
A Other related work

In addition to the work on noisy convex optimization, the current paper is also thematically related to
works in learning theory and complexity where the goal is to reconstruct simple classes of functions
under outlier noise. This includes work on reconstruction of low-degree polynomials [4, 14, 15]. In
particular, [15] gave an efficient algorithm whose error tolerance matches the information theoretic
limits. In addition, recently, [9] achieved similar algorithmic guarantees for functions which are
sparse in the Fourier space. While similar in spirit, the model in these works differ from the current
paper in one crucial way – namely, while we only put a bound on the volume of the outlier locations,
they, in addition, assume that the outlier locations are also uniformly distributed in the domain. At a
more technical level, the results in [4, 14, 15, 9] crucially rely on techniques originating from coding
theory such as the Goldreich-Levin theorem [13] and the Berlekamp-Welch algorithm [6]. In contrast,
the results in the current paper depend on a careful adaptation of gradient descent aimed at making
it noise tolerant. Very recently, the authors also studied a set of discrete search problems under
outlier noise, where we want to find a target element in an (partially) ordered set that is corrupted at
a bounded number of locations [11]. Such search problems may be seen as discrete analogs of the
convex minimization problem studied in this paper.

B Additional preliminaries and missing proofs from Section 2

The following are two well-known facts about α-strongly convex and β-smooth functions, which
give quadratic upper and lower bounds on the function.

Fact B.1. If f is β-smooth, then for any x, y ∈ Rd we have

f(y) ≤ f(x) +∇f(x)>(y − x) +
β

2
‖y − x‖2 .

Fact B.2. If f is α-strongly convex, then for any x, y ∈ Rd we have

f(y) ≥ f(x) +∇f(x)>(y − x) +
α

2
‖y − x‖2 .

The following fact gives a sufficient condition for f to be α-strongly convex.

Fact B.3. If f(x)− g(x) is convex and g is α-strongly convex, then f is also α-strongly convex.

Proof. Define

h(x)
def
= f(x)− g(x) = f(x)− (g(x)− α

2
‖x‖2)− α

2
‖x‖2 .

Then we have f(x) − α
2 ‖x‖

2
= h(x) + (g(x) − α

2 ‖x‖
2
). Since both functions on the RHS are

convex, so is f(x)− α
2 ‖x‖

2.

Along any fixed direction, the directional derivative of a convex function is monotonically increasing:

Fact B.4. If f is a convex function, then for any x, y ∈ Rd

∇f(x)>(y − x) ≤ ∇f(y)>(y − x).

As we will use the idea of gradient descent in our algorithms, we will need the following fact that
says that for α-strongly convex and β-smooth functions, the negative gradient at a point has a large
inner product against the direction to the minimizer x∗.

Fact B.5. If f is α-strongly convex and β-smooth, then we have at any point x ∈ Rd that

∇f(x)>(x− x∗) ≥ α

2
‖x− x∗‖2 , (5)

∇f(x)>(x− x∗) ≥ 1

β
‖∇f(x)‖2 . (6)
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Proof. Using α-strong convexity of f we have

f(x) +∇f(x)>(x∗ − x) +
α

2
‖x∗ − x‖2 ≤ f(x∗),

which by rearranging gives
α

2
‖x∗ − x‖2 ≤ ∇f(x)>(x− x∗) + f(x∗)− f(x) ≤ ∇f(x)>(x− x∗),

where the last inequality holds as x∗ is the minimizer of f . This proves the first claim.

To prove the second claim,we note that by convexity we have

f(x) +∇f(x)>(x∗ − x) ≤ f(x∗),

which in turn implies

∇f(x)>(x− x∗) ≥ f(x)− f(x∗).

We further lower bound the difference between f(x) and f(x∗):

f(x)− f(x∗) ≥f(x)− f(x− 1

β
∇f(x)) (x∗ is the minimizer)

≥−∇f(x)>
(
− 1

β
∇f(x)

)
− β

2

∥∥∥∥
1

β
∇f(x)

∥∥∥∥
2

(β-smoothness and Fact B.1)

=
1

2β
‖∇f(x)‖2 .

Combining this with the previous inequality finishes the proof.

Lemma 2.6. Let x∗, x̄r be the minimizers of f and f̄r respectively. Then ‖x∗ − x̄r‖ ≤ 2r
√
β/α.

Proof. As B(x̄r, r) is a convex set, there is a unique point z ∈ B(x̄r, r) which has the minimum
distance from x∗. By α-strong convexity of f , f(z)− f(x∗) ≥ α ‖z−x

∗‖2
2 . So, for any other point

x ∈ B(x̄r, r), f(x)− f(x∗) ≥ α ‖z−x
∗‖2

2 . This concludes that f̄r(x̄r) ≥ α ‖z−x
∗‖2

2 .

On the other hand, by β-smoothness of f , for ever point x ∈ B(x∗, r) we have f(x) ≤ βr2/2. This
concludes that f̄r(x∗) ≤ βr2/2.

But x̄r is the minimizer of f̄r, so we have α ‖z−x
∗‖2

2 ≤ βr2/2. Thus,

‖z − x∗‖ ≤
√
β/αr (7)

By triangle inequality, ‖z − x∗‖+ r ≥ ‖z − x∗‖+ ‖z − x̄r‖ ≥ ‖x∗ − x̄r‖. The triangle inequality
in conjunction of (7) implies Lemma 2.6.

C Missing proofs from Section 3

Lemma 3.5. Given a set of (possibly infinitely many) tuples {(xi, gi, fi)}i∈I where xi, gi ∈ Rd,
fi ∈ R and 0 ≤ α < β ≤ +∞. The following two statements are equivalent:

1. {(xi, gi, fi)}i∈I is (α, β)-interpolable.

2.
{(

βxi

β−α −
gi
β−α , gi − αxi,

αx>i gi
β−α + fi − βα‖xi‖2

2(β−α) −
‖gi‖2

2(β−α)

)}
i∈I

is (0,∞)-interpolable.

Proof. The lemma follows from the equivalence of the following propositions:

(a) {(xi, gi, fi)}i∈I is (α, β)-interpolable.

(b)
{

(xi, gi − αxi, fi − α
2 ‖xi‖

2
)
}
i∈I

is (0, β − α)-interpolable.
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(c)
{

(gi − αxi, xi, x>i gi − fi − α
2 ‖xi‖

2
)
}
i∈I

is (1/(β − α),∞)-interpolable.

(d)
{(
gi − αxi, βxi

β−α −
gi
β−α ,

βx>i gi
β−α − fi −

βα‖xi‖2
2(β−α) −

‖gi‖2
2(β−α)

)}
i∈I

is (0,∞)-interpolable.

(e)
{(

βxi

β−α −
gi
β−α , gi − αxi,

αx>i gi
β−α + fi − βα‖xi‖2

2(β−α) −
‖gi‖2

2(β−α)

)}
i∈I

is (0,∞)-interpolable.

Here, (a)⇔(b) and (c)⇔(d) follow from Lemma 3.3, while (b)⇔(c) and (d)⇔(e) follow from
Lemma 3.4.

Proof of Lemma 3.6. We start by presenting some useful propositions. [23] shows that if a finite
set of tuples satisfies the following interpolability condition, then it is (α, β)-interpolable. Although
this condition does not necessarily imply the same interpolability of an infinite set of tuples, it
will be useful in our analysis later. Therefore we state such a condition below and call it finite
(α, β)-interpolability condition.
Definition C.1 (Finite (α, β)-interpolability condition). Given a set of (possibly infinitely many)
tuples denoted by {(xi, gi, fi)}i∈I where each xi, gi ∈ Rd, fi ∈ R and 0 ≤ α < β ≤ +∞. We say
this set satisfies the finite (α, β)-interpolability condition if for all pairs i, j ∈ I , we have

fi − fj − g>j (xi − xj) ≥
1

2(1− α
β )

(
1

β
‖gi − gj‖2 + α ‖xi − xj‖2 −

2α

β
(gj − gi)>(xj − xi)

)
. (8)

We give in the following fact an equivalent condition to that in Definition C.1. This fact can be
verified by straightforward calculations.
Fact C.2. Given a set of (possibly infinitely many) tuples {(xi, gi, fi)}i∈I where each xi, gi ∈ Rd,
fi ∈ R and 0 ≤ α < β ≤ +∞. Let

x̂i
def
=

βxi
β − α −

gi
β − α,

ĝi
def
= gi − αxi,

f̂i
def
=

αx>i gi
β − α + fi −

βα ‖xi‖2
2(β − α)

− ‖gi‖2
2(β − α)

.

Then the interpolability condition in Definition C.1 is equivalent to that for any i, j ∈ I

f̂i ≥ f̂j + ĝ>j (x̂i − x̂j).

We will use the interpolation results from Section 3.1 to prove Lemma 3.6. Before that, let us define
the points that we want to interpolate. In particular, consider the following set of tuples. For each
x ∈ X=1, there is a tuple (x,∇f(x), f(x)), where we recall that we have defined f(x)

def
= ‖x‖2 in

Lemma 3.6. In addition, there is a tuple ( 1
2e1, 0, f̃( 1

2e1)), where we let f̃( 1
2e1) be any number in

[ 5
31 ,

12
31 ]. Let {(xi, gi, fi)}i∈I denote this set of tuples.

Lemma C.3. Let α = 1/2 and β = 16. Then the set {(xi, gi, fi)}i∈I satisfies the finite (α, β)-
interpolability condition in Definition C.1.

Proof. First, we already know that the function f = ‖x‖2 interpolates (xi,∇f(xi), f(xi))’s for
which ‖xi‖ = 1. By the convexity of f , Statement (e) of Lemma 3.5, and Fact C.2, the condition (8)
in Definition C.1 is trivially satisfied for all pairs (xi,∇f(xi), f(xi)), (xj ,∇f(xj), f(xj)) for which
xi, xj ∈ X=1. Then we first consider the pairs (xi,∇f(xi), f(xi)), (

1
2e1, 0, f̃( 1

2e1)) where xi ∈
X=1. In this case the LHS of (8) is

f(xi)− f̃
(

1

2
e1

)
− 0>

(
xi −

1

2
e1

)
= 1− f̃

(
1

2
e1

)
≥ 19

31
,
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where the last inequality follows from f̃( 1
2e1) ≤ 12

31 . The RHS of (8) is

16

31

(
1

16
‖2xi − 0‖2 +

1

2

∥∥∥∥xi −
1

2
e1

∥∥∥∥
2

− 1

16
(0− 2xi)

>(
1

2
e1 − xi)

)

=
16

31

((
1

4
+

1

2
− 1

8

)
‖xi‖2 +

(
−1

2
+

1

16

)
e>1 xi +

1

8
‖e1‖2

)
(rearranging)

=
16

31

(
5

8
− 7

16
e>1 xi +

1

8

)
(‖xi‖ = ‖e1‖ = 1) (9)

≤16

31

(
5

8
+

7

16
+

1

8

)
=

16

31
· 19

16
=

19

31
(e>1 xi ≥ −1).

Thus we have LHS ≥ RHS.

We then consider the pairs ( 1
2e1, 0, f̃( 1

2e1)), (xj ,∇f(xj), f(xj)) where xj ∈ X=1. In this case the
LHS of (8) is

f̃

(
1

2
e1

)
− f(xj)− 2x>j

(
1

2
e1 − xj

)
= f̃

(
1

2
e1

)
− 1− e>1 xj + 2 ‖xj‖2 ≥

36

31
− e>1 xj ,

where the last inequality follows from ‖xj‖ = 1 and f̃( 1
2e1) ≥ 5

31 . Note that the RHS of (8) is
symmetric with respect to i, j. Therefore using (9) above we have

LHS of (8)− RHS of (8) ≥36

31
− e>1 xj −

16

31

(
5

8
− 7

16
e>1 xj +

1

8

)

=
24

31
− 24

31
e>1 xj (rearranging)

≥0 (e>1 xi ≤ 1).

Thus again we have LHS ≥ RHS. This completes the proof of the lemma.

We can now prove Lemma 3.6 using the propositions above.

Lemma 3.6. Let f(x)
def
= ‖x‖2 which is 2-strongly convex and 2-smooth. There exists a 1

2 -strongly
convex, 16-smooth function f̃ such that

1. f̃ ’s minimizer is 1
2e1.

2. For all x ∈ X=1 we have f̃(x) = f(x) and ∇f̃(x) = ∇f(x).

Proof. Let x̂i, ĝi, f̂i be defined as in Fact C.2 for α = 1/2 and β = 16. Then by Lemma C.3 and
Fact C.2, we have for all i, j ∈ I

f̂i ≥ f̂j + ĝ>j (x̂i − x̂j). (10)

We will show that
{

(x̂i, ĝi, f̂i)
}
i∈I

is (0,∞)-interpolable by constructing a proper and closed

convex function ϕ interpolating them. This coupled with Lemma 3.5 implies that {(xi, gi, fi)}i∈I is
(1/2, 16)-interpolable. Specifically, we define ϕ by

ϕ(x)
def
= sup

{
f̂j + ĝ>j (x− x̂j) : j ∈ I

}
.

Immediately from the definition of ϕ and (10) we have that ϕ is convex (as it is the pointwise
supremum of affine functions) and ϕ(x̂i) = f̂i and ĝi ∈ ∂ϕ(x̂i) for all i ∈ I . We then show that ϕ is
proper and closed.

Since for the quadratic function f(x) = ‖x‖2 we have∇f(x) = 2x, we have for all xi ∈ X=1 that
x̂i = β−2

β−αxi, ĝi = (2 − α)xi, and f̂i’s are all equal. Then for any x, if we let j1(x) be such that
xj1(x) = x/ ‖x‖, we have

sup
{
f̂j + ĝ>j (x− x̂j) : xj ∈ X=1

}
= f̂j1(x) + ĝ>j1(x)(x− x̂j1(x)) = A ‖x‖+B
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for constants A,B ∈ R. Let j′ be such that xj′ = 1
2e1. Then as a result of the above equation, we

can write ϕ as

ϕ(x) = max
{
f̂j′ , A ‖x‖+B

}
.

Since ϕ is the pointwise max of two proper and closed convex functions, it is proper and closed as
well.

Lemma 3.7. Let f(x)
def
= ‖x‖2 which is 2-strongly convex and 2-smooth. Define f̂ such that

f̂(x) = f̃(x) if ‖x‖ ≤ 1 and f̂(x) = f(x) otherwise (‖x‖ > 1). Then we have

1. f̂ is 1
2 -strongly convex and 16-smooth.

2. f̂ ’s minimizer is 1
2e1.

3. For all x ∈ X≥1 we have f̂(x) = f(x) and ∇f̂(x) = ∇f(x).

Proof. Since by Lemma 3.6 both the function values and gradients of f̃ agree with those of f on
X=1, f̂ is differentiable and its minimal value is obtained at 1

2e1 where its gradient is 0. Also f̂ ’s
function values and gradients agree with those of f on X≥1 by its definition. We then show that f̂ is
1/2-strongly convex and 16-smooth.

1. (1/2-strong convexity) Define h, h̃, ĥ as f(x)− 1
4 ‖x‖

2, f̃(x)− 1
4 ‖x‖

2, and f̂(x)− 1
4 ‖x‖

2

respectively. We need to show that ĥ is convex, i.e.

ĥ(x) +∇ĥ(x)>(y − x) ≤ ĥ(y), ∀x, y ∈ Rd. (11)

Due to the 1/2-strong convexity of f and f̃ , (11) immediately holds when ‖x‖ , ‖y‖ are
both larger than 1 or both smaller than 1. When it is the case that ‖x‖ < 1 < ‖y‖, let z be
the unique point on the line segment xy with ‖z‖ = 1. Then we have

ĥ(x) +∇ĥ(x)>(y − x) =h̃(x) +∇h̃(x)>(z − x) +∇h̃(x)>(y − z)
≤h̃(z) +∇h̃(x)>(y − z) (h̃ convex)

≤h̃(z) +∇h̃(z)>(y − z) (Fact B.4)

=h(z) +∇h(z)>(y − z) ≤ h(y) = ĥ(y) (h convex).

The same reasoning shows that (11) also holds when ‖y‖ < 1 < ‖x‖.
2. (16-smoothness) We need to show that

∥∥∥∇f̂(x)−∇f̂(y)
∥∥∥ ≤ 16 ‖x− y‖ , ∀x, y ∈ Rd. (12)

Due to the 16-smoothness of f and f̃ , (12) once again immediately holds when ‖x‖ , ‖y‖
are both larger than 1 or both smaller than 1. When it is the case that ‖x‖ < 1 < ‖y‖, let z
be the unique point on the line segment xy with ‖z‖ = 1. Then we have
∥∥∥∇f̂(x)−∇f̂(y)

∥∥∥ =
∥∥∥∇f̃(x)−∇f̃(z) +∇f(z)−∇f(y)

∥∥∥

≤
∥∥∥∇f̃(x)−∇f̃(z)

∥∥∥+ ‖∇f(z)−∇f(y)‖ (triangle inequality)

≤16 ‖x− z‖+ 16 ‖z − y‖ (16-smoothness of f̃ and f )
=16 ‖x− y‖ (z on line segment xy).

The same reasoning shows that (12) also holds when ‖y‖ < 1 < ‖x‖.

This completes the proof.
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Lemma 3.8. Given κ ≥ 1 with 1+log κ ≤ dwhere d is the dimension. Let γ def
= (1/κ)

1
d−1 ∈ [1/2, 1].

Let Sd×d = DIAG(κ, γ, . . . , γ). Define s(x) = x>S−1x, which is (2/κ)-strongly convex and (2/γ)-
smooth. Let Xs≥1 = {x : s(x) ≥ 1}. Also define ŝ(x) = f̂(S−1/2x). Then we have

1. ŝ is 1/(2κ)-strongly convex and (16/γ)-smooth.

2. ŝ’s minimizer is
√
κ

2 e1.

3. For all x ∈ Xs≥1 we have ŝ(x) = s(x) and ∇ŝ(x) = ∇s(x).

Proof. Let f(x)
def
= ‖x‖2 which is 2-strongly convex and 2-smooth. Let X≥1

def
= {x : ‖x‖ ≥ 1}.

Let f̂ be a 1/2-strongly convex and 16-smooth function whose minimal value is obtained at 1
2e1 and

whose values and gradients agree with f on X≥1 (Lemma 3.7).

We note that s(x) = f(S−1/2x). Also observe that

∇ŝ(x) = S−1/2∇f̂(S−1/2x). (13)

Thus ŝ obtains its minimal value at point S1/2( 1
2e1) =

√
κ

2 e1 where its gradient is zero. Moreover
ŝ’s function values and gradients agree with those of s on

{
x :
∥∥S−1/2x

∥∥ ≥ 1
}

= Xs≥1.

Due to the 1/2-strong convexity of f̂ , we know that f̂(x) − 1
4 ‖x‖

2 is convex. Since convexity is

preserved under linear transformation over the domain, the function ŝ(x) − 1
4

∥∥S−1/2x
∥∥2

is also

convex. As 1
4

∥∥S−1/2x
∥∥2

= 1
4x
>S−1x is itself 1/(2κ)-strongly convex, so is ŝ (Fact B.3).

To show the (16/γ)-smoothness of ŝ, we note that by (13) for all x, y ∈ Rd,

‖∇ŝ(x)−∇ŝ(y)‖ =
∥∥∥S−1/2

(
∇f̂(S−1/2x)−∇f̂(S−1/2y)

)∥∥∥

≤γ−1/2
∥∥∥∇f̂(S−1/2x)−∇f̂(S−1/2y)

∥∥∥

≤γ−1/2 · 16
∥∥∥S−1/2(x− y)

∥∥∥ (16-smoothness of f̂ )

≤(16/γ) ‖x− y‖ .

This finishes the proof of the lemma.

Theorem 3.1. Given 0 < α ≤ β with 1 + log β
α ≤ d where d is the dimension, and a K > 0, there

exist two α-strongly convex, β-smooth functions whose values differ only in an ellipsoid of volume

equal to a radius-K ball, but whose minimizers are Ω(
√

β
αK)-far from each other.

Proof. Set κ = β
64α and let γ, S, s, and ŝ be as defined in Lemma 3.8. Then we know that s and ŝ

are both 32α
β -strongly convex and 32-smooth. Now we define

f(x)
def
=

β

32
·K2 · s

(
1

K
x

)
and f̂(x)

def
=

β

32
·K2 · ŝ

(
1

K
x

)
.

From the definitions f and f̂ are both α-strongly convex and β-smooth. Moreover, note that the
function values of s and ŝ only differ in the ellipsoid x>S−1x ≤ 1, whose volume equals that of a
unit ball since the determinant of S is 1 by the definition in Lemma 3.8. As a result, the function
values of f and f̂ only differ in an ellipsoid of volume equal to a radius-K ball. Finally, note that

s and ŝ obtain their minimal values at points 0 and
√
κ

2 e1 = 1
16

√
β
αe1 respectively. Thus f and f̂

obtain their minimal values at 0 and 1
16

√
β
αKe1 respectively, which are 1

16

√
β
αK apart.
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D Missing proofs from Section 4

Lemma 4.1. Fix d > 0 and β > 0. There exists a function err(τ) satisfying limτ→0+ err(τ) = 0
such that the following holds. Fix any x ∈ Rd and τ > 0 such that the radius-τ ball centered at x is
mostly uncorrupted:

Pry∼U(x,τ)

[
f(y) 6= f̂(y)

]
≤ 1

100
. (2)

Then we have that with probability 1− 2−3d, the vector g returned by GRADIENTCOMP satisfies

‖g −∇f(x)‖ ≤ err(τ). (3)

The number of queries made by GRADIENTCOMP is O(d).

Proof. We say a pair aj , bj is uncorrupted if f̂(aj) = f(aj) and f̂(bj) = f(bj). Then each pair is
uncorrupted with probability ≥ 0.992 > 0.98. Using a Chernoff bound we have that with probability
1− 2−3d there are at least 800d uncorrupted pairs. In this case, the vector∇f(x) certainly satisfies
the condition (1) for the 800d uncorrupted pairs by the β-smoothness of f . Moreover, for any vector
g satisfying (1) for at least 800d pairs, it must satisfy (1) for at least 600d uncorrupted pairs (as the
number of corrupted pairs is at most 200d). This means that when τ → 0+, g has to be arbitrarily
close to the solution to the system of linear equations

g>(bj − aj) = f̂(bj)− f̂(aj)

for all 600d uncorrupted j’s. The solution to the above linear system itself becomes arbitrarily close
to∇f(x) as τ → 0+. Therefore the existence of a desired err(τ) follows.

Lemma 4.3. Let d ≥ 2. The ĝ computed at Line 6 of GDSTAGEI satisfies with probability 1− δ
T

that ‖ĝ −∇f(xt)‖ ≤ 200βK.

Proof. Let τ be a sufficiently small parameter used in GRADIENTCOMP such that err(τ) ≤ υ for
υ = βK/2. We say a point yi is good if the fraction of corruption in the ball B(yi, τ) is at most
1/100, i.e.

Pry∼U(yi,τ)

[
f(y) 6= f̂(y)

]
≤ 1

100
.

As d ≥ 2, the volume of B(xt, 99K) is at least 9801 times larger than a ball of radius K. Therefore
each yi is good with probability 0.98 by Markov’s inequality. If yi is good, then by Lemma 4.1 we
have ‖gi −∇f(yi)‖ ≤ υ with probability at least 1− 2−3d ≥ 1− 2−6 > 0.98. Multiplying these
two probabilities together we have that ‖gi −∇f(yi)‖ ≤ υ with probability at least 0.96. Then using
a Chernoff bound, we have with probability at least 1− 2−s/60 ≥ 1− δ

T that ‖gi −∇f(yi)‖ ≤ υ
holds for (2s)/3 of the i’s. When this happens, the vector∇f(xt) certainly satisfies the requirement
of ĝ by the β-smoothness of f . Moreover, any ĝ satisfying the requirement must be within distance
99.5βK of (s/3) of the ∇f(yi)’s, which themselves are within distance 99βK of ∇f(xt). This
implies that ‖ĝ −∇f(xt)‖ ≤ 200βK holds with probability 1− δ

T .

We now prove Theorem 4.2.

Theorem 4.2. Let d ≥ 2. Given an initial point x0 with ‖x0 − x∗‖ ≤ R0 and a δ ∈ (0, 1), the algo-
rithm GDSTAGEI returns a point x̂ with ‖x̂− x∗‖ ≤ 10000(β/α)K with probability 1−δ, where x∗

is the minimizer of f . The number of queries made by GDSTAGEI is Õ(d(β/α) log R0

(β/α)K log(1/δ)).

Proof. The bound on the number of queries follows straightforwardly. To show the guarantee on x̂
returned by the algorithm, first note that by Lemma 4.3 and a union bound, with probability 1− δ, at
all steps the vector ĝ satisfies ‖ĝ −∇f(xt)‖ ≤ 200βK. We then only need to show that when this
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holds, the algorithm finds an x̂ with ‖x̂− x∗‖ ≤ 10000(β/α)K. To this end, we consider how much
progress we can make in one descent step. Namely, we have

‖xt+1 − x∗‖2 =

∥∥∥∥xt −
1

2β
ĝ − x∗

∥∥∥∥
2

= ‖xt − x∗‖2 −
1

β
ĝ>(xt − x∗) +

1

4β2
‖ĝ‖2

=

(
‖xt − x∗‖2 −

1

2β
ĝ>(xt − x∗)

)
− 1

2β
ĝ>(xt − x∗) +

1

4β2
‖ĝ‖2 . (14)

We then bound the three terms in the above equation separately:

‖xt − x∗‖2 −
1

2β
ĝ>(xt − x∗)

≤‖xt − x∗‖2 −
1

2β
∇f(xt)

>(xt − x∗) +
1

2β
‖ĝ −∇f(xt)‖ ‖xt − x∗‖ (Cauchy-Schwarz)

≤
(

1− α

4β

)
‖xt − x∗‖2 + 100K ‖xt − x∗‖ (Fact B.5, ‖ĝ −∇f(xt)‖ ≤ 200βK),

also

− 1

2β
ĝ>(xt − x∗) =− 1

2β
∇f(xt)

>(xt − x∗) +
1

2β
(∇f(xt)− ĝ)>(xt − x∗)

≤− 1

2β
∇f(xt)

>(xt − x∗) + 100K ‖xt − x∗‖ (Cauchy-Schwarz)

≤− 1

2β2
‖∇f(xt)‖2 + 100K ‖xt − x∗‖ (Fact B.5),

and finally
1

4β2
‖ĝ‖2

=
1

4β2

(
‖∇f(xt)‖2 + 2(ĝ −∇f(xt))

>∇f(xt) + ‖ĝ −∇f(xt)‖2
)

≤ 1

4β2

(
‖∇f(xt)‖2 + 2(200βK) ‖∇f(xt)‖+ (200βK)2

)
(Cauchy-Schwarz)

≤ 1

4β2
‖∇f(xt)‖2 + 100K ‖xt − x∗‖+ 10000K2 (β-smoothness).

Plugging these three upper bounds into (14) and noting that (− 1
2β2 + 1

4β2 ) ‖∇f(xt)‖2 ≤ 0:

‖xt+1 − x∗‖2 ≤
(

1− α

4β

)
‖xt − x∗‖2 + 300K ‖xt − x∗‖+ 10000K2.

If ‖xt − x∗‖ ≥ 3000(β/α)K, we have

‖xt+1 − x∗‖2 ≤
(

1− α

8β

)
‖xt − x∗‖2 .

Therefore after log(1−α/(8β))−1
R0

(β/α)K ≤ T steps, xt will stay within distance 10000(β/α)K of the
minimizer x∗ of f . This completes the proof of the theorem.

Claim 4.6. A vector ĝ satisfying the condition at Line 6 of GDSTAGEI, if it exists, can be found in
nearly-linear time in s, at the cost of an extra constant factor in the radius of the ball.

Proof of Claim 4.6. We show that if there exists a ĝ such that the ball B(ĝ, 100βK) traps at least 2s
3

of the gi’s, then there is an algorithm that runs in O(s log(1/δ)) time and finds an index j such that
the ball B(gj , 200βK) traps at least 2s

3 of the gi’s with probability 1− δ, for any δ > 0.

The algorithm works by repeating the following for 100 log(1/δ) times: pick a random index j and
check if the ball B(gj , 200βK) traps at least 2s

3 of the gi’s. We then output any gj that passes the
test. Note that if a desired ĝ exists, then the points in the ball B(ĝ, 100βK), which are 2

3 fraction of
the total, can all pass the test. Thus each test succeeds with probability at least 2/3. Consequently
there is at least one successful test out of 100 log(1/δ) with probability at least 1− δ.

19



E Missing proofs from Section 5

Theorem E.1 (Vector Bernstein Inequality, Lemma 18 of [16]). Let z1, z2, . . . , zs ∈ Rd be indepen-
dent random vectors. Suppose each random vector satisfies

E [zi] = 0 and ‖zi‖ ≤ R and E
[
‖zi‖2

]
≤ σ2

for some R > 0 and σ2 > 0. Then, for all 0 < ε < σ2/R,

Pr

[∥∥∥∥∥
1

s

s∑

i=1

zi

∥∥∥∥∥ ≥ ε
]
≤ exp

(
−s · ε

2

8σ2
+

1

4

)
.

Lemma 5.2. Let d ≥ 100 log(β/α+ 1). The vector ḡ computed at Line 5 of GDSTAGEII satisfies
the following with probability at least 1− 2−d/8/T :

∥∥ḡ −∇f̄2K(xt)
∥∥ ≤ 16

√
αβK.

Proof. Let τ be a sufficiently small parameter used in GRADIENTCOMP such that err(τ) ≤ υ for
some υ > 0 to be specified later. We say a point yi is good if the fraction of corruption in the ball
B(yi, τ) is at most 1/100, i.e.

Pry∼U(yi,τ)

[
f(y) 6= f̂(y)

]
≤ 1

100
.

The volume of B(xt, 2K) is at least 2d times larger than a ball of radius K. Therefore each yi is
good with probability 1− 100 · 2−d by Markov’s inequality. If yi is good, then by Lemma 4.1 we
have ‖gi −∇f(yi)‖ ≤ υ with probability at least 1 − 2−3d. Multiplying these two probabilities
together we have that ‖gi −∇f(yi)‖ ≤ υ with probability at least 1− 200 · 2−d. Using the fact that
d ≥ 100 log(β/α + 1) and a union bound, we have that ‖gi −∇f(yi)‖ ≤ υ holds for all i’s with
probability at least 1− 2−d/2. Furthermore, since T ≤ 2d/4, this probability is at least 1− 2−d/4/T .

We then consider the probability that
∥∥ḡ −∇f̄2K(xt)

∥∥ ≤ 9
√
αβK holds if the ball B(xt, 2K) was

not corrupted at all (i.e. f̂(y) = f(y),∀y ∈ B(xt, 2K)). Suppose for a moment we have exactly
gi = ∇f(yi) for all i’s (we will incorporate these errors later). We know that for each i,∇f(yi) =
∇f̄2K(xt) in expectation. Moreover, since f is β-smooth, we have

∥∥∇f(yi)−∇f̄2K(xt)
∥∥ ≤ 4βK

for all i. We now invoke Theorem E.1 to prove concentration. Let zi
def
= ∇f(yi)−∇f̄2K(xt). Then

we have E [zi] = 0, ‖zi‖ ≤ 4βK, and E
[
‖zi‖2

]
≤ 16β2K2. Using Theorem E.1 with ε = 9

√
αβK

gives

Pr
[∥∥ḡ −∇f̄2K(xt)

∥∥ ≥ 16
√
αβK

]
≤ exp

(
−s(92αβK2)/(8 · 16β2K2) + 1/4

)

≤ exp (−200 log(dT ) + 1/4)

≤2−100d/T,

where the second line follows from that s ≥ 400βα log(dT ). Now by setting υ =
√
αβK, and

combining the above inequality with our previous argument that ‖gi −∇f(yi)‖ ≤ υ holds for all i’s
with probability at least 1− 2−d/4/T , we have Pr

[∥∥ḡ −∇f̄2K(xt)
∥∥ ≥ 16

√
αβK

]
≤ 1− 2−d/8/T

as desired.

We now prove Theorem 5.1.
Theorem 5.1. Suppose that d ≥ 100 log(β/α + 1). Then given an initial point x0 that satisfies
‖x0 − x∗‖ ≤ 10000(β/α)K, GDSTAGEII returns a point x̂ with ‖x̂− x∗‖ ≤ 1000

√
β/αK with

probability at least 1 − 2−d/8, where x∗ is the minimizer of f . The number of queries made by
GDSTAGEII is Õ(d(β/α)2). Moreover, the algorithm runs in polynomial time.

Proof. The bound on the number of queries follows straightforwardly. To show the guarantee on x̂
returned by the algorithm, first note that by Lemma 5.2 and a union bound, with probability 1−2−d/8,
at all steps the vector ḡ satisfies

∥∥ḡ −∇f̄2K(xt)
∥∥ ≤ 16

√
αβK. We then only need to show that

20



when this holds, the algorithm finds an x̂ with ‖x̂− x∗‖ ≤ 1000
√
β/αK. To this end, we will show

that ‖x̂− x̄‖ ≤ 500
√
β/αK, where x̄ is the minimizer of f̄2K . Then by Lemma 2.6 we have the

desired bound on ‖x̂− x∗‖.
By Lemma 2.6 and ‖x0 − x∗‖ ≤ 10000(β/α)K, we have ‖x0 − x̄‖ ≤ 20000(β/α)K. We then
consider how much progress we can make in one descent step. Namely, we have

‖xt+1 − x̄‖2 =

∥∥∥∥xt −
1

2β
ḡ − x̄

∥∥∥∥
2

= ‖xt − x̄‖2 −
1

β
ḡ>(xt − x̄) +

1

4β2
‖ḡ‖2

=

(
‖xt − x̄‖2 −

1

2β
ḡ>(xt − x̄)

)
− 1

2β
ḡ>(xt − x̄) +

1

4β2
‖ḡ‖2 . (15)

We then bound the three terms in the above equation separately:

‖xt − x̄‖2 −
1

2β
ḡ>(xt − x̄)

≤‖xt − x̄‖2 −
1

2β
∇f̄2K(xt)

>(xt − x̄) +
1

2β

∥∥ḡ −∇f̄2K(xt)
∥∥ ‖xt − x̄‖ (Cauchy-Schwarz)

≤
(

1− α

4β

)
‖xt − x̄‖2 + 8

√
α/βK ‖xt − x̄‖ (Fact B.5,

∥∥ḡ −∇f̄2K(xt)
∥∥ ≤ 16

√
αβK),

also

− 1

2β
ḡ>(xt − x̄) =− 1

2β
∇f̄2K(xt)

>(xt − x̄) +
1

2β
(∇f̄2K(xt)− ḡ)>(xt − x̄)

≤− 1

2β
∇f̄2K(xt)

>(xt − x̄) + 8
√
α/βK ‖xt − x̄‖ (Cauchy-Schwarz)

≤− 1

2β2

∥∥∇f̄2K(xt)
∥∥2

+ 8
√
α/βK ‖xt − x̄‖ (Fact B.5),

and finally
1

4β2
‖ḡ‖2

=
1

4β2

(∥∥∇f̄2K(xt)
∥∥2

+ 2(ḡ −∇f̄2K(xt))
>∇f̄2K(xt) +

∥∥ḡ −∇f̄2K(xt)
∥∥2
)

≤ 1

4β2

(∥∥∇f̄2K(xt)
∥∥2

+ 2(16
√
αβK)

∥∥∇f̄2K(xt)
∥∥+ (16

√
αβK)2

)
(Cauchy-Schwarz)

≤ 1

4β2

∥∥∇f̄2K(xt)
∥∥2

+ 8
√
α/βK ‖xt − x̄‖+ 64(α/β)K2 (β-smoothness).

Plugging these three upper bounds into (15) and noting that (− 1
2β2 + 1

4β2 )
∥∥∇f̄2K(xt)

∥∥2 ≤ 0:

‖xt+1 − x̄‖2 ≤
(

1− α

4β

)
‖xt − x̄‖2 + 24

√
α/βK ‖xt − x̄‖+ 64(α/β)K2.

If ‖xt − x̄‖ ≥ 200
√
β/αK, we have

‖xt+1 − x∗‖2 ≤
(

1− α

8β

)
‖xt − x∗‖2 .

Therefore after log(1−α/(8β))−1
‖x0−x̄‖√
β/αK

≤ T steps, xt will stay within distance 500
√
β/αK of the

minimizer x̄ of f̄2K . This coupled with Lemma 2.6 completes the proof of the theorem.

We finally give a corollary stating that the success probability of the algorithm GDSTAGEII can be
boosted to arbitrarily high with only a small overhead in efficiently.
Corollary E.2 (Of Theorem 5.1). Suppose that d ≥ 100 log(β/α + 1). Then given an initial
point x0 that satisfies ‖x0 − x∗‖ ≤ 10000(β/α)K, and a δ ∈ (0, 1), we can find a point x̂ with
‖x̂− x∗‖ ≤ 2000

√
β/αK with probability at least 1 − δ, where x∗ is the minimizer of f . The

number of queries needed is Õ(d(β/α)2 log(1/δ)).
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Proof. We run the algorithm GDSTAGEII for 100 log(1/δ) times independently, and then output a
point x such that the ball B(x, 1000

√
β/α) traps 2/3 fraction of the points returned by GDSTAGEII’s.

Then by Theorem 5.1 and a Chernoff bound, it is not hard to see that x has to be 1000
√
β/α-close to

some point which itself is 1000
√
β/α-close to x∗. Finally, we note that similar to Claim 4.6 we can

find such an x in time nearly-linear in log(1/δ) at the cost of an extra constant factor in the radius of
the ball.
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