
A Proof of Theorem 1
We consider the case where each message fails with probability 1 � p and each agent i uses the
messages it receives from its neighbors with probability pi. This is equivalent to each agent i receiving
messages from its neighbors with probability pip. Let 1{(i, j) 2 Et} be the indicator random variable
that takes value 1 if agent i receives reward value and arm id from agent j at time t and 0 otherwise.

We start by proving some useful lemmas.

Lemma 1. (Restatement of results from [3]) Let ⌘k =
⇣
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This concludes the proof of Lemma 1.

Lemma 2. Let �̄(G) is the clique covering number of graph G. Let ⌘k =
⇣

8(⇠+1)�2
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⌘
log T. Then

we have
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Proof. Let C be a non overlapping clique covering of G. Note that for each suboptimal arm k > 1
we have

NX

i=1
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k(T )] =
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t=1

P (Ai(t) = k) =
X

C2C

X

i2C

TX

t=1

P (Ai(t) = k) . (3)

Let ⌧k,C denote the maximum time step when the total number of times arm k has been played by
all the agents in clique C is at most ⌘k + |C| times. This can be stated as ⌧k,C := max{t 2 [T ] :P

i2C n
i
k(t)  ⌘k + |C|}. Then, we have that ⌘k <

P
i2C n

i
k(⌧k,C)  ⌘k + |C|.

For each agent i 2 C let

N̄ i
k(t) :=

X

j2C

tX

⌧=1

1{Aj(⌧) = k}1{(i, j) 2 E⌧},

denote the sum of the total number of times agent i pulled arm k and the total number of observations
it received from agents in its clique about arm k until time t. Define ⌧̄ ik,C := max{t 2 [T ] : N̄ i

k(t) 
⌘k}. Then we have that ⌘k � |C| < N̄ i

k(⌧̄
i
k,C)  ⌘k.

Note that N i
k(t) � N̄ i

k(t), 8t, hence for all i 2 C we have N i
k(t) > ⌘k, 8t > ⌧̄ ik,C . Here we consider

that ⌧̄ (i)k,C � ⌧k,C , 8i. From regret results it follows that regret for this case is greater than the regret
for the case where ⌧̄ ik,C < ⌧k,C for some (or all) i.
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We analyse the expected number of times agents pull suboptimal arm k as follows,
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1{Ai(t) = k} (4)

=
X

C2C

X

i2C

⌧k,CX

t=1

1{Ai(t) = k}+
X

C2C

X

i2C

⌧̄ i
k,CX

t>⌧k,C

1{Ai(t) = k}+
X

C2C

X

i2C

TX

t>⌧̄ i
k,C

1{Ai(t) = k} (5)


X

C2C

(⌘k + |C|) +
X

C2C

X

i2C

⌧̄ i
k,CX

t>⌧k,C

1{Ai(t) = k}+ |C| (6)

+
X

C2C

X

i2C

T�1X

t>⌧̄ i
k,C

1{Ai(t+ 1) = k}1
�
N i

k(t) > ⌘k
 
. (7)

Taking expectation we have

X

C2C

X

i2C

TX

t=1

P (Ai(t) = k) 
X

C2C

(⌘k + 2|C|) (8)

+
X

C2C

X

i2C

⌧̄ i
k,CX

t>⌧k,C

P (Ai(t) = k) +
X

C2C

X

i2C

T�1X

t>⌧̄ i
k,C

P
�
Ai(t+ 1) = k,N i

k(t) > ⌘k
�
. (9)

Note that we have
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Taking the expectation
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Substituting this results to (9) we get
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Thus from Lemma 1 and (22) we have
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where (a) follows from the fact that clique covering is non overlapping. This concludes the proof of
Lemma 2.

Lemma 3. Let di(G) be the degree of agent i in graph G. For any �k > 0 some constant ⇣ > 1

P

 ���bµi
k(t)� µk

��� > �k

s
2(⇠ + 1) log t

N i
k(t)

!
 log((di(G) + 1)t)

log ⇣

1

t
(⇠+1)

⇣
1� (⇣�1)2

16

⌘ . (30)

Proof. For all k let Xi
k(t) for all i, t be iid copies of Xk. Then we have Xi

t1{Ai(t) = k} =
Xi

k(t)1{Ai(t) = k}. Recall that reward distribution of arm k has mean µk and variance proxy
�k. Thus 8i, t we have
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Define local history at every agent i as follows
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t := �
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⌧ , Ai(⌧), X
j
⌧1{(i, j) 2 E⌧}, Aj(⌧)1{(i, j) 2 E⌧}, 8 ⌧ 2 [t], j 2 Ni(G)

�
. (32)
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Since 1{Aj(⌧) = k}1{(i, j) 2 E⌧} for j 2 Ni(G) is a Hi
⌧�1 measurable random variable, we have
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�
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⇣
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◆
. (35)

Define a new random variable such that 8⌧ > 0.

Y i
k (⌧) =
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Equality (a) follows from the fact that random variablesn
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⇣
�
⇣
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Let N i
k(t) =
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⌧=1
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j=1 1{Ai(⌧) = k}1{(i, j) 2 E⌧}. Further, using the tower property of

conditional expectation we have

E
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Repeating the above step t times we have

E
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Note that we have
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✓
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= P

✓
�Zi
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Fix a constant ⇣ > 1. Then 1  N i
k(t)  ⇣Dt where Dt =
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where  = 1
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⇣
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4
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Then we have
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⇢
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2
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Recall from the Markov inequality that P(Y � a)  E(Y )
a for any positive random variable Y . Thus

from (52) and Markov inequality we get,
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Then we have,
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Substituting # = 2�2
k(⇠ + 1) log t we get

P

 ���bµi
k(t)� µk

��� > �k

s
2(⇠ + 1) log t

N i
k(t)

!
 log((di(G) + 1)t)

log ⇣
exp
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Note that 8⇣ > 1 we have

4
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⇣

1
4 + ⇣�

1
4
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16
(56)

Then we have
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1

t
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This concludes the proof of Lemma 3.

Lemma 4. Let ⇣ = 1.3, ⇠ � 1.1, di � 0 and t 2 [T ]. Then we have

T�1X

t=1

1

log ⇣

log ((di + 1)t)

t
(⇠+1)

⇣
1� (⇣�1)2
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⌘  12 log(3(di + 1)) + 3 (log (di + 1) + 1) (58)
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Proof. For ⇣ = 1.3 we have 1
log ⇣ < 8.78. Further (⇠ + 1)

⇣
1� (⇣�1)2

16

⌘
> 2 and 8t � 3 we see that

log((di+1)t)

t
(⇠+1)

✓
1� (⇣�1)2

16

◆ is monotonically decreasing. Thus we have
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t
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⇣
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16

⌘  1.362 log(3(di + 1)) +

Z T�1

3

log ((di + 1)t)

t2
dt (59)

Let z = (di + 1)t. Then we have
Z T�1

3

log ((di + 1)t)

t2
dt = (di + 1)

Z (di+1)(T�1)

3(di+1)

log z

z2
dz (60)

= (di + 1)


� log z

z
� 1

z

�(di+1)(T�1)

3((di+1)

(61)

Thus we have
Z T�1

3

log ((di + 1)t)

t2
dt  (di + 1)


log(di + 1)

3(di + 1)
+

1

3(di + 1)

�
(62)

=
1

3
log(di + 1) +

1

3
(63)

Recall that For ⇣ = 1.3 we have 1
log ⇣ < 8.78. Thus the proof of Lemma 4 follows from (59) and

(63).

Now we prove Theorem 1 as follows. Recall that group regret can be given as RegG(T ) =PN
i=1

P
k>1 �k · E

⇥
ni
k(t)

⇤
. Thus using Lemmas 2, 3 and 4 we obtain

RegG(T )  8(⇠ + 1)�2
k

 
NX
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! 
X

k>1

log T

�k

!
(64)

+5N
X

k>1

�k + 4
NX

i=1

(3 log(3(di(G) + 1)) + (log (di(G) + 1)))
X

k>1

�k (65)

B Proof of Theorem 2
In this section we consider the case where agents pass messages up to � hop neighbors with each hop
adding a delay of 1 time step. Let C� be a non overlapping clique covering of G� . For any C 2 C�

and i, j 2 C let �i = maxj2C d(i, j) be the maximum distance (in graph G) between agent i and
any other agent j in the same clique in graph G� . Let 1{(i, j) 2 E⌧ 0,⌧} is a random variable that
takes value 1 if at time ⌧ agent i receives the message initiated by agent j at time ⌧ 0. Recall that each
communicated message fails with probability 1� p and each agent i incorporates the messages it
receives from its neighbors with probability pi.

We follow an approach similar to proof of Theorem 1. We star by providing a tail probability bound
similar to Lemma 3.
Lemma 5. Let di(G�) be the degree of agent i in graph G� . For any �k > 0 some constant ⇣ > 1
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Proof. For all k let Xi
k(t) for all i, t be iid copies of Xk. Then we have Xi

t1{Ai(t) = k} =
Xi

k(t)1{Ai(t) = k}. Recall that reward distribution of arm k has mean µk and variance proxy
�k. Thus 8i, t we have
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✓
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Define local history at every agent i as follows

Hi
t := �

⇣
Xi

⌧ 0 , Ai(⌧
0), Xj

⌧ 01{(i, j) 2 E⌧ 0,⌧}, Aj(⌧
0)1{(i, j) 2 E⌧ 0,⌧}, 8 ⌧ 0, ⌧ 2 [t], j 2 Ni(G�)

⌘
.

(68)

Since 1{Aj(⌧ 0) = k}1{(i, j) 2 E⌧ 0,⌧} for j 2 Ni(G�) is a Hi
⌧�1 measurable random variable, we

have 8⌧ 0  ⌧

E
⇣
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⇣
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�
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✓
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k

2
1{Aj(⌧

0) = k}1{(i, j) 2 E⌧ 0,⌧}
◆
. (71)

Define a new random variable such that 8⌧ > 0 and ⌧ 0  ⌧

Y i
k (⌧) =

NX

j=1

⌧X

⌧ 0=1

⇣
Xj

k(⌧
0)1{Aj(⌧
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0) = k}1{(i, j) 2 E⌧ 0,⌧}. (74)

Note that E
�
Y i
k (⌧)

�
= E

�
Y i
k (⌧)|Hi

⌧�1

�
= 0. Let Zi

k(t) =
Pt

⌧=1 Y
i
k (⌧). For any � > 0
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⇣
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1{Aj(⌧
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1

A . (80)

Equality (a) follows from the fact that 8⌧ 0  ⌧ random variablesn
exp

⇣
�
⇣
Xj

k(⌧
0)� µk

⌘
1{Aj(⌧ 0) = k}1{(i, j) 2 E⌧ 0⌧}

⌘oN

j=1
are conditionally indepen-

dent with respect to Hi
⌧�1. Since 1{Aj(⌧ 0) = k},1{(i, j) 2 E⌧ 0,⌧} are Hi

⌧�1 measurable, and
so

E

0
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@�Y i
k (⌧)�

�2�2
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Let N i
k(t) =

Pt
⌧=1

P⌧
⌧ 0=1

PN
j=1 1{Ai(⌧ 0) = k}1{(i, j) 2 E⌧ 0,⌧}. Further, using the tower prop-

erty of conditional expectation we have

E
✓
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✓
�Zi
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◆����H
i
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◆
 exp
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Repeating the above step t times we have

E
✓
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✓
�Zi

k(t)�
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k

2
N i
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◆◆
 1. (83)

Note that we have
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✓
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2
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q
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!
. (86)

Fix a constant ⇣ > 1. Then 1  N i
k(t)  ⇣Dt where Dt =

log((di(G�)+1)t)
log ⇣ . For �l = 2

�k

q
#
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and ⇣l�1  N i
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+
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where  = 1

�2
k

⇣
⇣

1
4 +⇣� 1

4

⌘2 .

Then we have
(

Zi
k(t)p
N i

k(t)
�
p
#

)
⇢ [Dt
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� 2#

�l
p
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+
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q
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= [Dt
l=1

⇢
�lZ

i
k(t)�

�2l �
2
k

2
N i

k(t) � 2#

�
. (89)

Recall from the Markov inequality that P(Y � a)  E(Y )
a for any positive random variable Y . Thus

from (89) and Markov inequality we get,

P

 
Zi
k(t)p
N i

k(t)
�
p
#

!


DtX

l=1

exp(�2#). (90)

Then we have,

P

 
Zi
k(t)

N i
k(t)

�

s
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k(t)

!


DtX

l=1

exp(�2#) (91)

Recall that 8⇣ > 1 we have

4
⇣
⇣

1
4 + ⇣�

1
4

⌘2 � 1� (⇣ � 1)2

16
(92)

Substituting # = 2�2
k(⇠ + 1) log t we get

P

 ���bµi
k(t)� µk

��� > �k

s
2(⇠ + 1) log t

N i
k(t)

!
 log((di(G�) + 1)t)

log ⇣

1

t
(⇠+1)

⇣
1� (⇣�1)2

16

⌘ . (93)

This concludes the proof of Lemma 5.

We prove a Lemma similar to Lemma 2 for message-passing as follows.
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Lemma 6. Let �̄(G�) is the clique number of graph G� . Let ⌘k =
⇣

8(⇠+1)�2
k

�2
k

⌘
log T. Then we have

NX

i=1

E[ni
k(T )] 

 
NX

i=1

(1� pip
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i2[N ]
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�i

!
⌘k +N(� + 1)+ (94)

+
NX

i=1

T�1X

t=1

⇥
P
�
bµi
1(t)  µ1 � Ci

1(t)
�
+ P

�
bµi
k(t) � µk + Ci

k(t)
�⇤

(95)

Proof. Note that for each suboptimal arm k > 1 we have
NX

i=1

E[ni
k(T )] =

NX

i=1

TX

t=1

P (Ai(t) = k) =
X

C2C�

X

i2C

TX

t=1

P (Ai(t) = k) . (96)

Let ⌧k,C denote the maximum time step when the total number of times arm k has been played by
all the agents in clique C is at most ⌘k + |C| times. This can be stated as ⌧k,C := max{t 2 [T ] :P

i2C n
i
k(t)  ⌘k + |C|}. Then, we have that ⌘k <

P
i2C n

i
k(⌧k,C)  ⌘k + |C|.

For each agent i 2 C let

N̄ i
k(t) :=

X

j2C

tX

⌧=1

⌧X

⌧ 0=1

1{Aj(⌧
0) = k}1{(i, j) 2 E⌧ 0,⌧},

denote the sum of the total number of times agent i pulled arm k and the total number of observations
it received from agents in its clique about arm k until time t. Define ⌧̄ ik,C := max{t 2 [T ] : N̄ i

k(t) 
⌘k}. For each agent i 2 [N ] let ⌧ ik,C = max{⌧k,C + �i � 1, ⌧̄ ik,C}.

Note that N i
k(t) � N̄ i

k(t), 8t, hence for all i 2 C we have N i
k(t) > ⌘k, 8t > ⌧ ik,C . Here we consider

that ⌧̄ ik,C � ⌧k,C , 8i. From regret results it follows that regret for this case is greater than the regret
for the case where ⌧̄ ik,C < ⌧k,C for some (or all) i.

We analyse the expected number of times agents pull suboptimal arm k as follows,

X

C2C�

X

i2C

TX

t=1

1{Ai(t) = k} (97)

=
X

C2C�

X

i2C

⌧k,CX
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⌧ i
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X
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(⌘k + |C|) +
X
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X

i2C

⌧ i
k,CX
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1{Ai(t) = k} (99)

+
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X
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t>⌧ i
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1{Ai(t) = k}1
�
N i

k(t� 1) > ⌘k
 
. (100)

Taking expectation we have

X

C2C�

X

i2C
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P (Ai(t) = k) (101)


X

C2C�

(⌘k + 2|C|) +
X
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X

i2C

⌧ i
k,CX

t>⌧k,C

P (Ai(t) = k) (102)

+
X

C2C�

X

i2C

T�1X

t>⌧ i
k,C

P
�
Ai(t+ 1) = k,N i

k(t) > ⌘k
�
. (103)
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Case 1. For agent i we have that ⌧k,C + �i � 1 � ⌧̄ ik,C then we have ⌧ ik,C = ⌧k,C + �i � 1. Then we

have
P⌧ i

k,C
t>⌧k,C

1{Ai(t) = k}  �i � 1

Case 2. For agent i we have that ⌧k,C + �i � 1 < ⌧̄ ik,C then we have ⌧ ik,C = ⌧̄ ik,C .

⌧ i
k,CX

t>⌧k,C

1{Ai(t) = k} (104)

= Ñ i
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 Ñ i
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i
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j 6=i,j2C
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Taking the expectation we have

X
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X
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X
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�i
X
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E
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0
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0

@
X

j2C
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�j � max
i2[N ]

pip
�i

1

A

1

A ⌘k +
X

i2C
(�i � 1). (109)

Substituting these results to (103) we get
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+
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P
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This concludes the proof of Lemma 6.

Now we prove Theorem 2 as follows. Thus using Lemmas 4, 5 and 6 we obtain
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X
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C Proof of Theorem 3
Agents receive information from their neighbors with a stochastic time delay. Let ND be the maximum
number of outstanding arm pulls by all the agent. We start by proving a result similar to Lemma 2.

Lemma 7. Let �̄(G) is the clique number of graph G. Let ⌘k =
⇣

8(⇠+1)�2
k

�2
k

⌘
log T. Then we have
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(117)

Proof. Let C be a non overlapping clique covering of G. Note that for each suboptimal arm k > 1
we have
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P (Ai(t) = k) =
X
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X
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TX
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P (Ai(t) = k) . (118)

Let ⌧k,C denote the maximum time step such that the total number of arm pulls shared by agents
in clique C from arm k is at most ⌘k + |C|. For each agent i 2 C let Di(⌧k,C) be the number of
outstanding messages by agent i from arm k at time ⌧k,C . This can be stated as ⌧k,C := max{t 2
[T ] :

P
i2C n

i
k(t)  ⌘k +

P
i2C Di(⌧k,C) + |C|}. Then, we have that ⌘k +

P
i2C Di(⌧k,C) <P

i2C n
i
k(⌧k,C)  ⌘k +

P
i2C Di(⌧k,C) + |C|.

Note that for all i 2 C we have N i
k(t) > ⌘k, t > ⌧k,C .

We analyse the expected number of times agents pull suboptimal arm k as follows,
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=
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Taking expectation we have
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Di(t)

#
+ 2N +

NX

i=1

T�1X
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P
�
Ai(t+ 1) = k,N i

k(t) > ⌘k
�

(123)

The proof of Lemma 7 follows from Lemma 1 and (123).

We upper bound the expected number of outstanding messages by any agent using results by [18] as
follows.
Lemma 8. . Let Dtotal be the maximum number of outstanding messages by all the agent at any time

step t 2 [T ] and let E[⌧ ] be the expected delay of any message. Then with probability at least 1� 1
T

we have

E[Dtotal]  NE[⌧ ] + 2 log T + 2
p

NE[⌧ ] log T . (124)

Proof. The proof directly follows from Lemma 2 by [18].
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From Lemmas 7, 3, 4 and 8 we obtain with probability at least 1� 1
T
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X
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D Proof of Theorem 4
We first restate the result for clarity.
Theorem 7. Algorithm 1 obtains, with probability at least 1� �, cumulative group regret of

RegG(T ) = O
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A .

Proof. We decompose the regret based on the dominating set and epoch. Let I ✓ V be an dominating
set of G� and Mi be the number of epochs run for the subgraph covered by agent i. Observe that the
total regret can be written as,
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A . (128)

First, observe that Aj(t) = Ai(t� d(i, j)) for all j 2 Ni(G�) and all t 2 [d(i, j), T ]. Rearranging
the above, we have,
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(132)

Now, observe that we run two algorithms in tandem for each subgraph of G induced by N+
i (G�).

Let us split the total number of rounds of the game into epochs that run arm elimination and the
intermittent periods of running UCB1. We denote the cumulative regret in the ith induced subgraph
from rounds � to T as RegN+

i (G�)
(T ), and analyse it separately.
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Here Mi denotes the rounds in which arm elimination is played in the agents in the ith induced
subgraph. Since each UCB1 period after each epoch is of length 2�, we have at most 2�Mi rounds of
isolated UCB1. We analyse the second term in the bound first. By the standard analysis of the UCB1
algorithm [3], we have that the leader agent, i.e. agent i, incurs O(K log T/�) regret. We therefore
have,
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Now, we analyse the first term in the regret bound. By Theorem 8, we have that with probability at
least 1� � simultaneously for each induced subgraph corresponding to agent i 2 I,
KX
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�k

 
X

m2Mi

E
⇥
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!!

= O
 
�✏ ·KT |N+

i (G�)|+
X

k>1

log T

�k
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�
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◆!
.

Summing over each leader agent, we have that with probability at least 1� �,

X

i2I

KX
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⇥
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log T
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Next, observe that for all i, |Mi|  log(MT ) by Lemma 9. Replacing this result in the UCB1 regret
for each leader, and summing over all i 2 I, we have,

RegG(T ) = O
 
�✏ ·KTN +

X

k>1

 (G�)
log T

�k
log

✓
K (G�) log T

�

◆
+N�k +

N log(N� log T )

�k

!
.

Lemma 9. For any leader i, let Li(m) denote the length of the mth
epoch of arm elimination. Then,

we have that Li(m) satisfies,

22m�2�  Li(m)  K22m�2�.

Furthermore, the number of arm elimination epochs for agent i satisfies Mi  log2(T � 2�).

Proof. The proof closely follows the proof of Lemma 2 in [15]. For any leader i, let k̂ be the
optimal arm under ri(m), therefore ri?(m)� ri

k̂
(m)  0 and therefore �i

k̂
(m) = 2�m, and therefore

Li(m+ 1) � ni
k̂
(m+ 1) = �(�i

k̂
(m))�2 � 22m�. Next, observe that �i

k(m) � 2�m for each arm
k, and therefore ni

k(m+ 1)  22m�, giving the upper bound.

For the second part, observe that
PMi

m=1 L
i(m)  T �2�Mi  T �2�, and that Li(m) � 22m�2�

|N+
i (G�)|

.
Summing over m 2 [Mi] and taking the logarithm provides us with the result.

Lemma 10. Denote E to be the event for which,
8
>>><

>>>:
8m, i, k,

��rik(m)� µk

��  2�✏+
�i

k(m� 1)
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^ X

t2Mi(m)

j2N+
i (G�)

Xj
k(t+ d(i, j))  2ni

k(m)

9
>>>=

>>>;

Then, we have that P(E) � 1� �.

Proof. Recall that at each step in the epoch, the leader agent picks an arm k with probability
pik(m) = ni

k(m)
Li(m) , and let Xj

k(t) denote whether agent j picks arm k at time t. Let Cj!i(t) =

r̃j!i(t)� rj(t) denote the corruption in the transmitted reward from agent j when it reaches agent i,
and Mi(m) = [Ti(m� 1) + 1, · · · , Ti(m)] denote the Li(m) steps in the mth epoch for the arm
elimination algorithm run by the leader i. We then have,

rik(m) =
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0

BBB@
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t2Mi(m)

j2N+
i (G�)

Xj
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For simplicity, let
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k(m) =

X
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i (G�)

Xj
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We can bound the first summation by a multiplicative version of the Chernoff-Hoeffding bound [2] as
each rj is bounded within [0, 1] and Xi

k is a random variable in {0, 1} with mean pik(m)Li(m)µk 
ni
k(m). We obtain that with probability at least 1� �/2,

����
Ai

k(m)

ni
k(m)

� µi

���� 

s
3 log( 4� )

ni
k(m)

.

To bound the second term, we must construct a filtration that ensures that the corruption is measurable.
For the set N+

i (G�), consider an order � of the N agents, such that �[1] = i, followed by the
agents at distance 1 from i, then the agents at distance 2, and so on until distance �, and next
consider the ordering {r̃⌧}

|N+
i (G�)|t

⌧=1 of the rewards generated by all agents within Mi(m) where r̃⌧
is the reward obtained by agent j = (�(⌧) mod |N+

i (G�)|) during the round b ⌧
|N+

i (G�)|
c+ d(i, j),

and similarly consider an identical ordering of the pulled arms { eX⌧}
|N+

i (G�)|t
⌧=1 . Now consider

the filtration {Ft}
T |N+

i (G�)|
t=1 generated by the two stochastic processes of r̃ and eX . Clearly, the

corruption C�(j)!i(t) is deterministic conditioned on Ft�1. Moreover, we have that the pulled arm
satisfies, for all ⌧ 2 [|N+

i (G�)|t] that E[X̃⌧ |F⌧�1] = pik(m). Furthermore, since the corruption
in each round is bounded and deterministic, we have that the sequence Z⌧ = ( eX⌧ � pik(m)) · eC⌧

(where eC⌧ is the corresponding ordering of corruptions) is a martingale difference sequence with
respect to {F⌧}T⌧=1. Now, consider the slice of [|N+

i (G�)|t] that is present within Bi
k(m), and let

the corresponding indices be given by the set fMi(m). Using the fact that the observed rewards are
bounded, we have that,
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We then have by Freedman’s inequality that with probability at least 1� �
4 ,

Bi
k(m)

ni
k(m)

 pik(m)

ni
k(m)

0

@
X

⌧2 fMi(m)

eC⌧ +
�CLi(m) + log(4/�)

ni
k(m)

1

A  2�✏+

s
log(4/�)

16ni
k(m)

.

The last inequality follows from the fact that ni
k(m) � � � 16 ln(4/�). With the same probability,

we can derive a bound for the other tail. Now, observe that since each Xi
k is a random variable with

mean pik, we have by the multiplicative Chernoff-Hoeffding bound that the probability that the sum
of Li(m) i.i.d. bernoulli trials with mean pik(m) is greater than 2pik(m) · Li(m) = 2ni

k(m) is at
most 2 exp(�ni

k(m)/3)  2 exp(��/3)  �.

To conclude the proof, we apply each of the above bounds with � = �
2K↵(G�) log T to each epoch and

arm. Observe that � � 4 exp
�
� �

16

�
. Now, since log(4/�) = �/(32)2 we have that,
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The proof concludes by a union bound over all epochs, arms and agents in I.

Lemma 11. If the event E (Lemma 10) occurs then for each i 2 I,m 2Mi,

�2�✏� �i
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8
 ri?(m)� µ?  2�✏.

Proof. Observe that ri?(m) � rik?(m)� 1
16�

i
k?(m� 1). This fact coupled with the fact that E holds

provides the lower bound. The upper bound is obtained by observing that,
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Lemma 12. If the event E (Lemma 10) occurs then for each i 2 I,m 2Mi,
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2
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Proof. We first bound �i
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n�m) under E by induction. Observe
that when m = 1 we have that trivially �i

k(1)  1  2 · 2�1. Now, if the bound holds for epoch
m� 1 for any agent, we have by Lemma 11,
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Replacing the induction hypothesis in the upper bound, we have,
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Now, we bound the gaps as,
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The last inequality follows from Lemma 11 and the event E . Replacing the bound from induction we
obtain,

�i
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Theorem 8. The cumulative regret for all agents within each independent set corresponding to leader

i 2 I satisfy simultaneously, with probability at least 1� �,
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Proof. We bound the regret in each epoch m 2Mi for each arm k 6= k? based on three cases.

Case 1. 0  �k  4/2m: We have that ni
k(m)  �22(m�1) since �i

k(m� 1) � 2m�1, and hence,
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Pm

n=1 8
n�m  �k/64: We have by Lemma 12,
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Therefore, we have that ni
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, and hence the regret is,
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Case 3. �k > 4/2m and �✏
Pm

n=1 8
n�m > �k/64: This implies that �k  64�✏ ·

Pm
n=1 8

n�m.
Therefore,
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Here the last inequality follows from Lemma 9. Putting it together and summing over all epochs and
arms, we have with probability at least 1� � simultaneously for each i 2 I,
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E Proof of Theorem 5
In this section we consider that each agent passes messages upto �-hop neighbors. Agents do not use
the messages received during last �̄ number of time steps.

Lemma 13. Let �̄(G�) is the clique number of graph G� . Let ⌘k =
⇣

8(⇠+1)�2
k

�2
k

⌘
log T. Then we

have
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(135)

Proof. Let C� be a non overlapping clique covering of G� . Note that for each suboptimal arm k > 1
we have

NX
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E[ni
k(T )] =

NX

i=1
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P (Ai(t) = k) =
X

C2C�

X

i2C

TX
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P (Ai(t) = k) . (136)

Let ⌧k,C denote the maximum time step when the total number of times arm k has been played
by all the agents in clique C is at most ⌘k + (|C| � 1)(�̄ + � � 1) + |C| times. This can be stated
as ⌧k,C := max{t 2 [T ] :

P
i2C n

i
k(t)  ⌘k + (|C| � 1)(�̄ + � � 1) + |C|}. Then, we have that

⌘k + (|C|� 1)(�̄ + � � 1) <
P

i2C n
i
k(⌧k,C)  ⌘k + (C � 1)(�̄ + � � 1) + |C|.

For each agent i 2 C let
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j 6=i,j2C

t��̄X

⌧=1

⌧X

⌧ 0=1

1{Aj(⌧
0) = k}1{(i, j) 2 E⌧ 0,⌧},

denote the sum of the total number of times agent i pulled arm k and the total number of observations
it received from agents in its clique about arm k until time t.

Note that for all i 2 C we have N i
k(t) > ⌘k, 8t > ⌧k,C .

We analyse the expected number of times agents pull suboptimal arm k as follows,
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28



=
X

C2C�

X

i2C

⌧k,CX

t=1

1{Ai(t) = k}+
X

C2C�

X

i2C

TX

t>⌧ i
k,C

1{Ai(t) = k} (138)


X

C2C�

(⌘k + (|C|� 1)(�̄ + � � 1) + 2|C|) +
X

C2C�

X

i2C

T�1X

t>⌧k,C

1{Ai(t+ 1) = k}1
�
N i

k(t) > ⌘k
 
.

(139)

Taking expectation we have
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= �̄(G�)⌘k + (N � �̄(G�)) (�̄ + � � 1) + 2N +
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X

i2C

T�1X
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P
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k(t) > ⌘k
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The proof of Lemma 13 follows from Lemma 1 and (142).

Now we prove Theorem 5 as follows. Thus using Lemmas 4, 5 and 13 we obtain

RegG(T )  8(⇠ + 1)�2
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+ 4
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(3 log(3(di(G�) + 1)) + (log (di(G�) + 1)))
X
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�k (144)

F Lower Bounds
Theorem 9 (Minimax Rate). For any multi-agent algorithm A, there exists a K�armed environment

over N agents with �k  1 such that,

RegG(A, T ) > c
q
KN(T + ed(G)).

Furthermore, if A is an agnostic decentralized policy, there exists a K � armed environment over N
agents with �k  1 for any connected graph G and � � 1 such that, for some absolute constant c0

RegG(A, T ) > c0
q
↵?(G�)KNT.

Where d̃(G) =
Pd?(G)

i=1 d̄=i · i denotes the average delay incurred by message-passing across the

network G, d=i =
1
N

P
i,j {d(i, j) = i} denotes the number of agent pairs that are at distance

exactly i, and ↵?(G�) =
N

1+d�
is Turan’s lower bound [32] on ↵(G�).

Proof. Our approach is an extension of the single-agent bandit lower bound [6]. Let A be a deter-
ministic (multi-agent) algorithm, and let the empirical distribution of arm pulls across all agents be
given by pi(t) =

�
pi1(t), ..., p

i
K(t)

�
, where pk(t) =

nk
i (T )
T . Consider the random variable J i

t drawn
according to pi(t) and Pi denote the law of Jt when drawn from arm k having parameter 1+"

2 (and
other arms with parameter 1�"

2 ). We have,
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Since on pulling any arm k0 6= k, we obtain regret ", we therefore have for the group regret,
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By Pinsker’s inequality and averaging over all k 2 [K], we have for any i 2 V ,
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We now bound the R.H.S. using the chain rule for KL-divergence. Since we assume that A is
deterministic, we have that the rewards obtained by the agent i until time t from its neighborhood
alone determine uniquely the empirical distribution of plays. Here, the analysis diverges from that of
the single-agent bandit as a richer set of observations is available to each agent. Denote the set of
rewards observed by agent i at instant ⌧ be given by Oi(⌧). First, observe that since each reward is
i.i.d., we have for any k,

KL(P0(Oi(⌧)),Pk(Oi(⌧))) = |Oi(⌧)| · KL
✓
1� "
2

,
1 + "

2

◆

For k = 0 the above divergence is 0. When we consider the standard single-agent setting, |Oi(⌧)| = 1,
recovering the usual bound. Now, by the chain rule, we have that, at round t for any agent i, and arm
k 2 [K],
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Replacing this result in the earlier equation, we have by the concavity of KL divergence:
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Now, observe that the KL divergence between Bernoulli bandits can be bounded as

KL(p, q)  (p� q)2

q(1� q)
.

Substituting we get,
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Replacing this in the regret and using " 6 1/2, we get that,

Ek

"
TX

t=1

 
N · rk(t)�

X

i2V
rAi(t)

!#

30



> " · T ·
X

i2V

0

@1� 1

K
�

s
4"2(NT �

Pd?(G)
j=1 d=j(i) · j)

(1� "2)K

1

A

> " · T ·
X

i2V

0

@1

2
� 4"

s
(NT �

Pd?(G)
j=1 d=j(i) · j)
3K

1

A

=
" ·NT

2
� 4"2NTp

K

0

@
X

i,j2V
T � d(i, j)

1

A
1/2

Setting " = c ·
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where c is a constant to be tuned later, we have,
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This proves the first part of the theorem. Now, when the policies are decentralized and agnostic, the
chain rule step can be factored as follows.

KL(P0(t),Pk(t)) = KL(P0(1),Pk(1)) +
tX

⌧=2

|Oi(⌧)|KL
✓
1� "
2

,
1 + "

2

◆

= KL

✓
1� "
2

,
1 + "

2

◆
E0

2

4
X

j2N+
� (G)

nk
j (t� d(i, j))

3

5 .

Note that here instead of taking the cumulative sum over all V we select only those agents that
are within the ��neighborhood of i in G, since conditioned on these observations the rewards of
the agents are independent of all other rewards (by Assumption), and hence the higher-order KL
divergence terms are 0. Replacing this in the analysis gives us the following decomposition (after
similar steps as the first part):
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r

NKP
i2V

P
j:N+

� (i)
T�d(i,j) where c is a constant to be tuned later, we have,

Ek

"
TX

t=1

 
N · rk(t)�

X

i2V
rAi(t)

!#
>
✓
c

2
� 4c2p

3

◆
·
s

N3T 2
P

i2V
P

j2N+
i (G�)

T � d(i, j)

>
✓
c

2
� 4c2p

3

◆
·

s
N3TP

i2V 1 + di(G�)

> 3

4

✓
c

2
� 4c2p

3

◆q
↵?(G�)NT

> 0.019
q
↵?(G�)NT.

The constants in both settings are obtained by optimizing c over R. Extending this to random (instead
of deterministic) algorithms is straightforward via Fubini’s theorem, see Theorem 2.6 of Bubeck
[5].
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G Pseudo code
Algorithm 2: RCL-LF
Input: Arms k 2 [K], variance proxy upper bound �2, parameter ⇠
Initialize: N i

k(0) = bµi
k(0) = Ci

k(0) = 0, 8k, i
for each iteration t 2 [T ] do

for each agent i 2 [N ] do
/* Sampling phase */
if t = 1 then

Ai
t  RANDOMARM ([K])

end
else

Ai
t  argmaxk bµi

k(t� 1) + Ci
k(t� 1)

end
/* Send messages */

CREATE
⇣
mi

t :=
D
Ai

t, r
i
t, i, t

E⌘

SEND
�
Mi

t  Mi
t�1 [mi

t

�

end
for each agent i 2 [N ] do

/* Receive messages */
for each neighbor j 2 Ni(G�) do

/* Discard messages with probability 1� pi */
for each message m 2Mj

t do
with probability pi, Mi

t  Mi
t [m

with probability 1� pi, Mi
t  Mi

t
end

end
/* Update estimates */
for each arm k 2 [K] do

CALCULATE
�
N i

k(t), bµi
k(t), C

i
k(t)

�

end
end

end
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