
A Details of the Experiments

A.1 A Synthetic Linear MDP Example

We construct a synthetic linear MDP example based on a hard example proposed in Section 5 in
[10], which was used to illustrate their lower bound. However, the feature dimension d = 2 in their
illustrative example is too small to show discrepancy between our algorithm and theirs. Therefore,
we construct an example sharing a similar structure but of much larger feature dimension and size of
action space.

MDP instance. In specific, our MDP instance contains |S| = 2 states and |A| = 100 actions, and
the feature dimension is d = 10. We denote S = {0, 1} and A = {0, 1, . . . , 99} respectively. For
each action a ∈ [99], we represent it by a binary encoding vector a ∈ R8 with each entry being either
1 or −1. With a slight abuse of notation, we interchangebly use a and and its vector representation a.

We define

δ(s, a) =

{
1 if 1{s = 0} = 1{a = 0},
0 otherwise.

Then the feature mapping is given by

φ(s, a) = (a>, δ(s, a), 1− δ(s, a))> ∈ R10.

Let {αh}h∈[H] be a sequence of integers taking values in {0, 1}. For each s ∈ S, the vector-valued
measures are defined as

µh(s) = (0, . . . , 0, (1− s)⊕ αh, s⊕ αh)

for all h ∈ [H], where⊕ denotes the ’XOR’ sign. Finally, we define γh ≡ γ = (0, . . . , 0, 1, 0) ∈ R10.
Thus the transition is Ph(s′ | s, a) = 〈φ(s, a),µh(s′)〉 and the expected reward is rh(s, a) =
〈φ(s, a),γ〉. It is straightforward to verify that this is a valid time-inhomogeneous linear MDP.

Behavior and target policy. The target policy is given by π(s) = 0 for both s = 0, 1. The behavior
policy is determined by a parameter p ∈ (0, 1): with probability 1− p, the behavior policy chooses
a = 0, and with probability (1 − p)/99 it chooses a = i for each i ∈ [99]. This p can be used to
control the distribution shift between the behavior and target policies. Note that p close to 0 induces
small distribution shift, while larger p leads to large distribution shift. Moreover, we set the initial
distribution ξ1 to be uniform over S.

We remark that in our implementation of VA-OPE we do not apply data splitting, i.e., D = Ď and
therefore no data is wasted. As is mentioned in the main text, the only purpose of the data splitting is
to avoid an otherwise lengthy theoretical analysis. Therefore, for each fixed K, both algorithms use a
dataset of size K sampled under the behavior policy.

A.2 Impact of the Planning Horizon

We first study the impact of the planning horizon H on the performance. We run our algorithm
VA-OPE and the baseline method FQI-OPE with λ = 1 on the linear MDP instance constructed in the
previous subsection under different values of H . We fix the initial distribution to be ξ1 = [1/2, 1/2]
and p to be 0.6. The results are reported in Figure 2.

To explain the results, let us first recall the dominant term in our error bound and that in [10] (ignoring
the logarithmic and constant factors):

DVA =

∑H
h=1 ‖vh‖Λ−1

h√
K

vs DFQI =

∑H
h=1(H − h+ 1)‖vπh‖Σ−1

h√
K

. (A.1)

As mentioned in the discussion following Theorem 4.1, it holds that DVA ≤ DFQI. Indeed, this is
reflected by the error plots where the error of VA-OPE is smaller than that of FQI-OPE except for very
small K.

Moreover, as careful readers may have already observed, the discrepancy between DVA and DFQI
would be amplified as the value of H increases. Again, our simulation results confirm this theoretical
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(f) H = 60.

Figure 2: OPE error vs.
√
K. The results are averaged over 50 trials and the error bars are chosen to be

the empirical [10%, 90%] confidence intervals. For a proper comparison, each sub-plot corresponds
to a different setting of H by keeping everything else the same: |S| = 2, |A| = 100, p = 0.6.

observation as we can see by comparing the subplots of Figure 2. For larger values of H , VA-OPE
tends to enjoy a much faster convergence rate. We would like to emphasize that this performance
gain is especially beneficial for long-horizon tasks.

These findings also shed light on the minimax optimality of the OPE problem. The previous
FQI-OPE algorithm is nearly minimax optimal only for a subclass of linear MDPs where VhV πh+1 =

Θ((H − h)2). As suggested by our theory and confirmed by the numerical experiments, our
algorithm VA-OPE achieves a tighter instance-dependent error for general linear MDPs. We would
like to establish the universal minimax lower bound in the future work, and we believe that VA-OPE
is a promising candidate for achieving minimax optimality.

We would also like to remark that the width of the error bars of VA-OPE is similar to that of FQI-OPE.
It only appears wider on the plots since the y-axis is log10-scaled.

A.3 Impact of Distribution Shift

We also illustrate the impact of distribution shift between the behavior policy and the target policy on
the performance, which can be controlled by the value of p. In Figure 33, we compare the performance
of VA-OPE and FQI-OPE under different values of p.

The subplots in the same row share the same value of H . It is clear that for larger distribution shift,
the performance of VA-OPE is superior. The reason behind this is that for fixed H , the ratio DFQI/DVA
increases as p increases. We further investigate this in the next subsection.

A.4 Comparison of the Dominant Terms

Finally we compare the dominant terms in the error upper bound of VA-OPE and FQI-OPE as defined
in (A.1). Since both DVA and DFQI are theoretical values as the expectation over the occupancy
measure induced by the transition kernel and the behavior/target policy, we simply estimate them by
averaging over 1,000,000 independent trajectories. As presented in Figure 4, our characterization

3Note that the range of the y-axis differs among different rows.
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(a) H = 5, p = 0.2.

0 25 50 75 100125150175200
K

10 3

10 2

10 1

100

101

OP
E 

Er
ro

r

FQI-OPE
VA-OPE

(b) H = 5, p = 0.7.
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(c) H = 5, p = 0.9.
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(d) H = 10, p = 0.2.
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(e) H = 10, p = 0.7.
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(f) H = 10, p = 0.9.
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(g) H = 20, p = 0.2.
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(h) H = 20, p = 0.7.
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(i) H = 20, p = 0.9.
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(j) H = 40, p = 0.2.
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(k) H = 40, p = 0.7.
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(l) H = 40, p = 0.9.

Figure 3: Log-scaled OPE error vs.
√
K under different levels of distribution shift and horizon H .

The level of distribution shift is controlled by the parameter p, where larger p corresponds to larger
distribution shift.
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Figure 4: Ratio between dominant terms vs. H . The results are generated by averaging over 1,000,000
trajectories.

of the distribution shift,
∑H
h=1 ‖vh‖Λ−1

h
, is tighter. This is the main reason for the performance

discrepancy that we have seen in the preceding subsections.

A.5 Hardware Details

All experiments are performed on an internal cluster with CPU and 30 GB of memory.

B Further Comparison with Duan et al. [10]

Consider the dominant term in the OPE error (omiting the logarithmic coefficients) given by Theorem
2 in Duan et al. [10], which was shown to be

∑H
h=1(H − h+ 1)‖vπh‖Σ−1

h
/
√
K from their proof. As

comparison, recall that our dominant term is about
∑H
h=1 ‖vπh‖Λ−1

h
/
√
K. The definition of Σh in

(2.5) and that of Λh in (2.6) immediately imply Σh � [(H − h + 1)2 + 1] ·Λh as σ2
h is bounded

above by (H − h+ 1)2 + 1. Therefore, it holds that
H∑
h=1

(H − h+ 1)‖vπh‖Σ−1
h
≥

H∑
h=1

(H − h+ 1)‖vπh‖Λ−1
h√

(H − h+ 1)2 + 1
. (B.1)

The RHS of (B.1) is close to
∑H
h=1 ‖vπh‖Λ−1

h
if H is large. Moreover, when VhV πh+1 is small, the

RHS of (B.1) can be much smaller than the LHS with appropriate choice of ηh. In other words, our
bound is tighter than that of Duan et al. [10] in all scenarios, especially when VhV πh+1 is small.

Consider, for example, a scenario where the conditional variance of V πh , h ∈ [H] is less than
H − h+ 1, which is smaller than the crude upper bound of (H − h+ 1)2 by a factor of (H − h+ 1).
Then by choosing ηh = 1 and σr = 1, we would have σ2

h ≡ H − h+ 2, and

(H − h+ 1)‖vπh‖Σ−1
h

‖vπh‖Λ−1
h

=
H − h+ 1√
H − h+ 2

,

which suggests that ‖vπh‖Λ−1
h

is smaller than its counterpart by a factor of (H−h+ 1)/
√
H − h+ 2.

Also, as mentioned in the main text, the conditional variance of V πh does not need to be uniformly
smaller than H − h+ 1 for all (s, a) ∈ S ×A. It only needs to be small on average.

Regarding their lower bound (Theorem 3), it only holds for a subclass of all MDP instances where
the conditional variance VhV πh+1 is on the order of (H − h+ 1)2. Indeed, the theorem assumes there
exists a high-value subset of states S and a low-value subset of states S under the target policy π such
that V πh+1(s) ≥ 3

4 (H − h+ 1) if s ∈ S and V πh+1(s) ≤ 1
4 (H − h+ 1) if s ∈ S. They also require

there is non-zero probability p ≥ c > 0 and p ≥ c > 0 of transitting into S and S respectively. These
assumptions immediately imply VhV πh+1 = Ω((H − h + 1)2). Therefore, the prior result is only
(nearly) minimax for a very small class of MDPs. This is confirmed by our numerical experiments in
Appendix A where we compare the OPE error of VA-OPE and FQI-OPE under different settings of
H . The results show that VA-OPE’s advantage over FQI-OPE increases as H becomes larger. It thus
remains open to derive an instance-dependent lower bound that matches our upper bound.
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C The Uniform Convergence Result

C.1 Important Remark

Throughout the appendix, we consider and analyze a slightly more general form of Algorithm 1. We
now explain.

Recall that in (2.7), we define σh(·, ·) as

σh(s, a) =
√

max{1,VhV πh+1(s, a)}+ 1,

and the corresponding estimator is given by

σ̂h(·, ·)←
√

max{1, V̂hV̂ πh+1(·, ·)}+ 1.

Here taking maximum with 1 is to deal with the situation where V̂hV̂ πh+1(·, ·) is close to zero or
negative, and the second 1 is to account for the variance of the rewards. Now as a more general
scheme, we replace both with adjustable parameters: ηh and σ2

r such that ηh ≥ 1 and 0 ≤ σr ≤ 1.
Thereby, for each h ∈ [H], we have

σ̂h(·, ·)←
√

max{ηh, V̂hV̂ πh+1(·, ·)}+ σ2
r .

We allow the flexibility of the choices of {ηh}h∈[H] and σr in part for generality and theoretical
interests. These parameters will appear in the final results for the uniform convergence and the OPE
error bound. The general algorithm is then presented as in Algorithm 2.

Algorithm 2 VA-OPE (general form)

1: Input: target policy π = {πh}h∈[H], datasets D = {{(sk,h, ak,h, rk,h, s′k,h)}h∈[H]}k∈[K] and
Ď = {{(šk,h, ǎk,h, řk,h, š′k,h)}h∈[H]}k∈[K], initial distribution ξ1, ŵπ

H+1 = 0, λ, σr, {ηh}h∈[H]

2: for h = H,H − 1, . . . , 1 do
3: Σ̂h ←

∑K
k=1 φ̌k,hφ̌

>
k,h + λId

4: β̂h ← Σ̂−1
h

∑K
k=1 φ̌k,hV̂

π
h+1(š′k,h)2

5: θ̂h ← Σ̂−1
h

∑K
k=1 φ̌k,hV̂

π
h+1(š′k,h)

6: σ̂h(·, ·)←
√

max{ηh, V̂hV̂ πh+1(·, ·)}+ σ2
r

7: Λ̂h ←
∑K
k=1 φk,hφ

>
k,h/σ̂

2
k,h + λId

8: Yk,h ← rk,h + 〈φπh(s′k,h), ŵπ
h+1〉

9: ŵπ
h ← Λ̂−1

h

∑K
k=1 φk,hYk,h/σ̂

2
k,h

10: Q̂πh(·, ·)← 〈φ(·, ·), ŵπ
h〉, V̂ πh (·)← 〈φπh(·), ŵπ

h〉
11: end for
12: Output: v̂π1 ←

∫
S V̂

π
1 (s) dξ1(s)

Correspondingly, throughout the appendix we redefine for each h ∈ [H]:

σh(s, a) =
√

max{ηh,VhV πh+1(s, a)}+ σ2
r , (C.1)

and thus Λh defined in (2.6) also becomes (ηh, σ
2
r)-related.

Besides generality, this is actually also meaningful, because let’s consider, for example, a situation
where the agent actually knows that the reward is deterministic (i.e. there is no noise in the observed
reward). Then the agent can choose σr = 0 (though this will not give a huge boost to the OPE error
bound since the determinant factor in ‖vπh‖Λ−1

h
is the variance VhV πh+1).

C.2 Recap of Notations

Before presenting the theorems and proof, let’s walk through the algorithm and remind the readers of
the notations.
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Variance estimation Recall the dataset Ď = {Ďh}h∈[H], where Ďh =

{(šk,h, ǎk,h, řk,h, š′k,h)}k∈[K]. For each h, the dataset Ďh is used to compute the function
σ̂h(·, ·), which is an estimator for the conditional variance of V πh+1. To be more clear, let go through
the inner loop of Algorithm 2.

In the main text, due to the space limit, we use the abbreviation:

φ̌k,h = φ(šk,h, ǎk,h).

For each h, the (biased and un-normalized) sample covariance matrix Σ̂h (line 3) is given as

Σ̂h =

K∑
k=1

φ̌k,hφ̌
>
k,h + λId,

and its normalized population counterpart Σh is defined by (2.5) as

Σh = Eπ̄,h
[
φ(s, a)φ(s, a)>

]
.

Then the Algorithm computes V̂hV̂ πh+1, which is an estimator of VhV πh+1, as the following:

[V̂hV̂ πh+1](·, ·) = 〈φ(·, ·), β̂πh〉[0,(H−h+1)2] −
[
〈φ(·, ·), θ̂πh〉[0,H−h+1]

]2
,

where β̂πh and θ̂πh are computed in Algorithm 2 based on the estimated value function V̂ πh+1 from last
iteration, and the dataset Ďh. Finally, the function σ̂h is computed.

Value function estimation Once we have the variance estimator σ̂h, we can apply weighted
regression to estimate the value function V πh using the dataset Dh = {(sk,h, ak,h, rk,h, s′k,h)}k∈[K].
This is described by line 7 to 10 in Algorithm 2. Please note that we have adopt the abbreviation:

φk,h = φ(sk,h, ak,h), σ̂k,h = σ̂h(sk,h, ak,h).

Note that the weighted sample covariance matrix Λ̂h in Algorithm 2 is given as

Λ̂h =

K∑
k=1

φk,hφ
>
k,h/σ̂

2
k,h + λId,

with its normalized population counterpart Λh defined by (2.6) as

Λh = Eπ̄,h
[
σh(s, a)−2φ(s, a)φ(s, a)>

]
.

Also note that in the offline dataset D, for each Dh and the data point (sk,h, ak,h, rk,h, s
′
k,h) in Dh,

the reward rk,h is the random reward given by rk,h = rh(sk,h, ak,h) + εk,h, where rh(·, ·) is an
unknown deterministic function representing the (conditional) mean and εk,h is some independent
random noise. We only observe rk,h and not εk,h.

Function classes Based on this characterization of the value functions, we define the following
function class for each h ∈ [H] and L > 0:

Vh(L) :=

{
V (s) = 〈φπh(s),w〉

∣∣∣∣w ∈ Rd, ‖w‖2 ≤ L, sup
s∈S
|V (s)| ≤ H − h+ 2

}
. (C.2)

One can see that functions in Vh(L) are parametrized by vectors w ∈ Rd. From Proposition 2.2, it is
clear that V πh ∈ Vh(2H

√
d) for all h ∈ [H].

We define the following function class for each h ∈ [H] and L1, L2 > 0:
Th(L1, L2)

:=

{
σ(·, ·) =

√
max

{
ηh, 〈φ(·, ·),β〉[0,(H−h+1)2] +

[
〈φ(·, ·),θ〉[0,H−h+1]

]2}
+ σ2

r

∣∣∣∣∣ ‖β‖ ≤ L1, ‖θ‖ ≤ L2

}
,

(C.3)

which is parametrized by β, θ ∈ Rd. Later we will see that, with high probability, for all h ∈ [H],

we have σ̂h ∈ Th(L1, L2) with above choice of L1 = H2
√

Kd
λ and L2 = H

√
Kd
λ , which is an

immediate result by Theorem C.2 and Lemma H.15. Also note that σh ∈ Th(L1, L2), which is clear
from (3.4).

19



C.3 Formal Statement of Uniform Convergence Theorem

A weaker data sampling assumption. Recall Assumption 2.5 on the data sampling process intro-
duced in the main text. It turns out that the uniform convergence result (Theorem C.2) holds under a
weaker assumption which is the following.
Assumption C.1 (Trajectory-sampling Data). We have two offline datasets D and Ď where each
dataset consists of K trajectories with horizon length equal to H . Each trajectory is independently
generated by the behavior policy π̄. That is, D = {Dk}k∈[K], where each Dk is given by Dk =
{(sk,h, ak,h, rk,h)}h∈[H] such that ak,h ∼ πh(·|sk,h) and sk,h+1 ∼ Ph(·|sk,h, ak,h). For each
(k, h) ∈ [K] × [H], the random reward rk,h = rh(sk,h, ak,h) + εk,h, where rh(sk,h, ak,h) is the
(unknown) expected reward and εk,h is the noise. Similarly, we have Ď = {Ďk}k∈[K], where
Ďk = {(šk,h, ǎk,h, řk,h)}h∈[H]. Here we denote s′k,h = sk,h+1 for simplicity.

Note that Assumption 2.5 is stronger than Assumption C.1 in the sense that Assumption 2.5 assumes
an extra independence between the data points sampled at different stages. Therefore, as will be clear
from the proof, since Theorem C.2 is established under Assumption C.1, it automatically holds under
the stronger Assumption 2.5.

We now introduce the uniform convergence theorem. To simplify the notation, we define:

Ch,1 =

H∑
i=h

1

ιh
, Ch,2 =

H∑
i=h

√
Ch,3
ιh

, Ch,3 =
(H − h+ 1)2

ηh + σ2
r

, Ch,4 =
(
‖Λh‖ · ‖Λ−1

h ‖
)1/2

.

Note that by setting ηh = σr = 1 we recover the same Ch,2, Ch,3 as in the main text.
Theorem C.2 (Uniform Convergence). Set λ = 1 and ηh ∈ (0, (H − h + 1)2] for all h ∈ [H] in
Algorithm 1. Under Assumption 2.1, 2.3 and C.1, there exists some universal constant C such that if
K satisfies

K ≥ C · H
2d2

κ2
log

(
dHK

κδ

)
· max
h∈[H]

(H − h+ 1)2

(ηh + σ2
r)2

· max
h∈[H]

(H − h+ 1)2

ιh(ηh + σ2
r)

, (C.4)

then with probability at least 1− δ, it holds for all h ∈ [H] that sups∈S

∣∣∣V̂ πh (s)
∣∣∣ ≤ H − h+ 2, and

sup
s∈S

∣∣∣V̂ πh (s)− V πh (s)
∣∣∣ ≤ C · Ch,2d√

K
log

(
dH2K

κδ

)
+ C · Ch,1H

√
d

K
.

We now present the proof of Theorem C.2. The proof relies on a backward induction argument, i.e.,
we will show |V̂ πh (s)− V πh (s)| is uniformly small for h = H,H − 1, · · · , 1. For this purpose, we
need to use the first form of error decomposition (4.2) in Lemma 4.4.

C.4 Step 1: Base Case at Stage h = H

We first bound the approximation error at the last stage h = H . From the algorithm we have
V̂ πH+1 ≡ V πH+1 ≡ 0. Therefore, we have θ̂H = β̂H = 0, σ̂H ≡

√
ηH + σ2

r , and

Λ̂H =
1

ηH + σ2
r

K∑
k=1

φ(sk,H , ak,H)φ(sk,H , ak,H)> + λId.

By the error decomposition in (4.2), we have

V πH(s)− V̂ πH(s) = −φπH(s)>Λ̂−1
H

K∑
k=1

φ(sk,H , ak,H)

σ̂H(sk,H , ak,H)2
εk,H︸ ︷︷ ︸

∆1

+λφπH(s)>Λ̂−1
H wπ

H︸ ︷︷ ︸
∆2

. (C.5)

We will bound the two terms separately.

To bound |∆1|, we first apply Cauchy-Schwartz inequality to obtain that

|∆1| ≤ ‖φπH(s)‖Λ̂−1
H
·

∥∥∥∥∥
K∑
k=1

φ(sk,H , ak,H)

σ̂H(sk,H , ak,H)2
εk,H

∥∥∥∥∥
Λ̂−1
H

(C.6)
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By Lemma H.5, with probability at least 1− δ, we have

‖φπH(s)‖Λ̂−1
H
≤ 2√

K
· ‖φπH(s)‖Λ−1

H
(C.7)

for all s ∈ S, as long as K satisfies that

K ≥ max

{
512‖Λ−1

H ‖2

(ηH + σ2
r)2

log

(
2d

δ

)
, 2λ‖Λ−1

H ‖
}

=
512‖Λ−1

H ‖2

(ηH + σ2
r)2

log

(
2d

δ

)
.

Note that Var(εk,h) = σ2
r ≤ σ̂H(sk,H , ak,H)2 for all k ∈ [K]. Then by Theorem H.10 we have∥∥∥∥∥

K∑
k=1

σ̂H(sk,H , ak,H)−2φ(sk,H , ak,H)εk,H

∥∥∥∥∥
Λ̂−1
H

≤ 8

√
d log

(
1 +

K

λd(ηH + σ2
r)

)
· log

(
4K2

δ

)
+ 4

√
1

ηH + σ2
r

log

(
4K2

δ

)
≤ 12

√
d log

(
4K2

δ

)
(C.8)

with probability at least 1− δ.

Then by (C.6), it suffices to take a union bound over (C.7) and (C.8) to conclude that if K ≥
128‖Λ−1

H ‖2 log(2d/δ)/(ηH + σ2
r) then

|∆1| ≤
12
√
d√

K
‖φπH(s)‖Λ−1

H
· log

(
4K2

δ

)
(C.9)

with probability at least 1− δ.

At the same time, we can bound |∆2| using the same argument.

|∆2| ≤ λ‖φπH(s)‖Λ̂−1
H
· ‖wπ

H‖Λ̂−1
H
≤ 4λ

K
· ‖φπH(s)‖Λ−1

H
· ‖wπ

H‖Λ−1
H
, (C.10)

where the second inequality holds on the same event as does (C.9).

Finally, we combine (C.5), (C.9) and (C.10), and obtain that if K ≥ 512‖Λ−1
H ‖2/(ηH +

σ2
r)2 log(4d/δ) then

sup
s∈S

∣∣∣V πH(s)− V̂ πH(s)
∣∣∣ ≤ 12

√
d√

K
log

(
4K2

δ

)
· sup
s∈S
‖φπH(s)‖Λ−1

H
+

4λ

K
· sup
s∈S
‖φπH(s)‖Λ−1

H
· ‖wπ

H‖Λ−1
H

≤
12
√
d‖Λ−1

H ‖√
K

log

(
4K2

δ

)
+

8λH
√
d‖Λ−1

H ‖
K

with probability at least 1− δ, where the last inequality follows from Assumption 2.1, Proposition
2.2 and the choice that λ = 1. Note that since σ̂H(·, ·) ≤ 1 + σ2

r , we have ΛH � ΣH/(1 + σ2
r),

which implies that ‖Λ−1
H ‖ ≤ 2‖Σ−1

H ‖ as σ2
r ≤ 1. Then we further have

sup
s∈S

∣∣∣V πH(s)− V̂ πH(s)
∣∣∣ ≤ 12

√
2d√

KκH
+

16λH3
√
d

KκH

Meanwhile, we can bound sups∈S |V̂ πH(s)| as follows

sup
s∈S
|V̂ πH(s)| ≤ sup

s∈S
V πH(s) +

12
√

2d√
KκH

+
16λH

√
d

KκH
≤ 2,

when K satisfies that K ≥ 600(λ+ 1)(d+H
√
d)/κH .

In conclusion, we have

sup
s∈S
|V̂ πH(s)| ≤ 2,

21



and

sup
s∈S

∣∣∣V πH(s)− V̂ πH(s)
∣∣∣ ≤ 12

√
2d√

KκH
+

16λH
√
d

KκH
,

given that K satisfies

K ≥ max

{
2048

κ2
H(ηH + σ2

r)2
log

(
2d

δ

)
, 600(λ+ 1)

d+H
√
d

κH

}
(C.11)

C.5 Step 2: Induction Hypothesis

For the induction hypothesis, we assume that if for all sufficiently large K, with probability at least
1− (H − h)δ, the following event (denoted as Eh+1) holds:

sup
s∈S
|V̂ πh+2(s)| ≤ H − h, sup

s∈S
|V̂ πh+1(s)| ≤ H − h+ 1, sup

s
|V̂ πh+1(s)− V πh+1(s)| ≤ αH−h,

where αH−h ≤ (ηh + σ2
r)/[8(H − h+ 1)].

We claim that if K satisfies

K ≥ 3600(H − h+ 1)4d2

κ2
h(ηh + σ2

r)2
· log

(
dHK

κhδ

)
(C.12)

then with probability at least 1− (H − h+ 1)δ, the following event (denoted by Eh) holds:

|V̂ πh+1| < H − h+ 1,

|V̂ πh | < H − h+ 2,

sup
s
|V̂ πh (s)− V πh (s)| ≤

(
1 +

8λ

ιhK

)
αH−h +

2λH
√
d

ιhK

+
20√
K
·

(
d
√
ιh

+
d(H − h+ 1)√
ιh(ηh + σ2

r)

)
· log

(
d(H − h+ 1)2K

κh(ηh + σ2
r)δ

)
We again bound the three terms in the error decomposition (4.2) simultaneously. Let Ẽh be the event
given by Lemma F.7 for h such that P(Ẽh) ≥ 1− δ, where we have L = (1 + 1/H)d

√
K/λ.

Let’s consider the event Ẽh ∩ Eh+1, which satisfies P{Ẽh ∩ Eh+1} ≥ 1− (H − h+ 1)δ by a union
bound. Note that on Eh+1, we have |V̂ πh+1| ≤ H − h+ 1. Furthermore, since |V̂ πh+2| ≤ H − h on
Eh+1, again by Lemma H.15 with B = H , we see that V̂ πh+1 ∈ Vh+1(L). Therefore, by Lemma F.7
it holds on Ẽh ∩ Eh+1 that ∥∥∥∥∥∥

(
Λ̂h

K

)−1
∥∥∥∥∥∥ ≤ 8

ιh
, (C.13)

and ∣∣∣∣∣φ(s, a)>Λ̂−1
h

K∑
k=1

σ̂h(sk,h, ak,h)−2φ(sk,h, ak,h)
(
PhV (sk,h, ak,h)− V (s′k,h)− εk,h

)∣∣∣∣∣
≤ 20√

K
·

(
d
√
ιh

+
d(H − h+ 1)√
ιh(ηh + σ2

r)

)
· log

(
d(H − h+ 1)2K

κh(ηh + σ2
r)δ

)
, (C.14)

for all (s, a) ∈ S ×A.

Since it holds on Eh+1 that sups∈S |V̂ πh+1(s)− V πh+1(s)| ≤ αH−h, we have

sup
s∈S

∣∣∣[JhPh(V πh+1 − V̂ πh+1)](s)
∣∣∣ ≤ αH−h. (C.15)
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Also by (C.13) and sups∈S |V̂ πh+1(s)−V πh+1(s)| ≤ αH−h, it follows from Cauchy-Schwartz inequal-
ity that

sup
s∈S

∣∣∣∣λφπh(s)>Λ̂−1
h

∫
S

(
V πh+1(s)− V̂ πh+1(s)

)
µh(s)ds

∣∣∣∣ ≤ 8λαH−h
ιhK

. (C.16)

Similarly, for the last term in (4.2) we have by Cauchy-Schwartz inequality that

sup
s∈S

∣∣∣λφπh(s)>Λ̂−1
h wπ

h

∣∣∣ ≤ λ sup
s∈S
‖φπh(s)‖2 · ‖Λ̂−1

h ‖ · ‖w
π
h‖2 ≤

2λH
√
d

ιhK
, (C.17)

where the second inequality follows from Proposition 2.2.

Finally, combining (C.14), (C.15), (C.16) and (C.17), we obtain by the error decomposition (4.2) that

sup
s∈S

∣∣∣V πh (s)− V̂ πh (s)
∣∣∣ ≤ 20√

K
·

(
d
√
ιh

+
d(H − h+ 1)√
ιh(ηh + σ2

r)

)
· log

(
d(H − h+ 1)2K

κh(ηh + σ2
r)δ

)

+

(
1 +

8λ

ιhK

)
αH−h +

2λH
√
d

ιhK
(C.18)

Note that when K satisfies (C.12), we would have sups∈S |V πh (s)− V̂ πh (s)| ≤ 1, and thus

sup
s∈S
|V̂ πh (s)| ≤ sup

s∈S
|V πh (s)|+ sup

s∈S

∣∣∣V πh (s)− V̂ πh (s)
∣∣∣ ≤ H − h+ 2. (C.19)

Therefore, by (C.18) and (C.19), we conclude that Ẽh ∩ Eh+1 ⊆ Eh, which implies that

P{Eh} ≥ P{Ẽh ∩ Eh+1} ≥ 1− (H − h+ 1)δ.

C.6 Step 3: Recursion

Let κ = minh∈[H] κh. Suppose K satisfies that

K ≥ 3600H2d2

κ2
log

(
dHK

κδ

)
· max
h∈[H]

(H − h+ 1)2

(ηh + σ2
r)2

· max
h∈[H]

(H − h+ 1)2

ιh(ηh + σ2
r)

(C.20)

We also define the following quantity

ξH−h =
2λH
√
d

ιhK
+

20√
K
·

(
d
√
ιh

+
d(H − h+ 1)√
ιh(ηh + σ2

r)

)
· log

(
d(H − h+ 1)2K

κh(ηh + σ2
r)δ

)
(C.21)

for all h ∈ [H]. With the choice of K in (C.20), the following holds

ξH−h ≤ min

{
1

2He
,

1

16H
· min
h∈[H]

ηh + σ2
r

H − h+ 1

}
(C.22)

for all h ∈ [H].

First by the base case at stage h = H from subsection C.4, we have

sup
s∈S

∣∣∣V πH(s)− V̂ πH(s)
∣∣∣ ≤ 12

√
2d√

KκH
+

16λH
√
d

KκH
:= α0. (C.23)

Also by the choice of K in (C.20), we have

α0 ≤ min

{
1

2e
,

1

16e
· min
h∈[H]

ηh + σ2
r

H − h+ 1

}
. (C.24)

Then by the induction step at stage h = H − 1 from subsection C.5, we have

sup
s∈S

∣∣∣VH−1(s)− V̂ πH−1(s)
∣∣∣ ≤ α1,
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with

α1 ≤
(

1 +
λCH−1H

K

)
α0 + ξ1 ≤

(
1 +

1

H

)
α0 + ξ1 ≤ min

{
1,
ηH + σ2

r

16

}
We then define αH−h = (1 + 1/H)αH−h+1 + ξH−h recursively for all h ∈ [H − 1]. Note that for
all i ∈ [H − h] we have

αi ≤
(

1 +
1

H

)i
α0 +

i∑
j=0

(
1 +

1

H

)i−j
ξj ≤ e · α0 + e ·

i∑
h=0

ξj ≤ min

{
1,
ηH−i + σ2

r

8(i+ 1)

}
,

where the first inequality follows from the fact that (1 + 1/n)n ≤ e for all positive integer n, and the
second inequality is due to (C.22) and (C.24).

Therefore, we may apply the induction step from the previous subsection to all h ∈ [H − 1] and
obtain that

sup
s∈S

∣∣∣V̂ πh ∣∣∣ ≤ H − h+ 2

and

sup
s∈S

∣∣∣V̂ πh (s)− V πh (s)
∣∣∣ ≤ (1 +

1

H

)
αH−h + ιH−h

≤
(

1 +
1

H

)H−h
α0 +

H−h∑
i=0

(
1 +

1

H

)H−h−i
ξi

≤ e · α0 + e ·
H−h∑
i=0

ξi (C.25)

with probability at least 1−Hδ simultaneously for all h ∈ [H].

Therefore, replacing δ by δ/H and plugging (C.21) and (C.23) into (C.25), we obtain that

sup
s∈S

∣∣∣V̂ πh (s)− V πh (s)
∣∣∣

≤ 12e
√

2d√
KκH

+
16eλH

√
d

KκH
+

2eλH
√
d

K

H−1∑
i=h

1

ιh
+

40ed√
K

log

(
dH2K

κδ

)H−1∑
i=h

H − h+ 1√
ιh(ηh + σ2

r)
.

(C.26)

We further define

Ch,1 =

H∑
i=h

1

ιh
, Ch,2 =

H∑
i=h

H − h+ 1√
ιh(ηh + σ2

r)
,

then we can simplify and rearrange (C.26) to

sup
s∈S

∣∣∣V̂ πh (s)− V πh (s)
∣∣∣ ≤ C · Ch,2d√

K
log

(
dH2K

κδ

)
+ C · Ch,1H

√
d

K
.

This completes the proof of Theorem C.2.

D Proof of OPE Convergence

As stated in Appendix C.1, we consider the general form of Theorem 4.1. Recall the following
notation:

Ch,1 =

H∑
i=h

1

ιh
, Ch,2 =

H∑
i=h

√
Ch,3
ιh

, Ch,3 =
(H − h+ 1)2

ηh + σ2
r

, Ch,4 =
(
‖Λh‖ · ‖Λ−1

h ‖
)1/2

.
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Theorem D.1 (General form of Theorem 4.1). Set λ = 1, ηh ∈ (0, (H − h+ 1)2] for all h ∈ [H]
and σ2

r ≤ 1. Under Assumptions 2.1, 2.3 and 2.5, if K satisfies

K ≥ C · C3 · d2

[
log

(
dH2K

κδ

)]2

, (D.1)

where C is some problem-independent universal constant and

C3 := max

{
max
h∈[H]

Ch,3 · C2
h,2

ι2h(ηh + σ2
r)3

,
H4

σ4
rκ

2
,
H2

σ4
rκ

2
· max
h∈[H]

Ch,3
ηh + σ2

r

· max
h∈[H]

Ch,3
ιh

}
.

Then with probability at least 1− δ, it holds that

|vπ1 − v̂π1 | ≤ C ·

[
H∑
h=1

‖vπh‖Λ−1
h

]
·
√

log(16H/δ)

K
+ C · C4 · log

(
16H

δ

)
·
(

1

K3/4
+

1

K

)
,

where C4 :=
∑H
h=1

{√
Ch,4 · Ch,2 · (H−h+1)d

ιh(ηh+σ2
r)2 · log

(
dH2K
κδ

)
· ‖vπh‖Λ−1

h

}
.

Note that by setting ηh = σr = 1 we recover Theorem 4.1.

The proof is based on the recursive error decomposition given by (4.3) and the prerequisite result on
uniform convergence. We will show the OPE convergence conditioned on the high probability event
of uniform convergence established by Theorem C.2.

Recall the error decomposition for the OPE problem given by (4.3) (proof in Section E):

vπ1 − v̂π1 = −λ
H∑
h=1

(vπh)>Λ̂−1
h

∫
S

(
V πh+1(s)− V̂ πh+1(s)

)
µh(s)ds

+

H∑
h=1

(vπh)>Λ̂−1
h

K∑
k=1

φ(sk,h, ak,h)

σ̂h(sk,h, ak,h)2

(
[PhV̂ πh+1](sk,h, ak,h)− V̂ πh+1(s′k,h)− εk,h

)
+ λ

H∑
h=1

(vπh)>Λ̂−1
h wπ

h

:= E1 + E2 + E3. (D.2)

It suffices to prove that each term can be bounded with high probability and then we can take a union
bound. By the result of Theorem C.2, we can condition on the event where both V̂ πh+1 and σ̂h are
good estimators of their population counterparts.
Remark D.2. All the lemmas in the remaining of this Section D will be proved under Assumptions
2.1 and 2.5. So we do not explicitly add these two assumptions into the description of the lemmas.

Also, recall the function classes Vh(L) and Th(L1, L2) defined by (C.2) and (C.3). In the remaining
of this section, we will assume L, L1 and L2 to be

L =
H + 1√
η + σ2

r

√
Kd

λ
, L1 = H2

√
Kd

λ
, L2 = H

√
Kd

λ
.

The reason that we can make the above assumption is that, conditioning on the high probability event
of uniform convergence (Theorem C.2), it follows immediately from Lemma H.15 that we have
σ̂h ∈ Th(L1, L2), and V̂ πh ∈ Vh(L) for all h ∈ [H] with the above choice of L, L1 and L2.

D.1 Bounding the E2 Term in the OPE Decomposition

We consider the term E2 first. Decompose E2 into E2 =
∑H
h=1E2,h where for each h ∈ [H], E2,h

is given as

E2,h := (vπh)>Λ̂−1
h

K∑
k=1

φ(sk,h, ak,h)

σ̂h(sk,h, ak,h)2

(
[PhV̂ πh+1](sk,h, ak,h)− V̂ πh+1(s′k,h)− εk,h

)
.
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Further decompose E2,h into E2,h =
∑K
k=1 eh,k where

eh,k = (vπh)>Λ̂−1
h

φ(sk,h, ak,h)

σ̂h(sk,h, ak,h)2

(
[PhV̂ πh+1](sk,h, ak,h)− V̂ πh+1(s′k,h)− εk,h

)
.

In the following lemma, we consider the term E2,h for arbitrarily fixed h ∈ [H]. To simplify the
notation, we omit the subscript h and take ek = eh,k once h is fixed.

Lemma D.3. For any h ∈ [H], condition on V̂ πh+1 ∈ Vh+1(L) and the induced σ̂h(·, ·) ∈ Th(L1, L2)
being fixed, such that σ̂h satisfies for all (s, a)∣∣∣σ̂2

h(s, a)− σ2
r −max

{
ηh, VhV̂ πh+1(s, a)

}∣∣∣ ≤ C(H − h+ 1)2
√
d√

K
, (D.3)

for some C > 0. If K satisfies (D.7), then with conditional probability at least 1− δ, we have

|E2,h| ≤ 2

√
2 log

(
4

δ

)
Bh ·

1√
K
· ‖vπh‖G−1

h
+

8

3
log

(
4

δ

)
· 2(H − h+ 1) + 1

ηh + σ2
r

· ‖vπh‖G−1
h
·
∥∥G−1

h

∥∥1/2 · 1

K
,

where Bh is a V̂ πh+1-dependent constant and Gh is a σ̂h-dependent matrix given by

Bh = max
(s,a)∼νh

VhV̂ πh+1(s, a) + σ2
r

max
{
ηh,VhV̂ πh+1(s, a)

}
+ σ2

r −
C(H−h+1)2

√
d√

K

∼ 1 + Õ(1/
√
K),

Gh := Eh
[
φ(s, a)φ(s, a)>

σ̂2
h(s, a)

∣∣∣∣σ̂h] ,
Remark D.4. Lemma D.3 will be combined with Lemma F.2, which gives an explicit formula for
the constant C with high probability, as will be shown in Lemma D.5.

Proof of Lemma D.3. By definition,

ek = (vπh)>Λ̂−1
h

φ(sk,h, ak,h)

σ̂h(sk,h, ak,h)2

(
[PhV̂ πh+1](sk,h, ak,h)− V̂ πh+1(s′k,h)− εk,h

)
for all k ∈ [K]. From Algorithm 1, it is clear that the functionV̂ πh+1(·) depends on the dataset
Ďi,Di for i ≥ h + 1, and the function σ̂h(·, ·) depends on V̂ πh+1 and the dataset Ďh, which are all
independent of the dataset Dh under Assumption C.1. Therefore, conditioning on V̂h+1 and σ̂h will
not change the distribution of Dh.

Define Fh = {(sk,h, ak,h), k ∈ [K]}, and for now we further condition on Fh being fixed. Then Λ̂h

and σ̂k,h := σ̂h(sk,h, ak,h), k ∈ [K] are both fixed. Define the filtration {Fk}k∈[K] conditioned on
Fh asFk = σ{s′1,h, ε1,h, · · · , s′k−1,h, εk−1,h|Fh} for 1 < k ≤ K, andF1 as the empty σ-field. Then
E[ek | Fk] = 0 implies that {ek}k∈[K] is a martingale difference sequence. Since V̂ πh+1 ∈ Vh+1(L)

and σ̂h ∈ Th(L1, L2), we have σ̂h(s, a)2 ≥ ηh + σ2
r for all (s, a) and |V̂ πh+1(s)| ≤ H − h + 1 for

all s. Also by Assumption 2.1 we have |εk,h| ≤ 1 almost surely. This then implies

|ek| ≤
2(H − h+ 1) + 1

ηh + σ2
r

· ‖vπh‖Λ̂−1
h
· ‖φ(sk,h, ak,h)‖Λ̂−1

h︸ ︷︷ ︸
ch,k

,

and

Var(ek|Fh,Fk) =

[
(vπh)>Λ̂−1

h

φ(sk,h, ak,h)

σ̂h(sk,h, ak,h)

]2

· E

(PhV̂ πh+1(sk,h, ak,h)− V̂ πh+1(s′k,h)− εk,h
σ̂h(sk,h, ak,h)

)2
∣∣∣∣∣∣Fh,Fk


≤
[
(vπh)>Λ̂−1

h

φ(sk,h, ak,h)φ(sk,h, ak,h)>

σ̂h(sk,h, ak,h)2
Λ̂−1
h vπh

]

·

 VhV̂ πh+1(sk,h, ak,h) + σ2
r

max
{
ηh,VhV̂ πh+1(sk,h, ak,h)

}
+ σ2

r −
C(H−h+1)2

√
d√

K

 ,
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where the last step is from Assumption 2.1 that εk,h is independent random noise satisfying Var[εk,h |
sk,h, ak,k] ≤ σ2

r , and (D.3). Denote ch = maxk∈[K]{ch,k}. We then have

ch ≤
2(H − h+ 1) + 1

ηh + σ2
r

· ‖vπh‖Λ̂−1
h
· ‖Λ̂−1

h ‖
1/2. (D.4)

For simplicity, denote

bh,k :=
VhV̂ πh+1(sk,h, ak,h) + σ2

r

max
{
ηh,VhV̂ πh+1(sk,h, ak,h)

}
+ σ2

r −
C(H−h+1)2

√
d√

K

≤ 1 +

C(H−h+1)2
√
d√

K

ηh + σ2
r −

C(H−h+1)2
√
d√

K

∼ 1 + Õ(1/
√
K),

and bh := maxk{bh,k}. Therefore, we further have
K∑
k=1

Var(ek|Fh,Fk) ≤ (vπh)>Λ̂−1
h

(
K∑
k=1

φ(sk,h, ak,h)φ(sk,h, ak,h)>

σ̂h(sk,h, ak,h)2

)
Λ̂−1
h vπh · bh

= (vπh)>Λ̂−1
h

(
Λ̂h − λId

)
Λ̂−1
h vπh · bh

≤ bh · ‖vπh‖2Λ̂−1
h

,

since (Λ̂h)−1/2(Λ̂h − λId)(Λ̂h)−1/2 is a contraction. Then by Freedman’s inequality H.2, we have

P

(∣∣∣∣∣
K∑
k=1

ek

∣∣∣∣∣ ≥ ε
∣∣∣∣Fh
)
≤ 2 exp

− ε2/2

bh‖vπh‖2Λ̂−1
h

+ chε/3

 ,

since bh and ch are fixed once we condition on V̂ πh+1, σ̂h and Fh. It follows that with conditional (on
V̂ πh+1, σ̂h, Fh) probability at least 1− δ,∣∣∣∣∣

K∑
k=1

ek

∣∣∣∣∣ ≤
√

2 log

(
2

δ

)
bh · ‖vπh‖Λ̂−1

h
+

2

3
log

2

δ
· ch. (D.5)

Define the matrix Gh as the conditional expectation given as

Gh := Eh
[
φ(s, a)φ(s, a)>

σ̂h(s, a)2

∣∣∣∣σ̂h] , (D.6)

by recalling the notation Eh[f(s, a)] =
∫
S×A f(s, a)dνh(s, a) for any function f on S × A, with

νh(·, ·) being the occupancy measure of the MDP for stage h induced by the behavior policy π̄. Now,
since conditioning on V̂ πh+1 and σ̂h does not change the distribution of Fh, by Lemma H.5, if K
satisfies

K ≥ max

{
512(ηh + σ2

r)−2‖G−1
h ‖

2 log

(
2d

δ

)
, 4λ‖G−1

h ‖
}
, (D.7)

then over the space of Fh, there exists an event Eh such that P(Eh) ≥ 1− δ and for all Fh ∈ Eh we
have

‖u‖Λ̂−1
h
≤ 2√

K
· ‖u‖G−1

h
(D.8)

for all u ∈ Rd. Combining (D.4), (D.5) and (D.8), we conclude that, with conditional probability (on
V̂ πh+1, σ̂h only) at least 1− 2δ,∣∣∣∣∣
K∑
k=1

ek

∣∣∣∣∣ ≤
√

2 log

(
2

δ

)
Bh ·

2√
K
· ‖vπh‖G−1

h
+

2

3
log

2

δ
· 2(H − h+ 1) + 1

ηh + σ2
r

· ‖vπh‖G−1
h
·
∥∥G−1

h

∥∥1/2 · 4

K
,
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where Bh is a V̂ πh+1-dependent constants given by

Bh = max
(s,a)∼νh

VhV̂ πh+1(s, a) + σ2
r

max
{
ηh,VhV̂ πh+1(s, a)

}
+ σ2

r −
C(H−h+1)2

√
d√

K

∼ 1 + Õ(1/
√
K),

and Gh is a σ̂h-dependent matrix given by (D.6). Replacing δ with δ/2 finishes the proof.

In the next lemma, we relax the conditioning on σ̂h and condition on V̂ πh+1 only.

Lemma D.5. For any h ∈ [H], condition on V̂ πh+1 ∈ Vh+1(L) being fixed and satisfying
sups |V̂ πh+1(s)− V πh+1(s)| ≤ ρ for some ρ ≥ 0, if K satisfies (D.14) and

K ≥ max

{
911

(ηh + σ2
r)2ι2h

· log

(
4d

δ

)
,

6λ

ιh

}
, (D.9)

then with conditional probability at least 1− δ, we have

|E2,h| ≤ 2

√
2 log

(
8

δ

)
Bh · ‖vπh‖Λ−1

h
· 1√

K

+ 2

√
2 log

(
8

δ

)
Bh ·

√
C0C1 ·

1

ιh
· ‖vπh‖Λ−1

h
· (K1/4

√
ρ̃) · 1

K3/4

+
8

3
log

(
8

δ

)
· 2(H − h+ 1) + 1

ηh + σ2
r

√
C1 ·

1
√
ιh
· ‖vπh‖Λ−1

h
· 1

K

+
8

3
log

(
8

δ

)
· 2(H − h+ 1) + 1

ηh + σ2
r

·
√
C0 · C1 ·

1

ιh
· ‖vπh‖Λ−1

h
·
√
ρ̃ · 1

K

where

C0 =

(
‖Λh‖
ιh

)1/2

,

C1 =
1

1− ρ̃/ιh
,

ρ̃ =
1

(ηh + σ2
r)2
·

(
CK,h,δ(H − h+ 1)2

√
d√

K
+ 4(H − h+ 1) · ρ

)
,

CK,h,δ = 12
√

2 · 1
√
κh
·
[

1

2
log

(
λ+K

λ

)
+

1

d
log

8

δ

]1/2

+ 12λ · 1

κh
.

and Bh is a V̂ πh+1-dependent constant given by

Bh = max
(s,a)∼νh

VhV̂ πh+1(s, a) + σ2
r

max
{
ηh,VhV̂ πh+1(s, a)

}
+ σ2

r −
CK,h,δ(H−h+1)2

√
d√

K

.

Remark D.6. Conditioning on the event in Theorem C.2, we have ρ ∼ Õ(1/
√
K) and thus ρ̃ ∼

O(1/
√
K), which means the term

√
Kρ̃ is a constant up to a logarithmic factor. This indicates that

in the upper bound of |E2,h|, only the first term is of order Õ(1/
√
K) .

Proof of Lemma D.5. For simplicity, denote the function σV (·, ·) as

σV (·, ·) :=

√
max

{
ηh, VhV̂ πh+1(·, ·)

}
+ σ2

r ,
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and recall that σ̂h(·, ·) is an estimator for σV (·, ·) generated using the dataset Ďh. Also recall the
definition

σh(·, ·) :=
√

max
{
ηh, VhV πh+1(·, ·)

}
+ σ2

r .

First of all, by Lemma F.2, with probability at least 1− δ over the space of Ďh, the following event
happens:

sup
s,a
|σ̂2
h(s, a)− σ2

V (s, a)| ≤ CK,h,δ(H − h+ 1)2
√
d√

K
, (D.10)

where CK,h,δ is given by

CK,h,δ = 12
√

2 · 1
√
κh
·
[

1

2
log

(
λ+K

λ

)
+

1

d
log

4

δ

]1/2

+ 12λ · 1

κh
.

Denote the above event of σ̂h by Eσ̂. For each fixed σ̂h ∈ Eσ̂, we can then apply Lemma D.3 with
C replace by CK,h,δ. This gives that, for any h, condition on V̂ πh+1 and σ̂h, with probability at least
1− δ,

|E2,h|

≤ 2

√
2 log

(
4

δ

)
Bh ·

1√
K
· ‖vπh‖G−1

h
+

8

3
log

(
4

δ

)
· 2(H − h+ 1) + 1

ηh + σ2
r

· ‖vπh‖G−1
h
·
∥∥G−1

h

∥∥1/2 · 1

K
,

(D.11)

where

Bh := max
(s,a)∼νh

VhV̂ πh+1(s, a) + σ2
r

max
{
ηh,VhV̂ πh+1(s, a)

}
+ σ2

r −
CK,h,δ(H−h+1)2

√
d√

K

∼ 1 + Õ(1/
√
K),

Gh := Eh
[
φ(s, a)φ(s, a)>

σ̂2
h(s, a)

∣∣∣∣σ̂h] .
However, note that in the upper bound of |E2,h|, the ‖vπh‖G−1

h
and

∥∥G−1
h

∥∥1/2
term are σ̂h-dependent,

and so is the lower bound of the sample complexity given by (D.7). Therefore, it remains to derive a
uniform upper bound of E2,h for all σ̂h ∈ Eσ̂ , and a uniform lower bound of K.

To get this, first note that since V̂ πh+1, V πh+1 ∈ Vh+1(L) and sups |V̂ πh+1(s)− V πh+1(s)| ≤ ρ, we have

sup
s,a
|σ2
V (s, a)− σ2

h(s, a)| ≤ 4(H − h+ 1)ρ.

Using triangular inequality and (D.10) gives

sup
s,a
|σ̂2
h(s, a)− σ2

h(s, a)| ≤ CK,h,δ(H − h+ 1)2
√
d√

K
+ 4(H − h+ 1) · ρ,

for all σ̂h ∈ Eσ̂ .

Note that by definition,

‖Gh −Λh‖ =

∥∥∥∥Eh [φ(s, a)φ(s, a)>

σ̂2
h(s, a)

]
− Eh

[
φ(s, a)φ(s, a)>

σ2
h(s, a)

]∥∥∥∥
=

∥∥∥∥Eh [φ(s, a)φ(s, a)>
σ̂2
h(s, a)− σ2

h(s, a)

σ̂2
h(s, a) · σ2

h(s, a)

]∥∥∥∥
≤ 1

(ηh + σ2
r)2
·

(
CK,h,δ(H − h+ 1)2

√
d√

K
+ 4(H − h+ 1) · ρ

)
:= ρ̃

∼ Õ(1/
√
K),
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where the inequality is from ‖φ(·, ·)‖ ≤ 1 and |σ(·, ·)| ≥
√
ηh + σ2

r for all σ(·, ·) ∈ Th. Combine
the above inequality with Lemma H.3, and we have∥∥G−1

h

∥∥ ≤ ∥∥Λ−1
h

∥∥
1−

∥∥Λ−1
h

∥∥ · ‖Λh −Gh‖
≤

∥∥Λ−1
h

∥∥
1−

∥∥Λ−1
h

∥∥ · ρ̃ , (D.12)

and by Lemma H.3 again,

‖vπh‖G−1
h
≤
[
1 +

√(∥∥Λ−1
h

∥∥ · ‖Λh‖
)1/2 · ∥∥G−1

h

∥∥ · ρ̃] · ‖vπh‖Λ−1
h

≤

[
1 +

√(∥∥Λ−1
h

∥∥ · ‖Λh‖
)1/2 · ∥∥Λ−1

h

∥∥
1−

∥∥Λ−1
h

∥∥ · ρ̃ · ρ̃
]
· ‖vπh‖Λ−1

h

=

[
1 +

√(∥∥Λ−1
h

∥∥)3/2 · (‖Λh‖)1/2 · 1

1−
∥∥Λ−1

h

∥∥ · ρ̃ · ρ̃
]
· ‖vπh‖Λ−1

h

= ‖vπh‖Λ−1
h

+

√(∥∥Λ−1
h

∥∥)3/2 · (‖Λh‖)1/2 · 1

1−
∥∥Λ−1

h

∥∥ · ρ̃ ·√ρ̃ · ‖vπh‖Λ−1
h
. (D.13)

Note that the above holds when K is sufficiently large such that
∥∥Λ−1

h

∥∥ · ρ̃ is less than, for example,∥∥Λ−1
h

∥∥ · ρ̃ ≤ 1/4. (D.14)

We are now ready to derive an upper bound independent of σ̂h. First define

C0 =
(∥∥Λ−1

h

∥∥)1/2 · (‖Λh‖)1/2
, C1 =

1

1−
∥∥Λ−1

h

∥∥ · ρ̃ .
Then we have ‖vπh‖G−1

h
≤ ‖vπh‖Λ−1

h
+
√
C0C1

∥∥Λ−1
h

∥∥ · ρ̃ · ‖vπh‖Λ−1
h

, and
∥∥G−1

h

∥∥1/2 ≤
√
C1 ·∥∥Λ−1

h

∥∥1/2
. It follows that

‖vπh‖G−1
h
·
∥∥G−1

h

∥∥1/2 ≤
√
C1 ·

∥∥Λ−1
h

∥∥1/2 · ‖vπh‖Λ−1
h

+ C1 ·
∥∥Λ−1

h

∥∥ ·√C0 · ‖vπh‖Λ−1
h
·
√
ρ̃.

Plug into (D.11), and we have that, condition on V̂ πh+1, with probability at least 1− 2δ,

|E2,h| ≤ 2

√
2 log

(
4

δ

)
Bh · ‖vπh‖Λ−1

h
· 1√

K

+ 2

√
2 log

(
4

δ

)
Bh ·

√
C0C1

∥∥Λ−1
h

∥∥ · ‖vπh‖Λ−1
h
·
√
ρ̃ · 1√

K

+
8

3
log

(
4

δ

)
· 2(H − h+ 1) + 1

ηh + σ2
r

·
√
C1 ·

∥∥Λ−1
h

∥∥1/2 · ‖vπh‖Λ−1
h
· 1

K

+
8

3
log

(
4

δ

)
· 2(H − h+ 1) + 1

ηh + σ2
r

· C1 ·
∥∥Λ−1

h

∥∥ ·√C0 · ‖vπh‖Λ−1
h
·
√
ρ̃ · 1

K

Replacing δ by δ/2 and using 1/ιh = ‖Λ−1
h ‖ gives the desired upper bound. It remains to show the

lower bound. By (D.7), (D.12), and (D.14), a uniform version of D.7 is given by

K ≥ max

{
512(ηh + σ2

r)−2 · 16

9
‖Λ−1

h ‖
2 log

(
4d

δ

)
, 4λ · 4

3
‖Λ−1

h ‖
}

> max

{
911

(ηh + σ2
r)2ι2h

· log

(
4d

δ

)
,

6λ

ιh

}
. (D.15)

Lemma D.7. If K satisfies (D.17), (D.20), (D.21) and

K ≥ max
h∈[H]

max

{
911

(ηh + σ2
r)2ι2h

log

(
8Hd

δ

)
,

6λ

ιh

}
, (D.16)
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then with probability at least 1− δ, we have

|E2| ≤ 2

√
2 log

(
16H

δ

)
B ·

[
H∑
h=1

‖vπh‖Λ−1
h

]
· 1√

K

+
16
√

2

3
log

(
16H

δ

)
·
√
B ·

[
H∑
h=1

A1(h)

]
· 1

K3/4

+
16
√

2

3
log

(
16H

δ

)
·
√
B ·

[
H∑
h=1

(A2(h) +A3(h))

]
· 1

K
,

where

A1(h) =

√
C0(h) · 1

ιh
·
(
K1/4

√
ρ̃(h)

)
· ‖vπh‖Λ−1

h
,

A2(h) =
2(H − h+ 1) + 1

ηh + σ2
r

· 1
√
ιh
· ‖vπh‖Λ−1

h
,

A3(h) =
2(H − h+ 1) + 1

ηh + σ2
r

·
√
C0(h) ·

√
ρ̃ · 1

ιh
· ‖vπh‖Λ−1

h
,

C0(h) =

(
‖Λh‖
ιh

)1/2

,

ρ̃(h) =
1

(ηh + σ2
r)2
·

(
CK,h,δ(H − h+ 1)2

√
d√

K
+ 4(H − h+ 1) · C̃(h) · d√

K

)
,

CK,h,δ = 12
√

2 · 1
√
κh
·
[

1

2
log

(
λ+K

λ

)
+

1

d
log

16H

δ

]1/2

+ 12λ · 1

κh
,

C̃(h) = C · Ch,2 · log

(
dH2K

κδ

)
,

and C is some universal constant, B is a problem-dependent constant given by

B = max
h∈[H]

max
V ∈Vh+1(L)

max
(s,a)∼νh

VhV (s, a) + σ2
r

max {ηh,VhV (s, a)}+ σ2
r −

CK,h,δ(H−h+1)2
√
d√

K

,

and Ch,2 are the same constants as in Theorem C.2.

Proof of Lemma D.7. First, by Theorem C.2, if K satisfies

K ≥ C · H
2d2

κ2
log

(
dHK

κδ

)
· max
h∈[H]

(H − h+ 1)2

(ηh + σ2
r)2

· max
h∈[H]

(H − h+ 1)2

ιh(ηh + σ2
r)

, (D.17)

for some problem-independent constant C, then with probability at least 1− δ/2, for all h ∈ [H], we
have

sup
s

∣∣∣V̂ πh+1(s)− V πh+1(s)
∣∣∣ ≤ C̃ · d√

K
,

where

C̃ := C · Ch,2 · log

(
dH2K

κδ

)
+ C · Ch,1 ·

H√
dK

, (D.18)

and

Ch,1 =

H∑
i=h

1

ιh
, Ch,2 =

H∑
i=h

H − h+ 1√
ιh(ηh + σ2

r)
.
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For simplicity, we define

C̃(h) = C · Ch,2 · log

(
dH2K

κδ

)
,

for some different constant C, since the first term on the RHS of (D.18) is much larger than the
second one by using ηh ≤ (H − h+ 1)2.

Now we can combine Theorem C.2 and Lemma D.5 with the parameter ρ replaced by C̃ · d√
K

, take a
union bound over all H terms, and conclude that, with probability at least 1− δ, the result of Lemma
D.5 holds for all h ∈ [H] :

|E2,h| ≤ 2

√
2 log

(
16H

δ

)
Bh · ‖vπh‖Λ−1

h
· 1√

K

+ 2

√
2 log

(
16H

δ

)
Bh ·

√
C0C1 ·

1
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· ‖vπh‖Λ−1

h
· (K1/4

√
ρ̃(h)) · 1

K3/4

+
8

3
log
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· 2(H − h+ 1) + 1

ηh + σ2
r

·
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C1 ·
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√
ιh
· ‖vπh‖Λ−1

h
· 1

K

+
8

3
log

(
16H

δ

)
· 2(H − h+ 1) + 1

ηh + σ2
r

·
√
C0 · C1 ·

1

ιh
· ‖vπh‖Λ−1

h
·
√
ρ̃(h) · 1

K
(D.19)

where for each h ∈ [H], ρ̃(h) is given as

ρ̃(h) =
1

(ηh + σ2
r)2
·

(
CK,h,δ(H − h+ 1)2

√
d√

K
+ 4(H − h+ 1) · C̃(h) · d√

K

)
,

CK,h,δ = 12
√

2 · 1
√
κh
·
[

1

2
log

(
λ+K

λ

)
+

1

d
log

16H

δ

]1/2

+ 12λ · 1

κh
.

Now, by the expression of Bh, if K satisfies

K ≥
4C2

K,h,δH
4d

σ4
r

≥ 1152 · max
h∈[H]

1

κ2
h

·
[

1

2
log

(
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)
+

1

d
log

16H
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]
· H

4d

σ4
r

, (D.20)

then we have Bh ≤ 2 for all h ∈ [H]. Also, by (D.14), K also needs to be large enough so that

max
h∈[H]

{∥∥Λ−1
h

∥∥ · ρ̃(h)
}

= max
h∈[H]

{ρ̃(h)/ιh} ≤ 1/4, (D.21)

which implies C1 ≤ 4/3 for all h. We can then simplify (D.19) into

|E2,h|
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+
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·
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,

where

A1(h) =

√
C0(h) · 1
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h
,
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,
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·
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.
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By denoting

B := max
h∈[H]

max
V ∈Vh+1(L)

max
(s,a)∼νh

VhV (s, a) + σ2
r

max {ηh,VhV (s, a)}+ σ2
r −

CK,h,δ(H−h+1)2
√
d√

K

,

which is less than 2 by (D.20),and using |E2| ≤
∑K
h=1 |E2,h|, we prove the upper bound. The lower

bound of K comes from (D.17), (D.20), (D.21) and (D.15) .

D.2 Bounding the E1 Term in the OPE Decomposition

Consider the term E1 in (D.2):

|E1| ≤ λ
H∑
h=1

∣∣∣∣(vπh)>Λ̂−1
h

∫
S

(
V πh+1(s)− V̂ πh+1(s)

)
µh(s)ds

∣∣∣∣ :=

H∑
h=1

|E1,h|,

where for each h ∈ [H],

E1,h := λ(vπh)>Λ̂−1
h

∫
S

(
V πh+1(s)− V̂ πh+1(s)

)
µh(s)ds.

Lemma D.8. Under the same event where the result of Lemma D.7 holds, if K satisfies (D.16),
(D.17), (D.20) and (D.21), we have

|E1| ≤ 4
√

2λ

[
H∑
h=1

A4(h)

]
· H
√
d

K
,

where for each h,

A4(h) =
H − h+ 1

H
· 1
√
ιh
· ‖vπh‖Λ−1

h
·
[
1 +

√
2C0(h) · 1

ιh
· ρ̃(h)

]
,

and C0(h) and ρ̃(h) are same constants as in Lemma D.7.

Proof of Lemma D.8. By (D.8) and (D.13) , we have that

‖u‖Λ̂−1
h
≤ 2√

K
·

{
‖u‖Λ−1

h
+

√(∥∥Λ−1
h

∥∥)3/2 · (‖Λh‖)1/2 · 1

1−
∥∥Λ−1

h

∥∥ · ρ̃(h)
·
√
ρ̃(h) · ‖u‖Λ−1

h

}

=
2√
K
·

{
‖u‖Λ−1

h
+

√
C0(h) · 1

ιh
· 1

1−
∥∥Λ−1

h

∥∥ · ρ̃(h)
·
√
ρ̃(h) · ‖u‖Λ−1

h

}
, (D.22)

for all u ∈ Rd, where the constants take the same values as given in Lemma D.7, i.e.,

ρ̃(h) =
1

(ηh + σ2
r)2
·

(
CK,h,δ(H − h+ 1)2

√
d√

K
+ 4(H − h+ 1) · C̃(h) · d√

K

)
,

CK,h,δ = 12
√

2 · 1
√
κh
·
[

1

2
log

(
λ+K

λ

)
+

1

d
log

16H

δ

]1/2

+ 12λ · 1

κh
,

C̃(h) = C · Ch,2 · log

(
dH2K

κδ

)
,

with Ch,2 being the same constant as in Theorem C.2. Also, since the result of Lemma G.4 holds, we
have ∥∥∥∥∥Λ̂h

K
−Λh

∥∥∥∥∥ ≤ 4
√

2

(ηh + σ2
r)
√
K
·
(

log
16Hd

δ

)1/2

+
λ

K
+ ρ̃(h) ≤ 2ρ̃(h),
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where the first step is by replacing δ with δ/4Hand the second step is by the choice of K in Lemma
D.7. Then It follows from Lemma H.3 that∥∥∥Λ̂−1

h

∥∥∥ ≤ ∥∥(KΛh)−1
∥∥

1− ‖(KΛh)−1‖ ·
∥∥∥Λ̂h −KΛh

∥∥∥ ≤ 1

K
·

∥∥Λ−1
h

∥∥
1− 2ρ̃(h) ·

∥∥Λ−1
h

∥∥ ≤ 2
∥∥Λ−1

h

∥∥
K

, (D.23)

since 2ρ̃(h) ·
∥∥Λ−1

h

∥∥ ≤ 1/2 by (D.21). Also, since on the event of Lemma D.7, we have |V πh+1(s)−
V̂ πh+1(s)| ≤ 2(H − h+ 1), Assumption 2.1 then implies∥∥∥∥∫

S

(
V πh+1(s)− V̂ πh+1(s)

)
µh(s)ds

∥∥∥∥
2

≤ 2(H − h+ 1)
√
d.

Together with (D.22) and (D.23) and Cauchy-Schwartz inequality, we conclude that

|E1,h| =
∣∣∣∣λ(vπh)>Λ̂−1

h

∫
S

(
V πh+1(s)− V̂ πh+1(s)

)
µh(s)ds

∣∣∣∣
≤ λ ·

4
√

2(H − h+ 1)
√
d
∥∥Λ−1

h

∥∥1/2

K
· ‖vπh‖Λ−1

h
·
{

1 +

√
2C0(h) · 1

ιh
· ρ̃(h)

}
,

and thus

|E1| ≤ 4
√

2λ
H
√
d

K

[
H∑
h=1

A4(h)

]
,

where for each h,

A4(h) :=
H − h+ 1

H
· 1
√
ιh
· ‖vπh‖Λ−1

h
·
[
1 +

√
2C0(h) · 1

ιh
· ρ̃(h)

]
,

and C0(h) and ρ̃(h) are same constants as in Lemma D.7.

D.3 Bounding the E3 Term in the OPE Decomposition

It remains to bound the term E3 in (E.3) given by:

E3 := λ

H∑
h=1

(vπh)>Λ̂−1
h wπ

h =

H∑
h=1

E3,h,

where E3,h = λ(vπh)>Λ̂−1
h wπ

h . Similar to Lemma D.8, we have the following lemma.
Lemma D.9. Under the same event where the result of Lemma D.7 and Lemma D.8 holds, if K
satisfies (D.16), (D.17), (D.20) and (D.21), we have

|E3| ≤ 4
√

2λ

(
H∑
h=1

A5(h)

)
· H
√
d

K
,

where

A5(h) =
1
√
ιh
· ‖vπh‖Λ−1

h
·
{

1 +

√
2C0(h) · 1

ιh
· ρ̃(h)

}
,

and C0(h) and ρ̃(h) are same constants as in Lemma D.7.

Proof of Lemma D.9. First note that
|E3,h| ≤ λ · ‖vπh‖Λ̂−1

h
· ‖wπ

h‖Λ̂−1
h

≤ λ · ‖vπh‖Λ̂−1
h
· ‖wπ

h‖2 ·
∥∥∥Λ̂−1

h

∥∥∥1/2

≤ λ · 2√
K
·
{
‖vπh‖Λ−1

h
+
√

2C0(h) ·
∥∥Λ−1

h

∥∥ · ρ̃(h) · ‖vπh‖Λ−1
h

}
·
√

2√
K

∥∥Λ−1
h

∥∥1/2 · 2H
√
d

= 4
√

2λ · 1
√
ιh
· ‖vπh‖Λ−1

h
·
{

1 +

√
2C0(h) · 1

ιh
· ρ̃(h)

}
· H
√
d

K
,
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where the third step is by (D.22), (D.23) and Proposition 2.2. We then conclude that

|E3| ≤ 4
√

2λ

(
H∑
h=1

A5(h)

)
· H
√
d

K
,

where for each h ∈ [H],

A5(h) =
1
√
ιh
· ‖vπh‖Λ−1

h
·
{

1 +

√
2C0(h) · 1

ιh
· ρ̃(h)

}
.

D.4 Proof of Theorem D.1

Proof of Theorem D.1. By (4.3), and Lemmas D.7, D.8 and D.9, we have that with probability at
least 1− δ,

|vπ1 − v̂π1 | ≤

√
2 log

(
16H

δ

)
B ·

[
H∑
h=1

‖vπh‖Λ−1
h

]
· 1√

K

+
16
√

2

3
log

(
16H

δ

)
·
√
B ·

[
H∑
h=1

A1(h)

]
· 1

K3/4

+
16
√

2

3
log

(
16H

δ

)
·
√
B ·

[
H∑
h=1

(A2(h) +A3(h))

]
· 1

K

+ 4
√

2λ

[
H∑
h=1

(A4(h) +A5(h))

]
· H
√
d

K
. (D.24)

We now compute a lower bound for K. This comes from the lower bound of K required by Theorem
C.2, Lemma D.7, Lemma D.8 and Lemma D.9. Recall (D.21), (D.16), (D.17) and (D.20):

K ≥ max
h∈[H]

16
∥∥Λ−1

h

∥∥2

(ηh + σ2
r)4
·
(
CK,h,δ(H − h+ 1)2

√
d+ 4(H − h+ 1) · C̃(h) · d

)2

,

K ≥ max
h∈[H]

max

{
911

(ηh + σ2
r)2ι2h

log

(
8Hd

δ

)
,

6λ

ιh

}
,

K ≥ C · H
2d2

κ2
log

(
dHK

κδ

)
· max
h∈[H]

(H − h+ 1)2

(ηh + σ2
r)2

· max
h∈[H]

(H − h+ 1)2

ιh(ηh + σ2
r)

,

K ≥ 1152 ·
[

1

2
log

(
λ+K

λ

)
+

1

d
log

16H

δ

]
· H

4d

κ2σ4
r

.

(D.25)

It remains to simplify the expression. For the first lower bound in (D.25), note that C̃(h) ≥ CK,h,δ ·H ,
and thus

CK,h,δ(H − h+ 1)2
√
d+ 4(H − h+ 1) · C̃(h) · d < 8(H − h+ 1) · C̃(h) · d. (D.26)

Therefore, it suffices to let K satisfy

K ≥ max
h∈[H]

C2 · 1024

ι2h(ηh + σ2)4
· (H − h+ 1)2d2 ·

[
H∑
i=h

H − h+ 1√
ιh(ηh + σ2

r)

]2

·
[
log

(
dH2K

κδ

)]2

,

(D.27)

where C is the problem-independent universal constant from the proof of Theorem C.2. The second
lower bound in (D.25) is much smaller than (D.27) and thus can be omitted. We then consider the
third and the fourth lower bound together. They can be combined into

K ≥ C · H
2d2

σ4
rκ

2
·max

{
max
h∈[H]

(H − h+ 1)2

(ηh + σ2
r)2
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h∈[H]

(H − h+ 1)2

ιh(ηh + σ2
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, H2

}
· log

(
dHK

κδ

)
.

(D.28)
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Denote

Ch,3 :=
(H − h+ 1)2

ηh + σ2
r

.

Then (D.27) is simplified to

K ≥ C max
h∈[H]

Ch,3d
2

ι2h(ηh + σ2
r)3
·

[
H∑
i=h

√
Ch,3
ιh

]2

·
[
log

(
dH2K

κδ

)]2

, (D.29)

and (D.28) can be simplified

K ≥ C · H
2d2

σ4
rκ

2
·max

{
max
h∈[H]

Ch,3
ηh + σ2

r

· max
h∈[H]

Ch,3
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, H2

}
· log

(
dHK

κδ

)
. (D.30)

We then combine (D.29) and (D.30) and get that

K ≥ C · C3(h) · d2

[
log

(
dH2K

κδ

)]2

,

where C is some problem-independent universal constant and

C3(h) := max
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ι2h(ηh + σ2
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√
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,
H4

σ4
rκ

2

 .

To simplify the upper bound given by (D.24), first note that by the choice of K, we have B < 2. By
(D.26), we have that ρ̃(h) satisfies

ρ̃(h) ≤ 8C
1√
K
· (H − h+ 1)d

(ηh + σ2
r)2

·

[
H∑
i=h

H − h+ 1√
ιh(ηh + σ2

r)

]
· log

(
dH2K

κδ

)
. (D.31)

It follows that

A1(h) ≤ C ·

√√√√C0(h) · (H − h+ 1)d

(ηh + σ2
r)2

·

[
H∑
i=h

H − h+ 1√
ιh(ηh + σ2
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]
· 1
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)
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h
,

(D.32)

for some (different) universal constant C. Also, it is not hard to see A2(h) and A3(h) are less than
the RHS of (D.32) up to a constant factor by our choice of K, which gives

H∑
h=1

A2(h) +A3(h)

≤ C
H∑
h=1

√√√√C0(h) · (H − h+ 1)d
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h
,

(D.33)

for some universal constant C. To bound A4(h) +A5(h), note that A4(h) ≤ A5(h) and thus

A4(h) +A5(h) ≤ 2
√
ιh
· ‖vπh‖Λ−1

h
·
{

1 +

√
2C0(h) · 1
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}
, (D.34)

where

2
√
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h
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.
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Recall (D.24). By our choice of K, it is clear that

H
√
d · 2
√
ιh
· ‖vπh‖Λ−1

h
·
√

2C0(h) · 1

ιh
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,

where the RHS of the above is exactly the RHS of (D.32) up to a constant factor. Therefore, we can
combine [

∑H
h=1A4(h) +A5(h)]H

√
d with (D.33), and together with (D.34), the last two terms on

the RHS of (D.24) can be upper bounded by
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, (D.35)

where C is some universal constant and C4 is given by

C4 :=

H∑
h=1
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ιh(ηh + σ2
r)2
· log

(
dH2K
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· ‖vπh‖Λ−1

h

}
.

Plugging in the formula for C0(h) given in Lemma D.7 finishes the proof. Note that in Theorem C.2,
the notation C0(h) is changed to Ch,4.

E Proof of Error Decomposition

Proof. Since Qπh(s, a) = φ(s, a)>wπ
h = rh(s, a) + [PhV πh+1](s, a) for some vector wπ

h ∈ Rd, we
further have

Qπh(s, a) = φ(s, a)>Λ̂−1
h

(
K∑
k=1

φ(sk,h, ak,h)φ(sk,h, ak,h)>

σ̂h(sk,h, ak,h)2
+ λId

)
wπ
h

= φ(s, a)>Λ̂−1
h
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σ̂h(sk,h, ak,h)2
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h wπ
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It follows that

Qπh(s, a)− Q̂πh(s, a) = φ(sh, ah)>Λ̂−1
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K∑
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(
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)
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h wπ
h
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h

K∑
k=1
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)
+ λφ(s, a)>Λ̂−1

h wπ
h .
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where εk,h is the noise in reward. Note that

[PhV πh+1](sk,h, ak,h)− [PhV̂ πh+1](sk,h, ak,h) =

∫
S

(
V πh+1(s)− V̂ πh+1(s)

)
〈φ(sk,h, ak,h),µh(s)〉ds

= φ(sk,h, ak,h)>
∫
S

(
V πh+1(s)− V̂ πh+1(s)

)
µh(s)ds,

and thus
Qπh(s, a)− Q̂πh(s, a)

= φ(s, a)>Λ̂−1
h

K∑
k=1

φ(sk,h, ak,h)φ(sk,h, ak,h)>

σ̂(sk,h, ak,h)2

∫
S

(
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)
µh(s′)ds′
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h

K∑
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)
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h wπ
h

= [Ph(V πh+1 − V̂ πh+1)](s, a)− λφ(s, a)>Λ̂−1
h

∫
S

(
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µh(s)ds
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h

K∑
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σ̂h(sk,h, ak,h)2

(
[PhV̂ πh+1](sk,h, ak,h)− V̂ πh+1(s′k,h)− εk,h

)
+ λφ(s, a)>Λ̂−1

h wπ
h . (E.1)

Then by the Bellman equation, we have

V πh (s)− V̂ πh (s) = Jh(Qπh − Q̂πh)(s)

= JhPh(V πh+1 − V̂ πh+1)(s)− λJhφ(s)>Λ̂−1
h

∫
S

(
V πh+1(s′)− V̂ πh+1(s′)

)
µh(s′)ds′

+ Jhφ(s)>Λ̂−1
h
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)
+ λJhφ(s)>Λ̂−1

h wπ
h , (E.2)

where Jhf(·) =
∫
A f(·, a)πh(a|·)da for any function f : S × A → R. Recursively expanding the

above equation, we obtain

V π1 (s)− V̂ π1 (s)

= −λ
H∑
h=1

(
h−1∏
i=1

JiPi

)
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h
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Jhφ(s1)>Λ̂−1

h wπ
h . (E.3)

Here with a slight abuse of notation we define
∏h−1
i=1 JiPi = 1 when h = 1. We then have

vπ1 − v̂π1 = −λ
H∑
h=1

(vπh)>Λ̂−1
h

∫
S

(
V πh+1(s)− V̂ πh+1(s)

)
µh(s)ds

+

H∑
h=1

(vπh)>Λ̂−1
h

K∑
k=1

φ(sk,h, ak,h)

σ̂h(sk,h, ak,h)2

(
[PhV̂ πh+1](sk,h, ak,h)− V̂ πh+1(s′k,h)− εk,h

)
+ λ

H∑
h=1

(vπh)>Λ̂−1
h wπ

h

:= E1 + E2 + E3, (E.4)
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where for simplicity we write vπh = Eπ
[(∏h−1

i=1 JiPi
)
Jhφ(s1)

∣∣∣∣s1 ∼ ξ1
]

= Eπ,h[φ(sh, ah)] by

recalling the definition of Eπ,h[·] given in the text following (2.4).

F Lemmas for Uniform Convergence

All lemmas in this section are under the Assumption of Theorem C.2.

F.1 Convergence of σ̂

Lemma F.1. For any h ∈ [H] and any V̂ πh+1 ∈ Vh+1(L), with probability at least 1− δ, it holds for
all (s, a) ∈ S ×A that∣∣∣〈φ(s, a), β̂h〉[0,(H−h+1)2] − Ph(V̂h+1)2(s, a)

∣∣∣ ≤ C ′K,δ · (H − h+ 1)2
√
d√

K

[
1

2
log

(
λ+K

λ

)
+

1

d
log

4

δ

]1/2

,

and∣∣∣〈φ(s, a), θ̂h〉[0,H−h+1] − Ph(V̂h+1)(s, a)
∣∣∣ ≤ C ′K,δ · (H − h+ 1)

√
d√

K

[
1

2
log

(
λ+K

λ

)
+

1

d
log

4

δ

]1/2

,

where

C ′K,δ := 4
√

2
1
√
κh

+ 4λ · 1

κh
·
[

1

2
log

(
λ+K

λ

)
+

1

d
log

4

δ

]−1/2

.

Proof of Lemma F.1. First we consider 〈φ(s, a), β̂h〉[0,(H−h+1)2]. Note that, since
Ph(V̂ πh+1)2(s, a) ∈ [0, (H − h+ 1)2],

|〈φ(s, a), β̂h〉[0,(H−h+1)2] − Ph(V̂ πh+1)2(s, a)| ≤ |〈φ(s, a), β̂h〉 − Ph(V̂ πh+1)2(s, a)|.
It then suffices to bound the RHS.

〈φ(s, a), β̂h〉 − Ph(V̂h+1)2(s, a)

= φ(s, a)>(Σ̂h)−1
K∑
k=1

φ(šk,h, ǎk,h)V̂ πh+1(š′k,h)2 − Ph(V̂ πh+1)2(s, a)

= φ(s, a)>(Σ̂h)−1
K∑
k=1

φ(šk,h, ǎk,h)V̂ πh+1(š′k,h)2 − φ(s, a)>
∫
S

(V̂ πh+1)2(s′)dµh(s′).

Note that

φ(s, a)>
∫
S

(V̂ πh+1)2(s′)dµh(s′)

= φ(s, a)>(Σ̂h)−1

(
K∑
k=1

φ(šk,h, ǎk,h)φ(šk,h, ǎk,h)> + λId

)∫
S

(V̂ πh+1)2(s′)dµh(s′)

= φ(s, a)>(Σ̂h)−1
K∑
k=1

φ(šk,h, ǎk,h)Ph(V̂ πh+1)2(šk,h, ǎk,h) + λφ(s, a)(Σ̂h)−1

∫
S

(V̂ πh+1)2(s′)dµh(s′),

and it follows that
〈φ(s, a), β̂h〉 − Ph(V̂h+1)2(s, a)

= φ(s, a)>(Σ̂h)−1
K∑
k=1

φ(šk,h, ǎk,h)
[
(V̂ πh+1)2(š′k,h)− Ph(V̂ πh+1)2(šk,h, ǎk,h)

]
︸ ︷︷ ︸

A1(s,a)

−λφ(s, a)>(Σ̂h)−1

∫
S

(V̂ πh+1)2(s′)dµh(s′)︸ ︷︷ ︸
A2(s,a)

.
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To bound |A1|, we first apply Cauchy-Schwartz inequality to obtain that

|E1(s, a)| ≤ ‖φ(s, a)‖Σ̂−1
h
·

∥∥∥∥∥
K∑
k=1

φ(šk,H , ǎk,H)
[
(V̂ πh+1)2(š′k,h)− Ph(V̂ πh+1)2(šk,h, ǎk,h)

]∥∥∥∥∥
Σ̂−1
h

.

By Lemma H.5, if K satisfies

K ≥ max

{
512‖Σ−1

h ‖
2 log

(
4d

δ

)
, 4λ‖Σ−1

h ‖
}
, (F.1)

then with probability at least 1− δ/2, for all (s, a) ∈ S ×A,

‖φ(s, a)‖Σ̂−1
h
≤ 2√

K
· ‖φ(s, a)‖Σ−1

h
.

By Lemma G.5, for fixed V̂ πh+1, with probability at least 1− δ/2, we have∥∥∥∥∥
K∑
k=1

φ(šk,h, ǎk,h)
[
(V̂ πh+1)2(š′k,h)− Ph(V̂ πh+1)2(šk,h, ǎk,h)

]∥∥∥∥∥
Σ̂−1
h

≤ 2
√

2(H − h+ 1)2

[
d

2
log

(
λ+K

λ

)
+ log

4

δ

]1/2

.

Combining the two inequalities above, we have that, with probability at least 1− δ,

|A1(s, a)| ≤ 2
√

2(H − h+ 1)2

[
d

2
log

(
λ+K

λ

)
+ log

4

δ

]1/2

· 2√
K
· ‖φ(s, a)‖Σ−1

h

≤ 4
√

2‖Σ−1
h ‖

1/2

[
1

2
log

(
λ+K

λ

)
+

1

d
log

4

δ

]1/2

· (H − h+ 1)2
√
d√

K
,

for all (s, a). At the same time, we can bound A2 as

|A2(s, a)| ≤ λ‖φ(s, a)‖Σ̂−1
h
·
∥∥∥∥∫
S

(V̂ πh+1)2(s′)dµh(s′)

∥∥∥∥
Σ̂−1
h

≤ λ · 2√
K
‖φ(s, a)‖Σ−1

h
· 2√

K

∥∥∥∥∫
S

(V̂ πh+1)2(s′)dµh(s′)

∥∥∥∥
Σ−1
h

≤ 4λ
∥∥Σ−1

h

∥∥ · (H − h+ 1)2
√
d

K
,

where the last step is by Assumption 2.1. We then conclude that, if K satisfies (F.1), then with
probability at least 1− δ, for all (s, a),∣∣∣〈φ(s, a), β̂h〉 − Ph(V̂h+1)2(s, a)

∣∣∣
≤ |A1(s, a)|+ |A2(s, a)|

≤ 4
√

2‖Σ−1
h ‖

1/2

[
1

2
log

(
λ+K

λ

)
+

1

d
log

4

δ

]1/2

· (H − h+ 1)2
√
d√

K
+ 4λ

∥∥Σ−1
h

∥∥ · (H − h+ 1)2
√
d

K

= 4
√

2
1
√
κh

[
1

2
log

(
λ+K

λ

)
+

1

d
log

4

δ

]1/2

· (H − h+ 1)2
√
d√

K
+

4λ

κh
· (H − h+ 1)2

√
d

K
,

where in the last step we use the definition κh := λmin(Σh). Note that by Assumption 2.3, we have
κh > 0 for all h ∈ [H]. At the same time, we can bound 〈φ(s, a), θ̂h〉[0,H−h+1] − Ph(V̂h+1)(s, a)
in a similar way as∣∣∣〈φ(s, a), θ̂h〉[0,H−h+1] − Ph(V̂h+1)(s, a)

∣∣∣
≤ 4
√

2
1
√
κh

[
1

2
log

(
λ+K

λ

)
+

1

d
log

4

δ

]1/2

· (H − h+ 1)
√
d√

K
+

4λ

κh
· (H − h+ 1)

√
d

K
.
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Lemma F.2. For any h ∈ [H] and any V̂ πh+1 ∈ Vh+1(L), with probability at least 1− δ, it holds for
all (s, a) ∈ S ×A that∣∣∣σ̂2

h(s, a)− σ2
r −max

{
ηh, VhV̂ πh+1(s, a)

}∣∣∣ ≤ CK,h,δ(H − h+ 1)2
√
d√

K

≤ 20(H − h+ 1)2
√
d

κh
√
K

·

√
log

(
K

λδ

)
,

where

CK,h,δ = 12
√

2
1
√
κh
·
[

1

2
log

(
λ+K

λ

)
+

1

d
log

4

δ

]1/2

+ 12λ
1

κh
. (F.2)

Proof of Lemma F.2. Recall that by definition,

VhV̂ πh+1(s, a) = Ph(V̂ πh+1)2(s, a)−
(
PhV̂ πh+1(s, a)

)2

.

We then have∣∣∣∣[〈φ(s, a), β̂h〉[0,(H−h+1)2] −
(
〈φ(s, a), θ̂h〉[0,H−h+1]

)2
]
− VhV̂ πh+1(s, a)

∣∣∣∣
≤
∣∣∣〈φ(s, a), β̂h〉[0,(H−h+1)2] − Ph(V̂ πh+1)2(s, a)

∣∣∣+ 2(H − h+ 1) ·
∣∣∣〈φ(s, a), θ̂h〉[0,H−h+1] − PhV̂ πh+1(s, a)

∣∣∣ ,
and the rest follows from Lemma F.1 and the fact that max{ηh, ·} is a contraction mapping.

Lemma F.3. For any h ∈ [H − 1], let V ∈ Vh+1(L) ∩ {V : sups∈S |V (s) − V πh+1(s)| ≤ ρ} for
some sufficiently small ρ < (ηh + σ2

r)/[12(H − h+ 1)]. Suppose K satisfies that

K ≥ 3600(H − h+ 1)4d

κ2
h infs,a σh(s, a)2

· log

(
Kd

λδ

)
(F.3)

Then for any δ ∈ (0, 1), it holds with probability at least 1− δ that∣∣∣∣∣∣∣∣
(

Λ̂h

K

)−1 ∣∣∣∣∣∣∣∣ ≤ 4

ιh
.

Proof of Lemma F.3. By Lemma F.2, there exists an event Ě over {(šk,h, ǎk,h), k ∈ [K]} such that
P(Ě) ≥ 1− δ and on this event it holds for all (s, a) ∈ S ×A that

∣∣σ̂2
h(s, a)− σ2

r −max
{
ηh, VhV πh+1(s, a)

}∣∣ ≤ 20(H − h+ 1)2
√
d

κh
√
K

√
log

(
K

λδ

)
+ 4(H − h+ 1) · ρ.

Then by (F.3) and the assumption on ρ, we have

1

3
σh(s, a) ≤ σ̂h(s, a) ≤ 5

3
σh(s, a) (F.4)

for all (s, a) ∈ S × A. In the following argument we condition on Ě , and this will not affect the
distribution of {(sk,h, ak,h), k ∈ [K]} by independence.

Recall that

Λ̂h =

K∑
k=1

σ̂h(sk,h, ak,h)−2φ(sk,h, ak,h)φ(sk,h, ak,h)> + λId.

Since σ̂h ≥ infs,a σh(s, a)/3, it then follows from Lemma H.1 that∥∥∥∥∥Λ̂h

K
− E

[
Λ̂h

K

]∥∥∥∥∥ ≤ 12
√

2√
K · infs,a σh(s, a)2

·

√
log

(
2d

δ

)
. (F.5)
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To bound ‖(Λ̂h/K)−1‖, we use the fact that∣∣∣∣∣∣∣∣
(

Λ̂h

K

)−1 ∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣E
[

Λ̂h

K

]−1 ∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
(

Λ̂h

K

)−1

− E

[
Λ̂h

K

]−1 ∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣E
[

Λ̂h

K

]−1 ∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
(

Λ̂h

K

)−1 ∣∣∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣E
[

Λ̂h

K

]−1 ∣∣∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣Λ̂h

K
− E

[
Λ̂h

K

] ∣∣∣∣∣∣∣∣,
which implies∣∣∣∣∣∣∣∣

(
Λ̂h

K

)−1 ∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣E
[

Λ̂h

K

]−1 ∣∣∣∣∣∣∣∣ ·
1−

∣∣∣∣∣∣∣∣E
[

Λ̂h

K

]−1 ∣∣∣∣∣∣∣∣ · ∣∣∣∣∣∣∣∣Λ̂h

K
− E

[
Λ̂h

K

] ∣∣∣∣∣∣∣∣
−1

≤

∣∣∣∣∣∣∣∣E
[

Λ̂h

K

]−1 ∣∣∣∣∣∣∣∣−1

−
∣∣∣∣∣∣∣∣Λ̂h

K
− E

[
Λ̂h

K

] ∣∣∣∣∣∣∣∣
−1

(F.6)

Note that by (F.4), we have

E

[
Λ̂h

K

]
=

1

K

K∑
k=1

E
[
φ(sk,h, ak,h)φ(sk,h, ak,h)>

σ̂h(sk,h, ak,h)2

]
+
λ

K
Id

� 1

2K

K∑
k=1

E
[
φ(sk,h, ak,h)φ(sk,h, ak,h)>

σh(s, a)2

]
+
λ

K
Id

=
1

2
Λh +

λ

K
Id. (F.7)

Finally combining (F.5), (F.6) and (F.7) yields∣∣∣∣∣∣∣∣
(

Λ̂h

K

)−1 ∣∣∣∣∣∣∣∣ ≤ 1(
ιh
2 + λ

K

)
− 12

√
2√

K·infs,a σh(s,a)2
·
√

log
(

2d
δ

) ≤ 4

ιh
,

where the second inequality follows from (F.3).

Lemma F.4. For any h ∈ [H−1], let ρ be some positive constant such that ρ < (ηh+σ2
r)/[12(H−

h+ 1)]. For any δ ∈ (0, 1), suppose K satisfies that

K ≥ 3600(H − h+ 1)4d2

κ2
h infs,a σh(s, a)2

· log

(
d(H − h+ 1)KL

ιhκhλδ

)
. (F.8)

Then it holds with probability at least 1− δ that∥∥∥∥∥∥
(

Λ̂h

K

)−1
∥∥∥∥∥∥ ≤ 8

ιh
.

for all V ∈ Vh+1(L) ∩ {V : sups∈S |V (s)− V πh+1(s)| ≤ ρ}.

Proof of Lemma F.4. Let ε > 0 be a constant to be determined later and CV be a ε−cover of
Vh+1(L) ∩ {V : sups∈S |V (s) − V πh+1(s)| ≤ ρ}. By Lemma F.3, the choice of K in (F.8) and a
union bound, we have ∥∥∥∥∥∥

(
Λ̂h

K

)−1
∥∥∥∥∥∥ ≤ 4

ιh
(F.9)

for all V ∈ CV , given K satisfies that

K ≥ 3600(H − h+ 1)4d

κ2
h infs,a σh(s, a)2

· log

(
KdNε
λδ

)
(F.10)
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where Nε is the ε−covering number of Vh+1(L) ∩ {V : sups∈S |V (s)− V πh+1(s)| ≤ ρ}.

For any V1 ∈ Vh+1(L) ∩
{
V : sups∈S |V (S)− V πh+1(s)| ≤ ρ

}
, there exists V2 ∈ CV such that

sups∈S |V1(s)− V2(s)| ≤ ε. Let σ1 and Λ̂h,1 be the variance estimator and the weighted covariance
induced by V1, and σ2 and Λ̂h,2 that of V2. Then we have∣∣σ2

1(s, a)− σ2
2(s, a)

∣∣
≤
∣∣∣〈φ(s, a), β̂h,1 − β̂h,2〉

∣∣∣+ 2(H − h+ 1)
∣∣∣〈φ(s, a), θ̂h,1 − θ̂h,2〉

∣∣∣
≤

∣∣∣∣∣Σ̂−1
h

K∑
k=1

φ(šk,h, ǎk,h)(V 2
1 (š′k,h)− V 2

2 (š′k,h))

∣∣∣∣∣+

∣∣∣∣∣Σ̂−1
h

K∑
k=1

φ(šk,h, ǎk,h)(V1(š′k,h)− V2(š′k,h))

∣∣∣∣∣
≤ 4(H − h+ 2)2K

κh
· ε, (F.11)

where the second inequality is due to Assumption 2.1 and the third inequality follows from the fact
that V1, V2 ∈ Vh+1(L).

Therefore, we can bound the difference between Λ̂h,1 and Λ̂h,2 as follows.∥∥∥∥∥Λ̂h,1

K
− Λ̂h,2

K

∥∥∥∥∥ =

∥∥∥∥∥ 1

K

K∑
k=1

φ(sk,h, ak,h)φ(sk,h, ak,h)> · σ1(s, a)2 − σ2(s, a)2

σ1(s, a)2σ2(s, a)2

∥∥∥∥∥
≤ 1

K

K∑
k=1

|σ1(s, a)2 − σ2(s, a)2|
σ1(s, a)2σ2(s, a)2

≤ 4(H − h+ 2)2K

κh(ηh + σ2
r)2

· ε, (F.12)

where the first inequality follows from Assumption 2.1, and the second inequality is due to (F.11).
When ε is small enough, by (F.9) we have

λmin(Λ̂h,1/K) ≥ λmin(Λ̂h,2/K)− ‖Λ̂h,1 − Λ̂h,2‖/K ≥
ιh
4
− 4(H − h+ 2)2K

κh(ηh + σ2
r)

· ε,

which further implies that∥∥∥∥∥∥
(

Λ̂h,1

K

)−1
∥∥∥∥∥∥ ≤

(
ιh
4
− 4(H − h+ 2)2K

κh(ηh + σ2
r)

· ε
)−1

≤ 8

ιh

if we choose ε = ιhκh(ηh + σ2
r)/[32(H − h+ 2)2K]. In this case, by Lemma H.13, we have

logNε ≤ d ·
(

1 +
64L(H − h+ 2)2K

ιhκh(ηh + σ2
r)

)
. (F.13)

Therefore, by (F.10), (F.12) and (F.13), it suffices to choose K such that

K ≥ 3600(H − h+ 1)4d2

κ2
h infs,a σh(s, a)2

· log

(
d(H − h+ 1)KL

ιhκhλδ

)
.

F.2 Bernstein Inequality for the Self-Normalized Martingales

Lemma F.5. For any h ∈ [H − 1] and any fixed V̂ πh+1 ∈ Vh+1(L), let σ̂h be as defined in Line 6 of
Algorithm 2 and Λ̂h be as defined in (3.3). Suppose K satisfies that

K ≥ 1600(H − h+ 1)4d

κ2
h(ηh + σ2

r)2
· log

(
K

λδ

)
(F.14)
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Then for any δ ∈ (0, 1), it holds with probability at least 1− δ that∣∣∣∣∣∣∣∣ K∑
k=1

σ̂h(sk,h, ak,h)−2φ(sk,h, ak,h)
(
PhV̂ πh+1(sk,h, ak,h)− V̂ πh+1(s′k,h)− εk,h

) ∣∣∣∣∣∣∣∣
Λ̂−1
h

≤

√
2d log

(
1 +

K

λd(ηh + σ2
r)

)
· log

(
4K2

δ

)
+

4(2H − 2h+ 3)√
ηh + σ2

r

log

(
4K2

δ

)

Proof of Lemma F.5. Let Ě be the event given by Lemma F.2, on which it holds for all (s, a) ∈ S×A
that ∣∣∣σ̂2

h(s, a)− σ2
r −max{ηh,VhV̂ πh+1(s, a)}

∣∣∣ ≤ 20(H − h+ 1)2
√
d

κh
√
K

·

√
log

(
K

λδ

)
. (F.15)

Now conditioning on Ě , it will not affect the distribution of {(sk,h, ak,h), k ∈ [K]} by independence.
In the following argument, we omit the explicit notation for conditioning on Ě for simplicity.

Define xk = φ(sk,h, ak,h)/σ̂h(sk,h, ak,h), which is a deterministic function of (sk,h, ak,h)

since θ̂h and β̂h are fixed. Define ζk =
(
PhV̂ πh+1(sk,h, ak,h)− V̂ πh+1(s′k,h)− εk,h

)
/σ̂k,h,

which is a function of sk,h, ak,h, εk,h, s
′
k,h. Now we define the filtration {Fk}Kk=0

by F0 = σ(s1,h, a1,h), F1 = σ(s1,h, a1,h, ε1,h, s
′
1,h, s2,h, a2,h) , · · · , Fk =

σ(s1,h, a1,h, ε1,h, s
′
1,h, · · · , sk,h, ak,h, εk,h, s′k,h, sk+1,h, ak+1,h) for k = 1, · · · ,K − 1, and FK =

σ(FK−1, εK,h, s
′
K,h). Then we see that xk is Fk−1-measurable and ζk is Fk-measurable. Fur-

thermore, since E[V̂ πh+1(s′k,h) | Fk−1] = PhV̂ πh+1(sk,h, ak,h), E[εk,h | Fk−1] = 0 and σ̂k,h is
Fk−1-measurable, ζk | Fk−1 has zero-mean. Also, by construction we have |ζk| ≤ (2H − 2h +

3)/
√
ηh + σ2

r , and it follows from (F.15) that

Var(ζk | Fk−1) ≤
VhV̂ πh+1(sk,h, ak,h) + σ2

r

max{ηh,VhV̂ πh+1(sk,h, ak,h)}+ σ2
r −

20(H−h+1)2
√
d

κh
√
K

·
√

log
(
K
λδ

) ≤ 2,

as long as K satisfies (F.14).

Then by Theorem H.10, with probability at least 1− δ, we have∥∥∥∥∥
K∑
k=1

xkζk

∥∥∥∥∥
Λ̂−1
h

≤

√
2d log

(
1 +

K

λd(ηh + σ2
r)

)
· log

(
4K2

δ

)
+

4(2H − 2h+ 3)√
ηh + σ2

r

log

(
4K2

δ

)
.

Since P(Ě) ≥ 1− δ, the overall probability is at least (1− δ)2 ≥ 1− 2δ by independence. Finally
replacing δ by δ/2 completes the proof.

Lemma F.6. Let ε > 0 be a constant. For any h ∈ [H] and δ ∈ (0, 1), suppose K satisfies that

K ≥ 1600(H − h+ 1)4d2

κ2
h(ηh + σ2

r)2
· log

(
(H − h+ 1)2KL

λκh(ηh + σ2
r)δ

)
(F.16)

where Nε is the ε-covering number of Vh+1(L). Then with probability at least 1− δ, it holds for all
function V ∈ Vh+1(L) that∥∥∥∥∥

K∑
k=1

σ̂h(sk,h, ak,h)−2φ(sk,h, ak,h)
(
PhV (sk,h, ak,h)− V (s′k,h)− εk,h)

)∥∥∥∥∥
2

Λ̂−1
h

≤ 50

(
d+

√
d(H − h+ 1)√
ηh + σ2

r

)2

· log2

(
K(H − h+ 1)2L

κh(ηh + σ2
r)δ

)
. (F.17)
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Proof of Lemma F.6. For the simplicity of presentation, we first define some notations. We define
the following vector,

vV :=

K∑
k=1

φ(sk,h, ak,h)
(
PhV (sk,h, ak,h)− V (s′k,h)− εk,h

)
σ̂h(sk,h, ak,h)2

.

and the following matrix

ΓV :=

K∑
k=1

φ(sk,h, ak,h)φ(sk,h, ak,h)>/σ̂2
h(sk,h, ak,h) + λId.

It remains to show that, with probability at least 1− δ, for any function V ∈ Vh+1(L), v>V Γ−1
V vV

is no greater than the R.H.S. of (F.17). In the following argument, for V1 ∈ Vh+1(L), we denote
v1 = vV1 , Γ1 = ΓV1 and σ1 the variance estimator induced by V1, and similar for V2.

Let CV be the smallest ε-cover of Vh+1(L), and Nε = |CV | the ε-covering number of Vh+1(L). For
any V1 ∈ Vh+1(L), there exists V2 ∈ CV such that dist(V1, V2) = sups |V1(s) − V2(s)| ≤ ε. Note
that we have the following decomposition:

v>1 A−1
1 v1 ≤ v>2 A−1

2 v2 +
∣∣v>1 A−1

1 v1 − v>2 A−1
2 v2

∣∣ . (F.18)

By Lemma H.13, when K satisfies (F.16), we have

K ≥ 1600(H − h+ 1)4d

κ2
h(ηh + σ2

r)2
· log

(
KNε
λδ

)
Then by Lemma F.5 and a union bound, we have that, with probability at least 1− δ,

v>2 A−1
2 v2 ≤

(√
2d log

(
1 +

K

λd(ηh + σ2
r)

)
· log

(
4K2Nε
δ

)
+

4(2H − 2h+ 3)√
ηh + σ2

r

log

(
4K2Nε
δ

))2

.

(F.19)

It remains to bound the second term in (F.18). We first bound ‖v1 − v2‖2.

‖v1 − v2‖

=

∣∣∣∣∣
∣∣∣∣∣
K∑
k=1

φ(sk,h, ak,h)

(PhV1(sk,h, ak,h)− V1(s′k,h)− εk,h
σ2

1(sk,h, ak,h)
−

PhV2(sk,h, ak,h)− V2(s′k,h)− εk,h
σ2

2(sk,h, ak,h)

) ∣∣∣∣∣
∣∣∣∣∣

≤
K∑
k=1

‖φ(sk,h, ak,h)‖2 ·
∣∣∣∣PhV1(sk,h, ak,h)− V1(s′k,h)− εk,h

σ2
1(sk,h, ak,h)

−
PhV2(sk,h, ak,h)− V2(s′k,h)− εk,h

σ2
2(sk,h, ak,h)

∣∣∣∣
≤

K∑
k=1

∣∣∣∣∣∣
(
PhV1(sk,h, ak,h)− V1(s′k,h)− εk,h

)
σ2

1(sk,h, ak,h)
−

(
PhV2(sk,h, ak,h)− V2(s′k,h)− εk,h

)
σ2

2(sk,h, ak,h)

∣∣∣∣∣∣ (F.20)

where the first inequality follows from Cauchy-Schwartz inequality and the second inequality is due
to Assumption 2.1.

Note that for any real-valued function f1(·), f2(·) and positive function g1(·), g2(·) bounded away
from 0, we have∣∣∣∣f1

g1
− f2

g2

∣∣∣∣ =

∣∣∣∣f1g2 − f1g1 + f1g1 − g1f2

g1g2

∣∣∣∣
≤
∣∣∣∣f1(g2 − g1)

g1g2

∣∣∣∣+

∣∣∣∣g1(f1 − f2)

g1g2

∣∣∣∣
≤ 1

inf g1 inf g2
[(sup |f1|) · |g2 − g1|+ (sup g1) · |f1 − f2|] . (F.21)
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Now, by the construction we have σ2
1(·, ·) ∈ [ηh + σ2

r , (H − h+ 1)2 + σ2
r ], and PhV1(·, ·)− V1(·)−

εk,h ∈ [−2H + 2h− 3, 2H − 2h+ 3], and the same for σ2 and V2. Also note that for all (s, a),∣∣σ2
1(s, a)− σ2

2(s, a)
∣∣

≤
∣∣∣〈φ(s, a), β̂h,1 − β̂h,2〉

∣∣∣+ 2(H − h+ 1)
∣∣∣〈φ(s, a), θ̂h,1 − θ̂h,2〉

∣∣∣
≤

∣∣∣∣∣Σ̂−1
h

K∑
k=1

φ(šk,h, ǎk,h)(V 2
1 (š′k,h)− V 2

2 (š′k,h))

∣∣∣∣∣+

∣∣∣∣∣Σ̂−1
h

K∑
k=1

φ(šk,h, ǎk,h)(V1(š′k,h)− V2(š′k,h))

∣∣∣∣∣
≤ 4(H − h+ 2)2K

κh
· ε, (F.22)

where the second inequality is due to Assumption 2.1 and the third inequality follows from the fact
that V1, V2 ∈ Vh+1(L).

Denote u = v2 − v1. Combining (F.20), (F.21) and (F.22) yields that

‖u‖ ≤
K∑
k=1

1

(ηh + σ2
r)2

[
4(2H − 2h+ 3)(H − h+ 2)2K

κh
· ε+ ((H − h+ 1)2 + σ2

r) · 2ε
]

≤ 10(H − h+ 1)2K2

κh(ηh + σ2
r)2

ε, (F.23)

where the second inequality is due to the fact that σ2
r ≤ 1.

Next, by Lemma H.7 and (F.22), we have

‖A−1
1 −A−1

2 ‖ ≤
8K2((H − h+ 1)2 + σ2

r)

λ2κh(ηh + σ2
r)2

· ε. (F.24)

Also note that∣∣v>1 A−1
1 v1 − v>2 A−1

2 v2

∣∣ =
∣∣v>1 A−1

1 v1 − (v1 + u)>A−1
2 (v1 + u)

∣∣
≤
∣∣v>1 (A−1

1 −A−1
2 )v1

∣∣+ 2
∣∣v>1 A−1

2 u
∣∣+
∣∣u>A−1

2 u
∣∣ . (F.25)

By the definition, we have ‖v1‖2, ‖v2‖2 ≤ (2H−2h+3)K/(ηh+σ2
r), and ‖A−1

1 ‖, ‖A
−1
2 ‖ ≤ 1/λ.

It then follows from (F.24) and (F.25) that

∣∣v>1 A−1
1 v1 − v>2 A−1

2 v2

∣∣ ≤ (2H − 2h+ 3)2K2

(ηh + σ2
r)2

· 8K2((H − h+ 1)2 + σ2
r)

λ2κh(ηh + σ2
r)2

· ε

+
2(2H − 2h+ 3)K

λ(ηh + σ2
r)

· 10K(H − h+ 1)2K2

κh(ηh + σ2
r)2

· ε

+
100(H − h+ 1)4K4

λκ2
h(ηh + σ2

r)4
· ε2

≤ 200(H − h+ 1)4K4

κ2
h(ηh + σ2

r)2
· ε,

by the choice of λ = 1. We then choose ε = κ2
h(ηh + σ2

r)2/[200(H − h+ 1)4K5], and thus∣∣v>1 A−1
1 v1 − v>2 A−1

2 v2

∣∣ ≤ 1

K
(F.26)

Now by Lemma (H.13), we have

Nε ≤
(

1 +
400(H − h+ 1)4K5L

κ2
h(ηh + σ2

r)2

)d
. (F.27)

Then combining (F.18), (F.19), (F.26) and (F.27) yields∥∥∥∥∥
K∑
k=1

σ̂h(sk,h, ak,h)−2φ(sk,h, ak,h)
(
PhV (sk,h, ak,h)− V (s′k,h)− εk,h)

)∥∥∥∥∥
2

Λ̂−1
h

≤ 50

(
d+

d(H − h+ 1)√
ηh + σ2

r

)2

· log2

(
K(H − h+ 1)2L

κh(ηh + σ2
r)δ

)
.
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This completes the proof.

F.3 Bounding the error terms

Finally, we prove the following key lemma for completing the induction step in the proof of Theorem
C.2.
Lemma F.7. Set L = (1 + 1/H)d

√
K/λ. For any h ∈ [H − 1], let ρ be some positive constant

such that ρ < (ηh + σ2
r)/[12(H − h+ 1)]. For any δ ∈ (0, 1), suppose K satisfies that

K ≥ 3600(H − h+ 1)4d2

κ2
h(ηh + σ2

r)2
· log

(
dHK

κhδ

)
(F.28)

Then the following two events hold simultaneously with probability at least 1− δ:

1. Ẽ1: for all V ∈ Vh+1(L) ∩ {V : sups∈S |V (s)− V πh+1(s)| ≤ ρ},∥∥∥∥∥∥
(

Λ̂h

K

)−1
∥∥∥∥∥∥ ≤ 8

ιh
; (F.29)

2. Ẽ2: for all function V (·) ∈ Vh+1(L) ∩ {V : sups∈S |V (s)− V πh+1(s)| ≤ ρ} and all (s, a)
pairs,∣∣∣∣∣φ(s, a)>Λ̂−1

h

K∑
k=1

σ̂h(sk,h, ak,h)−2φ(sk,h, ak,h)
(
PhV (sk,h, ak,h)− V (s′k,h)− εk,h

)∣∣∣∣∣
≤ 20√

K
·

(
d
√
ιh

+
d(H − h+ 1)√
ιh(ηh + σ2

r)

)
· log

(
d(H − h+ 1)2K

κh(ηh + σ2
r)δ

)

Proof of Lemma F.7. We want to show P{Ẽ1 ∩ Ẽ2} ≥ 1− δ. It follows from Lemma F.4 and (F.28)
that P(Ẽ1) ≥ 1− δ.

To show that P(Ẽ2) ≥ 1− δ, first by Lemma F.6, we have∥∥∥∥∥
K∑
k=1

σ̂h(sk,h, ak,h)−2φ(sk,h, ak,h)
(
PhV (sk,h, ak,h)− V (s′k,h)− εk,h)

)∥∥∥∥∥
2

Λ̂−1
h

≤50

(
d+

d(H − h+ 1)√
ηh + σ2

r

)2

· log2

(
K(H − h+ 1)2L

κh(ηh + σ2
r)δ

)
, (F.30)

for all V ∈ Vh+1(L).

It follows from Cauchy-Schwartz inequality that

φ(s, a)>Λ̂−1
h

K∑
k=1

σ̂h(sk,h, ak,h)−2φ(sk,h, ak,h)
(
PhV (sk,h, ak,h)− V (s′k,h)− εk,h

)
≤ ‖φ(s, a)‖Λ̂−1

h
·

∥∥∥∥∥
K∑
k=1

σ̂h(sk,h, ak,h)−2φ(sk,h, ak,h)
(
[PhV ](sk,h, ak,h)− V (s′k,h)− εk,h

)∥∥∥∥∥
Λ̂−1
h

≤ ‖Λ̂−1
h ‖

1/2 ·

∥∥∥∥∥
K∑
k=1

σ̂h(sk,h, ak,h)−2φ(sk,h, ak,h)
(
[PhV ](sk,h, ak,h)− V (s′k,h)− εk,h

)∥∥∥∥∥
Λ̂−1
h

≤ 20√
K
·

(
d
√
ιh

+
d(H − h+ 1)√
ιh(ηh + σ2

r)

)
· log

(
d(H − h+ 1)2K

κh(ηh + σ2
r)δ

)
,

where the second inequality follows from Assumption 2.1 and the third inequality follows from (F.29)
and (F.30). Note that this holds for all (s, a) ∈ S ×A as we directly bound the operator norm of Λ̂h.
Replacing δ by δ/2 completes the proof.
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G Lemmas for OPE Convergence

G.1 Concentration of σ̂

Recall that in the algorithm, to estimate the variance, we use β̂h and θ̂h which are estimated using
the function V̂ πh+1 and {šk,h, ǎk,h, š′k,h}k∈[K].

For the next lemma we denote the function σ(·, ·) as computed from some function V (·) and data Ďh.

Lemma G.1. Let ρ ≥ 0. For any V ∈ Vh+1(L)∩{V : sups |V (s)−V πh+1(s)| ≤ ρ}, with probability
at least 1− δ, we have∣∣σ2(s, a)− σ2

r −max
{
ηh, VhV πh+1(s, a)

}∣∣ ≤ CK,h,δ(H − h+ 1)2
√
d√

K
+ 4(H − h+ 1) · ρ,

for all (s, a) ∈ S ×A where

CK,h,δ = 12
√

2 · 1
√
κh
·
[

1

2
log

(
λ+K

λ

)
+

1

d
log

4

δ

]1/2

+ 12λ · 1

κh
.

Proof of Lemma G.1. By Lemma F.2, with probability at least 1− δ, we have

∣∣σ2(s, a)− σ2
r −max {ηh, VhV (s, a)}

∣∣ ≤ CK,h,δ(H − h+ 1)2
√
d√

K
.

Note that if two functions f1, f2 : S → R satisfies sups |f1(s)−f2(s)| ≤ ρ, sups |f1(s)| ≤ H−h+1,
and sups |f2(s)| ≤ H − h+ 1, then for all (s, a),

|Vhf1(s, a)− Vhf2(s, a)| ≤ 4(H − h+ 1) · ρ.

Then using the triangular inequality and |VhV (s, a)−VhV πh+1(s, a)| ≤ 4(H − h+ 1)ρ finishes the
proof.

G.2 Concentration of Weighted Sample Covariance Matrices

In this subsection, we study the concentration of the matrices Λ̂h, h ∈ [H] to their population counter-
parts. Recall from Algorithm 1 that for each h ∈ [H], the matrix Λ̂h is generated using the function
σ̂h(·, ·) and the dataset Dh = {(sk,h, ak,h, rk,h, s′k,h)}k∈[K]. Since the function σ̂h(·, ·) itself is
generated by V̂h+1(·) and the dataset Ďh = {(šk,h, ǎk,h, řk,h, š′k,h)}k∈[K], we can equivalently view
Λ̂h as generated by V̂h+1(·) and the datasets Ďh and Dh. In the remaining of the subsection, we will
omit the subscript and superscript when it is clear and simply write

Λ̂h =

K∑
k=1

φ(sk,h, ak,h)φ>(sk,h, ak,h)/σ2(sk,h, ak,h) + λId,

where σ(·, ·) is generated using the function V (·) and the dataset Ďh as described in Algorithm 1.
We also denote

σ2
V (·, ·) := max {ηh, VhV (·, ·)}+ σ2

r .

By Lemma F.2, we know that with high probability, σ2(·, ·) will be a good estimator for σ2
V (·, ·).

This will be used to show the concentration of the matrix Λ̂h. We start from the next lemma.

Lemma G.2. For any h ∈ [H], conditioning on σ(·, ·) ∈ Th(L1, L2) being fixed, with conditional
probability at least 1− δ,∥∥∥∥∥Λ̂h

K
− Eπ̄,h

[
φ(s, a)φ(s, a)>

σ2(s, a)

]∥∥∥∥∥ ≤ 4
√

2

(ηh + σ2
r)
√
K
·
(

log
2d

δ

)1/2

+
λ

K
.
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Proof of Lemma G.2. Since σ(·, ·) is a function of V and the dataset Ďh which is indepen-
dent of Dh, conditioning on σ(·, ·) won’t change the distribution of Dh. In other words,
φ(sk,h, ak,h)/σ(sk,h, ak,h), k ∈ [K] can be viewed as independent random vectors. Then by
Lemma H.4, we have that, with conditional probability at least 1− δ,∣∣∣∣∣

∣∣∣∣∣Λ̂h

K
− Eπ̄,h

[
Λ̂h

K

] ∣∣∣∣∣
∣∣∣∣∣ ≤ 4

√
2

(ηh + σ2
r)
√
K
·

√
log

(
2d

δ

)
,

and thus∣∣∣∣∣
∣∣∣∣∣Λ̂h

K
− Eπ̄,h

[
φ(s, a)φ(s, a)>

σ2(s, a)

] ∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣Λ̂h

K
− Eπ̄,h

[
Λ̂h

K

] ∣∣∣∣∣
∣∣∣∣∣+

∣∣∣∣∣
∣∣∣∣∣Eπ̄,h

[
φ(s, a)φ(s, a)>

σ2(s, a)

]
− Eπ̄,h

[
Λ̂h

K

] ∣∣∣∣∣
∣∣∣∣∣

≤ 4
√

2

(ηh + σ2
r)
√
K
·

√
log

(
2d

δ

)
+
λ

K
.

Next, combine Lemma G.2 and the event that σ2(·, ·) is a good estimator for σ2
V (·, ·), we get the

following lemma.
Lemma G.3. For any h ∈ [H], condition on V ∈ Vh+1(L) being fixed, with conditional probability
at least 1− δ,∥∥∥∥∥Λ̂h

K
− Eπ̄,h

[
φ(s, a)φ(s, a)>

σ2
V (s, a)

]∥∥∥∥∥
≤ 4

√
2

(ηh + σ2
r)
√
K
·
(

log
4d

δ

)1/2

+
λ

K
+

1

(ηh + σ2
r)2
· CK,h,δ(H − h+ 1)2

√
d√

K
,

where

CK,h,δ = 12
√

2 · 1
√
κh
·
[

1

2
log

(
λ+K

λ

)
+

1

d
log

8

δ

]1/2

+ 12λ · 1

κh
.

Proof of Lemma G.3. First note that condition on σ(·, ·) ∈ Th(L1, L2) such that sups,a |σ2(s, a)−
σ2
V (s, a)| ≤ ρ for some ρ ≥ 0, we have∥∥∥∥Eπ̄,h [φ(s, a)φ(s, a)>

σ2(s, a)

]
− Eπ̄,h

[
φ(s, a)φ(s, a)>

σ2
V (s, a)

]∥∥∥∥
≤ Eπ̄,h

[∥∥φ(s, a)φ(s, a)>
∥∥ sup
s,a

(
1

σ2(s, a)
− 1

σ2
V (s, a)

)]
≤ 1

(ηh + σ2
r)2
· ρ,

since σ2(s, a) and σ2
V (s, a) are lower bounded by ηh + σ2

r . Then by Lemma G.2, we have that,
conditioning on fixed σ(·, ·) s.t. sups,a |σ2(s, a) − σ2

V (s, a)| ≤ ρ, with conditional probability at
least 1− δ,∥∥∥∥∥Λ̂h

K
− Eπ̄,h

[
φ(s, a)φ(s, a)>

σ2
V (s, a)

]∥∥∥∥∥ ≤ 4
√

2

(ηh + σ2
r)
√
K
·
(

log
2d

δ

)1/2

+
λ

K
+

1

(ηh + σ2
r)2
· ρ.

(G.1)

Since conditioning on V (·) won’t change the distribution of Ďh under Assumption C.1, by Lemma
F.2, with probability at least 1− δ, it holds for all (s, a) ∈ S ×A that∣∣σ2(s, a)− σ2

V (s, a)
∣∣ ≤ CK,h,δ(H − h+ 1)2

√
d√

K
, (G.2)
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where

CK,h,δ = 12
√

2 · 1
√
κh
·
[

1

2
log

(
λ+K

λ

)
+

1

d
log

4

δ

]1/2

+ 12λ · 1

κh
.

Combine (G.1) and (G.2), and we get that, condition on V , with probability at least 1− 2δ,∥∥∥∥∥Λ̂h

K
− Eπ̄,h

[
φ(s, a)φ(s, a)>

σ2
V (s, a)

]∥∥∥∥∥
≤ 4

√
2

(ηh + σ2
r)
√
K
·
(

log
2d

δ

)1/2

+
λ

K
+

1

(ηh + σ2
r)2
· CK,h,δ(H − h+ 1)2

√
d√

K
.

Replacing δ with δ/2 finishes the proof.

Finally, combining Lemma G.3 and the event of uniform convergence, we can bound the distance
between Λ̂h and its population counterpart Λh.

Lemma G.4. For any h ∈ [H], condition on V ∈ Vh+1(L) ∩ {V : sups |V (s) − V πh+1(s)| ≤ ρ},
with conditional probability at least 1− δ, we have∥∥∥∥∥Λ̂h

K
−Λh

∥∥∥∥∥
≤ 4

√
2

(ηh + σ2
r)
√
K
·
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δ
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+
λ

K
+

1

(ηh + σ2
r)2
·

(
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d√

K
+ 4(H − h+ 1) · ρ

)
,

where

CK,h,δ = 12
√

2 · 1
√
κh
·
[

1

2
log

(
λ+K

λ

)
+

1

d
log

8

δ

]1/2

+ 12λ · 1

κh
.

Proof of Lemma G.4. First note that by Lemma G.3, with probability at least 1− δ,∥∥∥∥∥Λ̂h

K
− Eπ̄,h

[
φ(s, a)φ(s, a)>

σ2
V (s, a)

]∥∥∥∥∥
≤ 4

√
2

(ηh + σ2
r)
√
K
·
(

log
4d

δ

)1/2

+
λ

K
+

1

(ηh + σ2
r)2
· CK,h,δ(H − h+ 1)2

√
d√

K
.

On the other hand, by sups |V (s) − V πh+1(s)| ≤ ρ and |V (s)|, |V πh+1(s)| ≤ H − h + 1, we have
sups |σ2

V (s)− σ2
h(s)| ≤ 4(H − h+ 1)ρ. It implies that∥∥∥∥Eπ̄,h [φ(s, a)φ(s, a)>

σ2
V (s, a)

]
− Eπ̄,h

[
φ(s, a)φ(s, a)>

σ2
h(s, a)

]∥∥∥∥ ≤ 1

(ηh + σ2
r)2
· 4(H − h+ 1) · ρ.

Then by triangular inequality, we conclude that∥∥∥∥∥Λ̂h

K
− Eπ̄,h

[
φ(s, a)φ(s, a)>

σ2
h(s, a)

]∥∥∥∥∥
≤ 4

√
2

(ηh + σ2
r)
√
K
·
(

log
4d

δ

)1/2

+
λ

K
+

1

(ηh + σ2
r)2
·

(
CK,h,δ(H − h+ 1)2

√
d√

K
+ 4(H − h+ 1) · ρ

)
.

Finally, recall the definition of Λh given by (2.6).
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G.3 Bound for the self-normalized martingales

Lemma G.5. For any h ∈ [H], condition on V̂ πh+1 ∈ Vh+1(L) s.t. sups

∣∣∣V̂ πh+1(s)
∣∣∣ ≤ B, with

conditional probability at least 1− δ,∥∥∥∥∥
K∑
k=1

φ(šk,h, ǎk,h)
[
(V̂ πh+1)(š′k,h)− Ph(V̂ πh+1)(šk,h, ǎk,h)

]∥∥∥∥∥
2

Σ̂−1
h

≤ 8B2

[
d

2
log

(
λ+K

λ

)
+ log

2

δ

]
,

∥∥∥∥∥
K∑
k=1

φ(šk,h, ǎk,h)
[
(V̂ πh+1)2(š′k,h)− Ph(V̂ πh+1)2(šk,h, ǎk,h)

]∥∥∥∥∥
2

Σ̂−1
h

≤ 8B4

[
d

2
log

(
λ+K

λ

)
+ log

2

δ

]
.

Proof of Lemma G.5. Denote xk = φ(šk,h, ǎk,h), and ηk = (V̂ πh+1)(š′k,h)− Ph(V̂ πh+1)(šk,h, ǎk,h).

Define the filtration {Fk}Kk=0 by F0 = σ(š1,h, ǎ1,h), F1 = σ(š1,h, ǎ1,h, š
′
1,h, š2,h, ǎ2,h) , · · · ,

Fk = σ(š1,h, ǎ1,h, š
′
1,h, · · · , šk,h, ǎk,h, š′k,h, šk+1,h, ǎk+1,h) for k = 1, · · · ,K − 1, and FK =

σ(FK−1, š
′
K,h). Then we see that xk is Fk−1-measurable, and ηk is Fk-measurable. Furthermore,

since E[(V̂ πh+1)2(š′k,h) | Fk−1] = Ph(V̂ πh+1)2(šk,h, ǎk,h), ηk | Fk−1 is zero-mean. Also, |ηk| ≤ 2B,
which implies that ηk | Fk−1 is 2B-subgaussian. Then by H.9, with probability at least 1− δ/2,∥∥∥∥∥

K∑
k=1

xkηk

∥∥∥∥∥
2

Σ̂−1
h

≤ 8B2 log

(
det(Σ̂h)1/2 det(λI)−1/2

δ/2

)
.

Recall that Σ̂h =
∑K
k=1 φ(šk,h, ǎk,h)φ>(šk,h, ǎk,h) + λId where ‖φ‖ ≤ 1. It follows that

det(Σ̂h) ≤ (λ+K)d.

We then conclude that ∥∥∥∥∥
K∑
k=1

xkηk

∥∥∥∥∥
2

Σ̂−1
h

≤ 8B2

[
d

2
log

(
λ+K

λ

)
+ log

2

δ

]
.

The second inequality is similar. Taking a union bound finishes the proof.

H Auxiliary Lemmas

H.1 Concentration Inequalities

Lemma H.1 (Matrix McDiarmid inequality, Tropp 41). Let zk, k = 1, · · · ,K be independent
random vectors in Rd, and let H be a function that maps K vectors to a d × d symmetric matrix.
Assume there exists a sequence of fixed symmetric matrices {Ak}k∈[K] such that

(H (z1, · · · , zk, · · · , zK)−H (z1, · · · , z′k, · · · , zK))
2 � A2

k,

where zk, z
′
k ranges over all possible values for each k ∈ [K]. Define σ2 as

σ2 :=

∣∣∣∣∣∣∣∣∑
k

A2
k

∣∣∣∣∣∣∣∣.
Then, for any t > 0,

P {λmax (H(z)− EH(z)) ≥ t} ≤ d · exp

(
−t2

8σ2

)
,

where z = (z1, · · · , zK).
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Lemma H.2 (Freedman’s inequality for martingales, Freedman 13). Consider a martingale difference
sequence {ek, k = 1, 2, 3, · · · } with filtration Fk := σ{e1, · · · , ek−1}, for k = 1, 2, · · · . Assume
ek is uniformly bounded:

|ek| ≤ R almost surely for k = 1, 2, 3, · · ·

Then for all ε ≥ 0 and σ2 > 0,

P

{
∃K > 0 :

∣∣∣∣∣
K∑
k=1

ek

∣∣∣∣∣ ≥ ε,
K∑
k=1

Var[ek | Fk] ≤ σ2

}
≤ 2 exp

(
−ε2/2

σ2 +Rε/3

)
.

H.2 Basic Matrix Inequalities

Lemma H.3. Assume G1 and G2 ∈ Rd×d are two positive semi-definite matrices. Then we have∥∥G−1
1

∥∥ ≤ ∥∥G−1
2

∥∥+
∥∥G−1

1

∥∥ · ∥∥G−1
2

∥∥ · ‖G1 −G2‖

and

‖u‖G−1
1
≤
[
1 +

√(∥∥G−1
2

∥∥ · ‖G2‖
)1/2 · ∥∥G−1

1

∥∥ · ‖G1 −G2‖
]
· ‖u‖G−1

2
,

for all u ∈ Rd.

Proof of Lemma H.3. The first inequality is by∥∥G−1
1

∥∥ ≤ ∥∥G−1
2

∥∥+
∥∥G−1

2 −G−1
1

∥∥ ≤ ∥∥G−1
2

∥∥+
∥∥G−1

2

∥∥ · ‖G2 −G1‖ ·
∥∥G−1

1

∥∥ .
To prove the second one, note that

‖u‖G−1
1

=

√
u>G−1

1 u

=

√
u>(G−1

1 −G−1
2 )u + u>G−1

2 u

=

√
u>G

−1/2
2

[
I + (G

1/2
2 G−1

1 G
1/2
2 − I)

]
G
−1/2
2 u

≤
(

1 +
∥∥∥G1/2

2 G−1
1 G

1/2
2 − I

∥∥∥1/2
)
· ‖u‖G−1

2
,

and the rest follows from∥∥∥G1/2
2 G−1

1 G
1/2
2 − I

∥∥∥ =
∥∥∥G1/2

2 (G−1
1 −G−1

2 )G
1/2
2

∥∥∥
=
∥∥∥G1/2

2 G−1
1 (G1 −G2)G−1

2 G
1/2
2

∥∥∥
≤
(∥∥G−1

2

∥∥ · ‖G2‖
)1/2 · ∥∥G−1

1

∥∥ · ‖G1 −G2‖ .

Lemma H.4. Let ϕ : S × A → Rd be a bounded function such that |ϕ(s, a)| ≤ C for all
(s, a) ∈ S ×A. For any K > 0 and λ > 0, define ḠK =

∑K
k=1ϕ(sk, ak)ϕ(sk, ak)> + λId where

(sk, ak)’s are i.i.d samples from some distribution ν over S ×A. Then with probability at least 1− δ,
it holds that ∥∥∥∥ḠK

K
− Eν

[
ḠK

K

]∥∥∥∥ ≤ 4
√

2C2

√
K

(
log

2d

δ

)1/2

.
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Proof of Lemma H.4. Denote xk = ϕ(sk, ak). Denote Σ̃h as the matrix obtained by replacing the
k-th vector xk in Σ̂h by x̃k and leaving the rest K − 1 vectors unchanged. Then we have(

Σ̂h

K
− Σ̃h

K

)2

=

(
xkx

>
k − x̃kx̃

>
k

K

)2

� 1

K2

(
2xkx

>
k xkx

>
k + 2x̃kx̃

>
k x̃kx̃

>
k

)
� 1

K2

(
2C4Id + 2C4Id

)
=

4C4

K2
· Id

:= A2
k,

where the first inequality uses the fact that (A−B)2 � 2A2 + 2B2 for all p.s.d. matricesA andB,
the second inequality is from ‖ϕ‖ ≤ C. Note that we have∣∣∣∣∣∣∣∣∑

k

A2
k

∣∣∣∣∣∣∣∣ =
4C4

K
.

Then by Lemma H.1, we have: for all t > 0,

P

{∥∥∥∥∥Σ̂h

K
− E

[
Σ̂h

K

]∥∥∥∥∥ ≥ t
}
≤ 2d · exp

(
−t2K
32C4

)
.

Equivalently, with probability at least 1− δ,∥∥∥∥∥Σ̂h

K
− E

[
Σ̂h

K

]∥∥∥∥∥ ≤ 4
√

2C2

√
K

(
log

2d

δ

)1/2

.

This completes the proof.

Lemma H.5. Let ϕ : S × A → Rd be a bounded function such that ‖ϕ(s, a)‖2 ≤ C for all
(s, a) ∈ S ×A. For any K > 0 and λ > 0, define ḠK =

∑K
k=1ϕ(sk, ak)ϕ(sk, ak)> + λId where

(sk, ak)’s are i.i.d samples from some distribution ν over S × A. Let G = Eν [ϕ(s, a)ϕ(s, a)>].
Then for any δ ∈ (0, 1), if K satisfies that

K ≥ max

{
512C4‖G−1‖2 log

(
2d

δ

)
, 4λ‖G−1‖

}
. (H.1)

Then with probability at least 1− δ, it holds simultaneously for all u ∈ Rd that

‖u‖Ḡ−1
K
≤ 2√

K
‖u‖G−1 .

Proof of Lemma H.5. Note that

‖u‖Ḡ−1
K

=
1√
K

√√√√u>G−1u + u>

[(
ḠK

K

)−1

−G−1

]
u

=
1√
K

√√√√u>G−1u + u>G−1/2

[
G1/2

(
ḠK

K

)−1

G1/2 − Id

]
G−1/2u

≤ 1√
K

1 +

∥∥∥∥∥G1/2

(
ḠK

K

)−1

G1/2 − Id

∥∥∥∥∥
1/2
 ‖u‖G−1 , (H.2)

where the last inequality follows from Cauchy-Schwartz inequality.
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It then reduces to bound
∥∥∥G1/2

(
ḠK/K

)−1
G1/2 − Id

∥∥∥, which can be further bounded by∥∥∥∥∥G1/2

(
ḠK

K

)−1

G1/2 − Id

∥∥∥∥∥ ≤
∥∥∥∥∥
[
G−1/2 ḠK

K
G−1/2

]−1
∥∥∥∥∥ ·
∥∥∥∥Id −G−1/2 ḠK

K
G−1/2

∥∥∥∥ . (H.3)

By Lemma H.4, we have ∥∥∥∥ḠK

K
− E

[
ḠK

K

]∥∥∥∥ ≤ 4
√

2C2

√
K

(
log

2d

δ

)1/2

with probability at least 1− δ, and thus∥∥∥∥I−G−1/2 ḠK

K
G−1/2

∥∥∥∥ ≤ [∥∥∥∥ḠK

K
− E

[
ḠK

K

]∥∥∥∥+

∥∥∥∥E [ḠK

K

]
−G

∥∥∥∥] · ‖G−1‖

≤ 4
√

2C2‖G−1‖√
K

√
log

2d

δ
+
λ‖G−1‖

K

≤ 1

2
(H.4)

where the last inequality follows from the assumption (H.1). Therefore,

λmin

(
G−1/2 ḠK

K
G−1/2

)
≥ 1−

∥∥∥∥I−G−1/2 ḠK

K
G−1/2

∥∥∥∥ ≥ 1

2

with probability at least 1− δ. This further implies that∥∥∥∥∥
[
G−1/2 ḠK

K
G−1/2

]−1
∥∥∥∥∥ = λmin

(
G−1/2 ḠK

K
G−1/2

)−1

≤ 2. (H.5)

Combining (H.3), (H.4) and (H.5) yields that∥∥∥∥∥G1/2

(
ḠK

K

)−1

G1/2 − Id

∥∥∥∥∥ ≤ 1 (H.6)

with probability at least 1− δ. Then plug (H.6) back into (H.2), and we obtain that

‖u‖Ḡ−1
K
≤ 2√

K
‖u‖G−1

with probability at least 1 − δ. Note that in the above argument we only need to bound∥∥∥G1/2
(
ḠK/K

)−1
G1/2 − Id

∥∥∥ which is independent of the choice of u, thus it holds for all u ∈ Rd

simultaneously. This completes the proof.

H.3 Inequalities for Sample Covariance Matrices

Here we introduce some useful lemmas about the inverse Gram matrix.
Lemma H.6 (Lemma D.1, Jin et al. 17). Let Λt =

∑t
i=1 xix

>
i + λI where λ > 0 and xi ∈ Rd.

Then
t∑
i=1

x>i Λ−1
t xi ≤ d.

Proof of Lemma H.6. Note that
t∑
i=1

x>i Λ−1
t xi =

t∑
i=1

tr(x>i Λ−1
t xi) = tr

(
Λ−1
t

t∑
i=1

xix
>
i

)
.

Using the eigen-decomposition
∑t
i=1 xix

>
i = Udiag(λ1, · · · , λd)U>, we have Λt = Udiag(λ1 +

1, · · · , λd + 1)U>, and it follows that

tr

(
Λ−1
t

t∑
i=1

xix
>
i

)
=

d∑
j=1

λj
λj + λ

≤ d.
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Lemma H.7. For any h ∈ [H] and L1, L2 > 0, let σ1, σ2 ∈ Th(L1, L2) such that sups,a |σ1(s, a)−
σ2(s, a)| ≤ ε. Define

Λ1 :=

K∑
k=1

φ(sk,h, ak,h)φ(sk,h, ak,h)>/σ1(sk,h, ak,h)2 + λId ,

Λ2 :=

K∑
k=1

φ(sk,h, ak,h)φ(sk,h, ak,h)>/σ2(sk,h, ak,h)2 + λId .

Then under Assumption 2.1, it holds that

‖Λ1 −Λ2‖ ≤
2K
√

(H − h+ 1)2 + σ2
r · ε

(ηh + σ2
r)2

,

and

‖Λ−1
1 −Λ−1

2 ‖ ≤
2K
√

(H − h+ 1)2 + σ2
r · ε

λ2(ηh + σ2
r)2

.

Proof of Lemma H.7. We have

Λ1 −Λ2 =

K∑
k=1

φ(sk,h, ak,h)φ>(sk,h, ak,h)

(
1

σ2
1(sk,h, ak,h)

− 1

σ2
2(sk,h, ak,h)

)
and thus

‖Λ1 −Λ2‖ ≤
K∑
k=1

‖φ(sk,h, ak,h)φ>(sk,h, ak,h)‖ ·
∣∣∣∣ 1

σ2
1(sk,h, ak,h)

− 1

σ2
2(sk,h, ak,h)

∣∣∣∣
≤

K∑
k=1

∣∣∣∣ 1

σ2
1(sk,h, ak,h)

− 1

σ2
2(sk,h, ak,h)

∣∣∣∣
=

K∑
k=1

∣∣∣∣ |σ1(sk,h, ak,h) + σ2(sk,h, ak,h)| · |σ1(sk,h, ak,h)− σ2(sk,h, ak,h)|
σ2

1(sk,h, ak,h)σ2
2(sk,h, ak,h)

∣∣∣∣
≤ K ·

2
√

(H − h+ 1)2 + σ2
r

(ηh + σ2
r)2

· ε

where the first inequality is from the assumption that ‖φ(s, a)‖ ≤ 1 for all (s, a) ∈ S ×A and the
second inequality is by σ2(·) ∈ [ηh + σ2

r , (H − h+ 1)2 + σ2
r ]. It then follows that

‖Λ−1
1 −Λ−1

2 ‖ = ‖Λ−1
1 (Λ1 −Λ2) Λ−1

2 ‖
≤ ‖Λ−1

1 ‖ · ‖Λ1 −Λ2‖ · ‖Λ−1
2 ‖

≤
2K
√

(H − h+ 1)2 + σ2
r · ε

λ2(ηh + σ2
r)2

,

where in the last inequality we use ‖Λ−1
1 ‖, ‖Λ

−2
1 ‖ ≤ 1/λ.

Lemma H.8. For any h ∈ [H] and L1, L2 > 0, let σ1, σ2 ∈ Th(L1, L2) such that sups,a |σ2
1(s, a)−

σ2
2(s, a)| ≤ ε. Then it holds that

‖Λ1 −Λ2‖ ≤
K

(η + σ2
r)

2 · ε, ‖Λ
−1
1 −Λ−1

2 ‖ ≤
K

λ2 (η + σ2
r)

2 · ε.

Proof of Lemma H.8. Note that

‖Λ1 −Λ2‖ ≤
K∑
k=1

‖φ(sk,h, ak,h)φ>(sk,h, ak,h)‖ ·
∣∣∣∣ 1

σ2
1(sk,h, ak,h)

− 1

σ2
2(sk,h, ak,h)

∣∣∣∣
≤

K∑
k=1

∣∣∣∣σ2
2(sk,h, ak,h)− σ2

1(sk,h, ak,h)

σ2
1(sk,h, ak,h) · σ2

2(sk,h, ak,h)

∣∣∣∣ ,
and the rest follows from the proof of Lemma H.7.
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H.4 Bounds for self-normalized vector-valued martingales

Here we introduce some concentration inequalities that can be applied to bound the self-normalized
martingales.
Theorem H.9 (Hoeffding inequality for self-normalized martingales, Abbasi-Yadkori et al. 1). Let
{ηt}∞t=1 be a real-valued stochastic process. Let {Ft}∞t=0 be a filtration, such that ηt isFt-measurable.
Assume ηt | Ft−1 is zero-mean and R-subgaussian for some R > 0, i.e.,

∀λ ∈ R, E
[
eληt|Ft−1

]
≤ eλ

2R2/2.

Let {xt}∞t=1 be an Rd-valued stochastic process where xt is Ft−1-measurable. Assume Λ0 is a d× d
positive definite matrix, and define Λt = Λ0 +

∑t
s=1 xsx

>
s . Then, for any δ > 0, with probability

at least 1− δ, for all t > 0,∣∣∣∣∣
∣∣∣∣∣

t∑
s=1

xsηs

∣∣∣∣∣
∣∣∣∣∣
2

Λ−1
t

≤ 2R2 log

(
det(Λt)

1/2 det(Λ0)−1/2

δ

)
.

Theorem H.10 (Bernstein inequality for self-normalized martingales, Zhou et al. 53). Let {ηt}∞t=1 be
a real-valued stochastic process. Let {Ft}∞t=0 be a filtration, such that ηt is Ft-measurable. Assume
ηt also satisfies

|ηt| ≤ R, E[ηt | Ft−1] = 0, E[η2
t | Ft−1] ≤ σ2.

Let {xt}∞t=1 be an Rd-valued stochastic process where xt is Ft−1-measurable and ‖xt‖ ≤ L. Let
Λt = λId +

∑t
s=1 xsx

>
s . Then, for any δ > 0, with probability at least 1− δ, for all t > 0,∣∣∣∣∣

∣∣∣∣∣
t∑

s=1

xsηs

∣∣∣∣∣
∣∣∣∣∣
Λ−1
t

≤ 8σ

√
d log

(
1 +

tL2

λd

)
· log

(
4t2

δ

)
+ 4R log

(
4t2

δ

)
.

H.5 Auxiliary Results for Self-normalized Martingales

Assume the function σ1(·, ·) is computed using the function V1(·) in the same way σ̂h is computed
using V̂ πh+1 as in Algorithm 1. In this way, we can view σ1 as a function parameterized by V1. And
similar for σ2 and V2.
Lemma H.11. Assume V1 and V2 ∈ Vh+1(L) and satisfy sups |V1(s)− V2(s)| ≤ ε. Then

sup
s,a
|σ1(s, a)− σ2(s, a)| ≤ 2

√
K(H − h+ 1)

λ
·
√
ε,

sup
s,a
|σ2

1(s, a)− σ2
2(s, a)| ≤ 4K(H − h+ 1)

λ
ε.

Proof of Lemma H.11. By the proof of Lemma H.14, we have

sup
s,a
|σ1(s, a)− σ2(s, a)| ≤ sup

s,a

√
|σ2

1(s, a)− σ2
2(s, a)| ≤

√
‖β1 − β2‖+ 2(H − h+ 1) · ‖θ1 − θ2‖.

Note that

‖θ1 − θ2‖ =

∥∥∥∥∥(Σ̂h)−1
K∑
k=1

φ(šk,h, ǎk,h)(V1 − V2)(š′k,h)

∥∥∥∥∥ ≤ K

λ
ε,

where we use
∥∥∥(Σ̂h)−1

∥∥∥ ≤ 1/λ and ‖φ(s, a)‖ ≤ 1 for all (s, a). Similarly, we can show

‖β1 − β2‖ ≤

∥∥∥∥∥(Σ̂h)−1
K∑
k=1

φ(šk,h, ǎk,h)(V1(š′k,h)2 − V2(š′k,h)2)

∥∥∥∥∥
≤
∥∥∥(Σ̂h)−1

∥∥∥ ·K · 2(H − h+ 1)ε ≤ 2K(H − h+ 1)

λ
ε.
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Altogether, we have

sup
s,a
|σ1(s, a)− σ2(s, a)| ≤ 2

√
K(H − h+ 1)

λ
·
√
ε,

and

sup
s,a
|σ2

1(s, a)− σ2
2(s, a)| ≤ 4K(H − h+ 1)

λ
ε.

H.6 Covering numbers of the function classes

Here we compute the covering numbers of the function classes Vh and Th.
Lemma H.12 (Covering number of the Euclidean Ball). For any ε > 0, the ε-covering number of
the ball of radius r under the Euclidean norm satisfies Nε ≤ (1 + 2r/ε)d.

A proof of this classical result can be found, for example, in the work by Vershynin [42]. Now we
give the covering number of the function class Vh(L) for all h ∈ [H] and L > 0.
Lemma H.13. For any h ∈ [H] and any L > 0, let Vh(L) be as defined in (C.2). Let Nε denote the
ε-covering number of Vh(L) with respect to the distance dist(V1, V2) = sups |V1(s)− V2(s)|. Then
under Assumption 2.1, it holds that

Nε ≤
(

1 +
2L

ε

)d
.

Proof of Lemma H.13. For any V1, V2 ∈ Vh(L) parametrized by w1 and w2 respectively, we have
dist(V1, V2) = sup

s
|〈φπh(s),w1 −w2〉| ≤ ‖w1 −w2‖2 · sup

s
‖φπh(s)‖2 ≤ ‖w1 −w2‖2,

where the first inequality is by Cauchy-Schwarz inequality and the second inequality uses the
assumption that ‖φ(s, a)‖ ≤ 1.

Let Cw(ε) be an ε−cover of the Euclidean ball {w ∈ Rd| ‖w‖2 ≤ L}. Then for any V1 ∈ Vh(L),
there exists a V2 ∈ Vh(L) parametrized by w2 ∈ Cw(ε) such that dist(V1, V2) ≤ ε. Then we see that

Nε ≤ |Cw(ε)| ≤
(

1 +
2L

ε

)d
,

where the second inequality follows from Lemma H.12.

Lemma H.14. For any h ∈ [H] andL1, L2 > 0, let Th(L1, L2) be as defined in (C.3). LetNε denote
the ε-covering number of Th(L1, L2) with respect to the distance dist(σ1, σ2) = sups,a |σ1(s, a)−
σ2(s, a)|. Then under Assumption 2.1, it holds that

Nε ≤
(

1 +
4L1

ε2

)d
·
(

1 +
8(H − h+ 1)L2

ε2

)d
.

Proof of Lemma H.14. For any σ1, σ2 ∈ T which are parameterized by (β1,θ1) and (β2,θ2)
respectively, we have
dist(σ1, σ2)

= sup
s,a
|σ1(s, a)− σ2(s, a)|

≤ sup
s,a

√
|σ2

1(s, a)− σ2
2(s, a)|

≤ sup
s,a

√∣∣∣〈φ(s, a),β1〉 − 〈φ(s, a),β2〉
∣∣∣+
∣∣[〈φ(s, a),θ1〉[0,H−h+1]]2 − [〈φ(s, a),θ2〉[0,H−h+1]]2

∣∣
≤ sup

s,a

√∣∣∣〈φ(s, a),β1〉 − 〈φ(s, a),β2〉
∣∣∣+ 2(H − h+ 1) · |〈φ(s, a),θ1〉 − 〈φ(s, a),θ2〉|

≤
√
‖β1 − β2‖+ 2(H − h+ 1) · ‖θ1 − θ2‖.
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where the first inequality uses the fact that |a − b| ≤
√
|a2 − b2| for any a, b ≥ 0, the second

and the third inequalities follows from the fact that max{ηh, ·} and the clipping {·}[0,(H−h+1)2],
{·}[0,H−h+1] are all contraction maps, and the last inequality is by Cauchy-Schwarz inequality and
the assumption that ‖φ(s, a)‖ ≤ 1.

In order to have dist(σ1, σ2) ≤ ε, it suffices to have ‖β1−β2‖ ≤ ε2/2 and 2(H−h+1)‖θ1−θ2‖ ≤
ε2/2. By Lemma H.12, in order to ε2/2-cover {β : ‖β‖ < L1} and ε2/(4(H − h + 1))-cover
{θ : ‖θ‖ ≤ L2} we need

Nβ ≤
(

1 +
4L1

ε2

)d
,Nθ ≤

(
1 +

8(H − h+ 1)L2

ε2

)d
.

Altogether, to ε-cover T , we have

Nε ≤ Nβ · Nθ ≤
(

1 +
4L1

ε2

)d
·
(

1 +
8(H − h+ 1)L2

ε2

)d
.

H.7 Bounds for the Regression Estimators

Lemma H.15. Assume sups

∣∣∣V̂ πh+1(s)
∣∣∣ ≤ B for some B ≥ 0. Then θ̂h, β̂h and ŵπ

h in Algorithm 1
satisfy the following:

‖θ̂h‖ ≤ B
√
Kd

λ
, ‖β̂h‖ ≤ B2

√
Kd

λ
, ‖ŵπ

h‖ ≤
B + 1√
η + σ2

r

√
Kd

λ
.

Proof of Lemma H.15. For any vector v ∈ Rd, we have

|v>θ̂h| =

∣∣∣∣∣v>(Σ̂h)−1
K∑
k=1

φ(šk,h, ǎk,h)V̂ πh+1(š′k,h)

∣∣∣∣∣
≤

K∑
k=1

|v>(Σ̂h)−1φ(šk,h, ǎk,h)| · sup
s
|V̂ πh+1(s)|

≤ B ·

√√√√[ K∑
k=1

v>(Σ̂h)−1v

]
·

[
K∑
k=1

φ(šk,h, ǎk,h)>(Σ̂h)−1φ(šk,h, ǎk,h)

]

≤ B‖v‖2

√
K

λ
·
√
d,

where the second inequality is by Cauchy-Schwarz inequality, and the last inequality uses

‖(Σ̂h)−1‖ ≤ 1/λ and Lemma H.6. It follows that ‖θ̂h‖ ≤ B
√

Kd
λ . Similarly, we have

‖β̂h‖ ≤ B2
√

Kd
λ since sups |V̂ πh+1(s)|2 ≤ B2. To bound ‖ŵπ

h‖, note that

|v>ŵπ
h | =

∣∣∣∣∣v>Λ̂−1
h

K∑
k=1

φ(sk,h, ak,h)Yk,h/σ̂
2
k,h

∣∣∣∣∣
≤ B + 1√

ηh + σ2
r

·
K∑
k=1

∣∣∣∣v>Λ̂−1
h

φ(sk,h, ak,h)

σ̂k,h

∣∣∣∣
≤ B + 1√

ηh + σ2
r

·

√√√√[ K∑
k=1

v>(Λ̂h)−1v

]
·

[
K∑
k=1

φ(sk,h, ak,h)

σ̂k,h

>
(Λ̂h)−1

φ(sk,h, ak,h)

σ̂k,h

]

≤ B + 1√
ηh + σ2

r

· ‖v‖2

√
K

λ
·
√
d

=

(
B + 1√
ηh + σ2

r

√
Kd

λ

)
‖v‖2,
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where the first inequality comes from∣∣∣∣Yk,hσ̂k,h

∣∣∣∣ =

∣∣∣∣∣rk,h + V̂ πh+1(s′k,h)

σ̂k,h

∣∣∣∣∣ ≤ (B + 1) · 1√
ηh + σ2

r

,

and note that by assumption |rk,h| ≤ 1 a.s., and by the clipping in the algorithm, σ̂k,h ≥
√
ηh + σ2

r .
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