixed value of ` > 0, the
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regret of TS with ` forced exploration rounds still scales exponentially in the dimension. The reason
for this is that once again the first time at which the optimal decision is selected can be exponentially
large, even with forced exploration. Upon closer inspection of Theorem 13, one can see that, in order
for the regret lower bound not to scale exponentially in the dimension one would require 1/p`∆ to

grow at most polynomially in d, which in turn would require `
2 ln

(
1

1−∆

)
≥ 1. This indicates that,

unless the gap ∆ is known in advance (and in general ∆ is of course unknown), it is not possible to
select a value of ` that prevents the regret from scaling exponentially in the dimension. This suggests
that some more complex modifications need to be made to TS in order to "fix" this exponential
dependency on the dimension.
Theorem 13. Consider a non-linear combinatorial bandit problem with over combinatorial set
X = {

∑m
i=1 ei, em+1} with parameter θ = (1, ..., 1) and reward function f(x, θ) =

∏m
i=1 θi if

x =
∑m
i=1 ei and f(x, θ) = 1−∆ otherwise.

Then the regret of TS with ` forced exploration rounds is lower bounded by

R(T, θ) ≥ ∆

p`∆
(1− (1− p`∆)T ) with p`∆ =

1

mm!

[(
1 +

`

2

)
ln

(
1

1−∆

)]m
.

C.4 Proof of Theorem 13

Proof. At round t ≥ 1, if the optimal decision has been played `
2 times then Ai(t) = `

2 and
Bi(t) = 1 for i = 1, ...,m. In turn the samples Vi(t) are independent with distribution Beta(1 + `

2 , 1)
for i = 1, ...,m.

Lemma 6 shows that at time t the optimal decision is played with probability

P(

m∏
i=1

Vi(t) ≥ 1−∆) ≤ p`∆ ≡
1

mm!

[(
1 +

`

2

)
ln

(
1

1−∆

)]m
.

So the distribution of the first time the optimal decision is played

τ = min{t ≥ 1 : x(t) = x?},

is lower bounded by a geometric law

P(τ ≥ t) ≥ (1− p`∆)t−1.

Combining this with remark 4 yields the announced regret bound

R(T, θ) ≥ ∆

T∑
t=1

P(τ ≥ t) ≥
T∑
t=1

(1− p`∆)t−1 =
∆

p`∆
(1− (1− p`∆)T ).
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