Supplementary materials for: Distribution-free inference for regression: discrete, continuous, and in between

Yonghoon Lee
Department of Statistics
University of Chicago
Chicago, IL 60637
yhoony31@uchicago.edu

Rina Foygel Barber
Department of Statistics
University of Chicago
Chicago, IL 60637
rina@uchicago.edu

B Additional details for proof of Theorem 1

B. 1 Details for (6)

To compare P and P_{a}, we can equivalently characterize these distributions as follows:

- Draw $X \sim P_{X}$.
- Conditional on X, draw $Z \mid X \in \mathcal{X}_{m} \sim \operatorname{Bernoulli}(0.5)$ (for the distribution P, or for the distribution P_{a} if $m=1$), or $Z \mid X \in \mathcal{X}_{m} \sim \operatorname{Bernoulli}\left(0.5+a_{m} \epsilon\right)$ (for the distribution P_{a} if $m \geq 2$).
- Conditional on X, Z draw Y as

$$
Y \mid X=x, Z=z \sim P_{Y \mid X=x}^{z}
$$

Define \tilde{P} as the distribution over (X, Y, Z) induced by P, and \tilde{P}_{a} as the distribution over (X, Y, Z) induced by P_{a}. Then the marginal distribution of (X, Y) under \tilde{P} and under \tilde{P}_{a} is given by P and by P_{a}, respectively.
Now consider comparing two distributions on triples $\left(X_{1}, Z_{1}, Y_{1}\right), \ldots,\left(X_{n}, Z_{n}, Y_{n}\right)$. We will compare \tilde{P}^{n} versus the mixture distribution $\tilde{P}_{\text {mix }}$ defined as follows:

- Draw $A_{1}, A_{2}, \ldots \stackrel{\text { iid }}{\sim} \operatorname{Unif}\{ \pm 1\}$.
- Conditional on A_{1}, A_{2}, \ldots, draw $\left(X_{1}, Y_{1}, Z_{1}\right), \ldots,\left(X_{n}, Y_{n}, Z_{n}\right) \stackrel{\mathrm{iid}}{\sim} \tilde{P}_{A}$.

Since in our characterization above, the distribution of Y_{1}, \ldots, Y_{n} conditional on X_{1}, \ldots, X_{n} and on Z_{1}, \ldots, Z_{n} is the same for both, the only difference lies in the conditional distribution of Z_{1}, \ldots, Z_{n} given X_{1}, \ldots, X_{n}. Therefore, we can apply Lemma 2 with $\epsilon_{1}=0$ and $\epsilon_{2}=\epsilon_{3}=\cdots=\epsilon$ to obtain

$$
\mathrm{d}_{\mathrm{TV}}\left(\tilde{P}_{\mathrm{mix}}, \tilde{P}^{n}\right) \leq 2 n \sqrt{\sum_{m \geq 2} \epsilon^{4} p_{m}^{2}}
$$

Now let $P_{\text {mix }}$ be the marginal distribution of $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ under $\tilde{P}_{\text {mix }}$. Noting that P^{n} is the marginal distribution of $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ under \tilde{P}^{n}, we therefore have

$$
\mathrm{d}_{\mathrm{TV}}\left(P_{\mathrm{mix}}, P^{n}\right) \leq \mathrm{d}_{\mathrm{TV}}\left(\tilde{P}_{\mathrm{mix}}, \tilde{P}^{n}\right) \leq 2 n \sqrt{\sum_{m \geq 2} \epsilon^{4} p_{m}^{2}}
$$

C Proof of Theorem 2

First, define $p_{m}=\mathbb{P}_{P_{X}}\left\{X=x^{(m)}\right\}$. The following lemma establishes some results on its support, expected value, and concentration properties of Z :
Lemma C.1. For Z and $N_{\geq 2}$ defined as in (4) and (3), the following holds:

$$
\begin{aligned}
& \mathbb{E}[Z]=\sum_{m=1}^{\infty}\left(\mu\left(x^{(m)}\right)-\mu_{P}\left(x^{(m)}\right)\right)^{2} \cdot\left(n p_{m}-1+\left(1-p_{m}\right)^{n}\right) \\
& \mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]=\sum_{m=1}^{\infty}\left(n_{m}-1\right)_{+} \cdot\left(\mu\left(x^{(m)}\right)-\mu_{P}\left(x^{(m)}\right)\right)^{2} \\
& \operatorname{Var}\left(\mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]\right) \leq 2 \mathbb{E}[Z] \\
& \operatorname{Var}\left(Z \mid X_{1}, \ldots, X_{n}\right) \leq N_{\geq 2}+2 \mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]
\end{aligned}
$$

In particular, the first part of the lemma will allow us to use $\mathbb{E}[Z]$ to bound the error in μ-here the calculations are similar to those in Chan et al. [2014] for the setting of testing discrete distributions. Recalling the definition of $M_{\gamma}^{*}\left(P_{X}\right)$ given in (2), define

$$
\Delta=\sqrt{\frac{2 M_{\gamma}^{*}\left(P_{X}\right)+n}{n(n-1)}} \cdot \sqrt{\mathbb{E}[Z]} .
$$

We have

$$
\begin{aligned}
\sum_{m=1}^{M_{\gamma}^{*}\left(P_{X}\right)} p_{m}\left|\mu\left(x^{(m)}\right)-\mu_{P}\left(x^{(m)}\right)\right| & =\sum_{m=1}^{M_{\gamma}^{*}\left(P_{X}\right)} \frac{p_{m}\left|\mu\left(x^{(m)}\right)-\mu_{P}\left(x^{(m)}\right)\right|}{\sqrt{2+n p_{m}}} \cdot \sqrt{2+n p_{m}} \\
& \leq \sqrt{\sum_{m=1}^{M_{\gamma}^{*}\left(P_{X}\right)} \frac{p_{m}^{2}\left(\mu\left(x^{(m)}\right)-\mu_{P}\left(x^{(m)}\right)\right)^{2}}{2+n p_{m}}} \cdot \sqrt{\sum_{m=1}^{M_{\gamma}^{*}\left(P_{X}\right)} 2+n p_{m}} \\
& \leq \sqrt{\frac{\mathbb{E}[Z]}{n(n-1)}} \cdot \sqrt{2 M_{\gamma}^{*}\left(P_{X}\right)+n} \\
& =\Delta,
\end{aligned}
$$

where the next-to-last step holds by the following identity:
Lemma C.2. For all $n \geq 1$ and $p \in[0,1], n p-1+(1-p)^{n} \geq \frac{n(n-1) p^{2}}{2+n p}$.
Next, we will use Lemma C. 1 to relate Δ and $\widehat{\Delta}$. By Chebyshev's inequality, conditional on X_{1}, \ldots, X_{n}, with probability at least $1-\delta / 4$ we have

$$
Z \geq \mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]-\sqrt{\frac{\operatorname{Var}\left(Z \mid X_{1}, \ldots, X_{n}\right)}{\delta / 4}} \geq \mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]-\sqrt{\frac{N_{\geq 2}+2 \mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]}{\delta / 4}}
$$

which can be relaxed to

$$
\mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right] \leq 2 Z+4 \sqrt{N_{\geq 2} / \delta}+8 / \delta
$$

Marginalizing over X_{1}, \ldots, X_{n}, this bound holds with probability at least $1-\delta / 4$. Moreover, again applying Chebyshev's inequality, with probability at least $1-\delta / 4$ we have

$$
\mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right] \geq \mathbb{E}[Z]-\sqrt{\frac{\operatorname{Var}\left(\mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]\right)}{\delta / 4}} \geq \mathbb{E}[Z]-\sqrt{\frac{2 \mathbb{E}[Z]}{\delta / 4}}
$$

which can be relaxed to

$$
\mathbb{E}[Z] \leq 2 \mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]+8 / \delta
$$

Combining our bounds, then, we have $\mathbb{E}[Z] \leq 4 Z+8 \sqrt{N_{\geq 2} / \delta}+24 / \delta$ with probability at least $1-\delta / 2$. Since $\mathbb{P}\left\{\widehat{M}_{\gamma} \geq M_{\gamma}^{*}\left(P_{X}\right)\right\} \geq 1-\delta / 2$ by Hoeffding's inequality, this implies that

$$
\mathbb{P}\{\widehat{\Delta} \geq \Delta\} \geq 1-\delta
$$

Now we verify the coverage properties of \widehat{C}_{n}. We have

$$
\begin{aligned}
& \mathbb{P}\left\{\mu_{P}\left(X_{n+1}\right) \notin \widehat{C}_{n}\left(X_{n+1}\right)\right\}=\mathbb{P}\left\{\left|\mu_{P}\left(X_{n+1}\right)-\mu\left(X_{n+1}\right)\right|>(\alpha-\delta-\gamma)^{-1} \widehat{\Delta}\right\} \\
& \leq \mathbb{P}\{\widehat{\Delta}<\Delta\}+\mathbb{P}\left\{\left|\mu_{P}\left(X_{n+1}\right)-\mu\left(X_{n+1}\right)\right|>(\alpha-\delta-\gamma)^{-1} \Delta\right\} \\
& \leq \mathbb{P}\{\widehat{\Delta}<\Delta\}+\mathbb{P}\left\{X_{n+1} \notin\left\{x^{(1)}, \ldots, x^{\left(M_{\gamma}^{*}\left(P_{X}\right)\right)}\right\}\right. \\
& \quad+\sum_{m=1}^{M_{\gamma}^{*}\left(P_{X}\right)} \mathbb{P}\left\{X_{n+1}=x^{(m)},\left|\mu_{P}\left(X_{n+1}\right)-\mu\left(X_{n+1}\right)\right|>(\alpha-\delta-\gamma)^{-1} \Delta\right\} \\
& \leq \delta+\gamma+\sum_{m=1}^{M_{\gamma}^{*}\left(P_{X}\right)} \mathbb{P}\left\{X_{n+1}=x^{(m)},\left|\mu_{P}\left(X_{n+1}\right)-\mu\left(X_{n+1}\right)\right|>(\alpha-\delta-\gamma)^{-1} \Delta\right\} \\
& \leq \delta+\gamma+\sum_{m=1}^{M_{\gamma}^{*}\left(P_{X}\right)} p_{m} \mathbb{1}\left\{\left|\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right|>(\alpha-\delta-\gamma)^{-1} \Delta\right\} \\
& \leq \delta+\gamma+\frac{\sum_{m=1}^{M_{\gamma}^{*}\left(P_{X}\right)} p_{m}\left|\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right|}{(\alpha-\delta-\gamma)^{-1} \Delta} \\
& \leq \delta+\gamma+\frac{\Delta}{(\alpha-\delta-\gamma)^{-1} \Delta}=\alpha,
\end{aligned}
$$

which verifies the desired coverage guarantee.

D Proof of Theorem 3

First, we have $\widehat{M}_{\gamma} \leq M$ almost surely by our assumption on P_{X}. Next we need to bound $\mathbb{E}\left[Z_{+}\right]$. We have

$$
\begin{aligned}
\mathbb{E}\left[Z_{-}\right] & \leq \mathbb{E}\left[\left(Z-\mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]\right)_{-}\right] \text {since this conditional expectation is nonnegative } \\
& \leq \sqrt{\mathbb{E}\left[\left(Z-\mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]\right)^{2}\right]} \\
& =\sqrt{\mathbb{E}\left[\mathbb{E}\left[\left(Z-\mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]\right)^{2} \mid X_{1}, \ldots, X_{n}\right]\right]} \\
& =\sqrt{\mathbb{E}\left[\operatorname{Var}\left(Z \mid X_{1}, \ldots, X_{n}\right)\right]} \\
& \leq \sqrt{\mathbb{E}\left[N_{\geq 2}+2 \mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]\right]} \text { by LemmaC.C.1 } \\
& =\sqrt{\mathbb{E}\left[N_{\geq 2}\right]+2 \mathbb{E}[Z] .}
\end{aligned}
$$

We then have

$$
\mathbb{E}\left[Z_{+}\right]=\mathbb{E}[Z]+\mathbb{E}\left[Z_{-}\right] \leq \mathbb{E}[Z]+\sqrt{2 \mathbb{E}[Z]+\mathbb{E}\left[N_{\geq 2}\right]} \leq 1.5 \mathbb{E}[Z]+1+\sqrt{\mathbb{E}\left[N_{\geq 2}\right]}
$$

Next we need a lemma:
Lemma D.1. For all $n \geq 1$ and $p \in[0,1], n p-1+(1-p)^{n} \leq \frac{n^{2} p^{2}}{1+n p}$.

Combined with the calculation of $\mathbb{E}[Z]$ in LemmaC. 1 , we have

$$
\begin{aligned}
\mathbb{E}[Z] & \leq \sum_{m=1}^{M}\left(\mu\left(x^{(m)}\right)-\mu_{P}\left(x^{(m)}\right)\right)^{2} \cdot \frac{n^{2} p_{m}^{2}}{1+n p_{m}} \\
& \leq \sum_{m=1}^{M} p_{m} \cdot\left(\mu\left(x^{(m)}\right)-\mu_{P}\left(x^{(m)}\right)\right)^{2} \cdot \frac{n^{2} \cdot \eta / M}{1+n \cdot \eta / M} \\
& =\frac{\eta n^{2}}{M+\eta n} \cdot \mathbb{E}_{P_{X}}\left[\left(\mu_{P}(X)-\mu(X)\right)^{2}\right] \\
& \leq\left(\operatorname{err}_{\mu}\right)^{2} \cdot \frac{\eta n^{2}}{M+\eta n},
\end{aligned}
$$

since we have assumed that P_{X} is supported on $\left\{x^{(1)}, \ldots, x^{(M)}\right\}$ and that $\mathbb{P}_{P_{X}}\left\{X=x^{(m)}\right\} \leq \eta / M$ for all m, where we must have $\eta \geq 1$. Furthermore, we have

$$
\begin{aligned}
& \mathbb{E}\left[N_{\geq 2}\right]=\sum_{m=1}^{M} \mathbb{P}\left\{n_{m} \geq 2\right\} \leq \sum_{m=1}^{M} \mathbb{E}\left[\left(n_{m}-1\right)_{+}\right] \\
& =\sum_{m=1}^{M} n \cdot \mathbb{P}_{P_{X}}\left\{X=x^{(m)}\right\}-1+\left(1-\mathbb{P}_{P_{X}}\left\{X=x^{(m)}\right\}\right)^{n} \text { as calculated as in the proof of LemmaC.1 } \\
& \leq \sum_{m=1}^{M} n \cdot \eta / M-1+(1-\eta / M)^{n} \\
& \leq \sum_{m=1}^{M} \frac{n^{2}(\eta / M)^{2}}{1+n \eta / M} \text { by LemmaD.1 } \\
& =\frac{\eta^{2} n^{2}}{M+\eta n} .
\end{aligned}
$$

We also have $N_{\geq 2} \leq M$ almost surely, and so combining these two bounds, $\mathbb{E}\left[N_{\geq 2}\right] \leq$ $\min \left\{\frac{\eta^{2} n^{2}}{M}, M\right\}$. Combining everything, then,

$$
\mathbb{E}\left[Z_{+}\right] \leq 1.5\left(\operatorname{err}_{\mu}\right)^{2} \cdot \frac{\eta n^{2}}{M+\eta n}+1+\sqrt{\min \left\{\frac{\eta^{2} n^{2}}{M}, M\right\}}
$$

Plugging these calculations into the definition of $\widehat{\Delta}$, we obtain

$$
\begin{aligned}
& \mathbb{E}[\widehat{\Delta}]=\mathbb{E}\left[\sqrt{\frac{2 \widehat{M}_{\gamma}+n}{n(n-1)}} \cdot \sqrt{4 Z_{+}+8 \sqrt{N_{\geq 2} / \delta}+24 / \delta}\right] \\
& \leq \mathbb{E}\left[\sqrt{\frac{2 M+n}{n(n-1)}} \cdot \sqrt{4 Z_{+}+8 \sqrt{N_{\geq 2} / \delta}+24 / \delta}\right] \\
& \leq \sqrt{\frac{2 M+n}{n(n-1)}} \cdot \sqrt{4 \mathbb{E}\left[Z_{+}\right]+8 \sqrt{\mathbb{E}\left[N_{\geq 2}\right] / \delta}+24 / \delta} \\
& \leq \sqrt{\frac{2 M+n}{n(n-1)}} \cdot \sqrt{4\left(1.5\left(\operatorname{err}_{\mu}\right)^{2} \cdot \frac{\eta n^{2}}{M+\eta n}\right.}+1+\sqrt{\left.\left.\min \left\{\frac{\eta^{2} n^{2}}{M}, M\right\}\right)+8 \sqrt{\min \left\{\frac{n^{2}}{M}\right.}, M\right\} \cdot 1 / \delta+24 / \delta} \\
& \leq \sqrt{\frac{2 M+n}{n(n-1)}} \cdot\left[\sqrt{6\left(\operatorname{err}_{\mu}\right)^{2} \cdot \frac{\eta n^{2}}{M+\eta n}}+\sqrt{4(1+2 / \sqrt{\delta}) \sqrt{\min \left\{\frac{\eta^{2} n^{2}}{M}, M\right\}}}+\sqrt{4+24 / \delta}\right] .
\end{aligned}
$$

We can assume that $M \leq n^{2}$ and $n \geq 2$ (as otherwise, the upper bound would be trivial, since we must have $\operatorname{Leb}\left(\widehat{C}_{n}\left(X_{n+1}\right)\right) \leq 1$ by construction). If $M \geq n$, then $\frac{2 M+n}{n(n-1)} \leq \frac{6 M}{n^{2}}$ and the above
simplifies to

$$
\mathbb{E}[\widehat{\Delta}] \leq 6 \sqrt{\eta} \cdot \operatorname{err}_{\mu}+\sqrt{\frac{6(4+24 / \delta) M}{n^{2}}}+\sqrt{24 \eta(1+2 / \sqrt{\delta})} \sqrt[4]{\frac{M}{n^{2}}}
$$

and since we assume $M \leq n^{2}$, we therefore have

$$
\begin{equation*}
\mathbb{E}[\widehat{\Delta}] \leq 6 \sqrt{\eta} \cdot \operatorname{err}_{\mu}+(\sqrt{6(4+24 / \delta)}+\sqrt{24 \eta(1+2 / \sqrt{\delta})}) \cdot \sqrt[4]{\frac{M}{n^{2}}} \tag{D.2}
\end{equation*}
$$

If instead $M<n$, then $\frac{2 M+n}{n(n-1)} \leq \frac{6}{n}$ and the above bound on $\mathbb{E}[\widehat{\Delta}]$ simplifies to

$$
\mathbb{E}[\widehat{\Delta}] \leq 6 \cdot \operatorname{err}_{\mu}+\sqrt{\frac{6}{n}} \cdot[\sqrt{4(1+2 / \sqrt{\delta}) \sqrt{M}}+\sqrt{4+24 / \delta}]
$$

which again yields the same bound (D.2) since $M \geq 1$ and $\eta \geq 1$. Finally, by definition of $\widehat{C}_{n}\left(X_{n+1}\right)$, we have

$$
\mathbb{E}\left[\operatorname{Leb}\left(\widehat{C}_{n}\left(X_{n+1}\right)\right)\right] \leq \mathbb{E}[\widehat{\Delta}] \cdot \frac{2}{\alpha-\delta-\gamma}
$$

which completes the proof for c chosen appropriately as a function of $\alpha, \delta, \gamma, \eta$.

E Proofs of lemmas

E. 1 Proof of Lemma 1

Let $x_{\text {med }}$ be the median of Q. Define

$$
q_{<}=\mathbb{P}_{Q}\left\{X<x_{\mathrm{med}}\right\}, q_{>}=\mathbb{P}_{Q}\left\{X>x_{\mathrm{med}}\right\}
$$

and note that $q_{<,}, q_{>} \in[0,0.5]$. For $X \sim Q$, let $Q_{<}$be the distribution of X conditional on $X<x_{\text {med }}$ and let $Q_{>}$be the distribution of X conditional on $X>x_{\text {med }}$. Then we can write

$$
Q=q_{<} \cdot Q_{<}+\left(1-q_{<}-q_{>}\right) \cdot \delta_{x_{\operatorname{med}}}+q_{>} \cdot Q_{>}
$$

where δ_{t} denotes the point mass distribution at t. Now define

$$
Q_{0}=2 q_{<} \cdot Q_{<}+\left(1-2 q_{<}\right) \cdot \delta_{x_{\mathrm{med}}}
$$

and

$$
Q_{1}=2 q_{>} \cdot Q_{>}+\left(1-2 q_{>}\right) \cdot \delta_{x_{\mathrm{med}}}
$$

Then clearly $Q=0.5 Q_{0}+0.5 Q_{1}$. Next let μ_{0}, μ_{1} be the means of these two distributions, satisfying $\frac{\mu_{0}+\mu_{1}}{2}=\mu$ where μ is the mean of Q, and let $\sigma_{0}^{2}, \sigma_{1}^{2}$ be the variances of these two distributions. By the law of total variance, we have

$$
\begin{aligned}
\sigma^{2} & =\operatorname{Var}\left(0.5 \delta_{\mu_{0}}+0.5 \delta_{\mu_{1}}\right)+\mathbb{E}\left[0.5 \delta_{\sigma_{0}^{2}}+0.5 \delta_{\sigma_{1}^{2}}\right] \\
& =\frac{\left(\mu_{1}-\mu_{0}\right)^{2}}{4}+0.5 \sigma_{0}^{2}+0.5 \sigma_{1}^{2}
\end{aligned}
$$

Next, Q_{0} is a distribution supported on $\left[0, x_{\mathrm{med}}\right]$ with mean μ_{0}, so its variance is bounded as

$$
\sigma_{0}^{2} \leq \mu_{0}\left(x_{\mathrm{med}}-\mu_{0}\right)
$$

where the maximum is attained if all the mass is placed on the endpoints 0 or $x_{\text {med }}$. Similarly, Q_{1} is a distribution supported on $\left[x_{\text {med }}, 1\right]$ with mean μ_{1}, so its variance is bounded as

$$
\sigma_{1}^{2} \leq\left(1-\mu_{1}\right)\left(\mu_{1}-x_{\mathrm{med}}\right)
$$

Using the fact that $\frac{\mu_{0}+\mu_{1}}{2}=\mu$, we can simplify to

$$
\begin{aligned}
\sigma_{0}^{2}+\sigma_{1}^{2} \leq \mu_{0}\left(x_{\mathrm{med}}-\mu_{0}\right)+\left(1-\mu_{1}\right) & \left(\mu_{1}-x_{\mathrm{med}}\right) \\
& =\mu\left(x_{\mathrm{med}}-\mu_{0}\right)+(1-\mu)\left(\mu_{1}-x_{\mathrm{med}}\right)-0.5\left(\mu_{1}-\mu_{0}\right)^{2}
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\sigma^{2} & =\frac{\left(\mu_{1}-\mu_{0}\right)^{2}}{4}+0.5 \sigma_{0}^{2}+0.5 \sigma_{1}^{2} \leq 0.5 \mu\left(x_{\mathrm{med}}-\mu_{0}\right)+0.5(1-\mu)\left(\mu_{1}-x_{\mathrm{med}}\right) \\
& =0.5(2 \mu-1) x_{\mathrm{med}}-0.5 \mu \mu_{0}+0.5(1-\mu) \mu_{1}=0.5(2 \mu-1)\left(x_{\mathrm{med}}-\mu\right)+0.25\left(\mu_{1}-\mu_{0}\right)
\end{aligned}
$$

Next, $|2 \mu-1| \leq 1$ since $\mu \in[0,1]$, and $\left|x_{\text {med }}-\mu\right| \leq 0.5\left|\mu_{1}-\mu_{0}\right|$ since $\mu_{0} \leq x_{\text {med }} \leq \mu_{1}$ and $\frac{\mu_{0}+\mu_{1}}{2}=\mu$. Therefore, $\sigma^{2} \leq 0.5\left(\mu_{1}-\mu_{0}\right)$, proving the lemma.

E. 2 Proof of Lemma 2

First we need a supporting lemma.
Lemma E.1. For any $N \geq 1$ and any $\epsilon \in[0,0.5]$,

$$
\mathrm{d}_{\mathrm{KL}}(0.5 \cdot \operatorname{Binom}(N, 0.5+\epsilon)+0.5 \cdot \operatorname{Binom}(N, 0.5-\epsilon) \| \operatorname{Binom}(N, 0.5)) \leq 8 N(N-1) \epsilon^{4}
$$

Proof of Lemma E.1. Let f_{0} be the probability mass function of the $\operatorname{Binom}(N, 0.5)$ distribution, and let f_{1} be the probability mass function of the mixture $0.5 \cdot \operatorname{Binom}(N, 0.5+\epsilon)+0.5 \cdot \operatorname{Binom}(N, 0.5-\epsilon)$. Then we would like to bound $\mathrm{d}_{\mathrm{KL}}\left(f_{1} \| f_{0}\right)$. We calculate the ratio

$$
\begin{aligned}
\frac{f_{1}(k)}{f_{0}(k)} & =\frac{0.5 \cdot\binom{N}{k}(0.5+\epsilon)^{k}(0.5-\epsilon)^{N-k}+0.5 \cdot\binom{N}{k}(0.5-\epsilon)^{k}(0.5+\epsilon)^{N-k}}{\binom{N}{k}(0.5)^{N}} \\
& =\frac{(1+2 \epsilon)^{k}(1-2 \epsilon)^{N-k}+(1-2 \epsilon)^{k}(1+2 \epsilon)^{N-k}}{2}
\end{aligned}
$$

Therefore, it holds that

$$
\begin{aligned}
& \mathbb{E}_{\text {Binom }(N, 0.5)}\left[\left(\frac{f_{1}(X)}{f_{0}(X)}\right)^{2}\right] \\
& \left.\left.=\mathbb{E}_{\text {Binom }(N, 0.5)}\left[\left(\frac{(1+2 \epsilon)^{X}(1-2 \epsilon)^{N-X}+(1-2 \epsilon)^{X}(1+2 \epsilon)^{N-X}}{2}\right)^{2}\right]\right]^{2 N}\right] \\
& =\mathbb{E}_{\text {Binom }(N, 0.5)}\left[\frac{\left.(1+2 \epsilon)^{2 X}(1-2 \epsilon)^{2 N-2 X}+(1-2 \epsilon)^{2 X}(1+2 \epsilon)^{2 N-2 X}+2\left(1-4 \epsilon^{2}\right)^{N}\right]}{4}\right] \\
& =\frac{(1-2 \epsilon)^{2 N} \mathbb{E}_{\text {Binom }(N, 0.5)}\left[\left(\frac{1+2 \epsilon}{1-2 \epsilon}\right)^{2 X}\right]+(1+2 \epsilon)^{2 N} \mathbb{E}_{\text {Binom }(N, 0.5)}\left[\left(\frac{1-2 \epsilon}{1+2 \epsilon}\right)^{2 X}\right]+2\left(1-4 \epsilon^{2}\right)^{N}}{4} \\
& =\frac{(1-2 \epsilon)^{2 N} \mathbb{E}_{\text {Bern }(0.5)}\left[\left(\frac{1+2 \epsilon}{1-2 \epsilon}\right)^{2 X}\right]^{N}+(1+2 \epsilon)^{2 N} \mathbb{E}_{\text {Bern }(0.5)}\left[\left(\frac{1-2 \epsilon}{1+2 \epsilon}\right)^{2 X}\right]^{N}+2\left(1-4 \epsilon^{2}\right)^{N}}{4} \\
& =\frac{(1-2 \epsilon)^{2 N}\left[0.5\left(\frac{1+2 \epsilon}{1-2 \epsilon}\right)^{2}+0.5\right]^{N}+(1+2 \epsilon)^{2 N}\left[0.5\left(\frac{1-2 \epsilon}{1+2 \epsilon}\right)^{2}+0.5\right]^{N}+2\left(1-4 \epsilon^{2}\right)^{N}}{4} \\
& =\frac{\left[0.5(1+2 \epsilon)^{2}+0.5(1-2 \epsilon)^{2}\right]^{N}+\left[0.5(1-2 \epsilon)^{2}+0.5(1+2 \epsilon)^{2}\right]^{N}+2\left(1-4 \epsilon^{2}\right)^{N}}{4} \\
& =\frac{\left(1+4 \epsilon^{2}\right)^{N}+\left(1-4 \epsilon^{2}\right)^{N}}{2} \\
& =1+\sum_{k \geq 1} \\
& \left.\leq \frac{N}{2 k}\right)\left(4 \epsilon^{2}\right)^{2 k} \\
& \leq 1+\sum_{k \geq 1} \frac{N(N-1) \ldots(N-2 k+2)(N-2 k+1)}{(2 k)!}\left(4 \epsilon^{2}\right)^{2 k} \\
& \leq 1+\sum_{k \geq 1}^{8 \epsilon^{4} N(N-1)} \frac{(N(N-1))^{k}}{2^{k} k!}\left(4 \epsilon^{2}\right)^{2 k} \\
& =1
\end{aligned}
$$

Applying Jensen's inequality, we then have

$$
\begin{aligned}
\mathrm{d}_{\mathrm{KL}}\left(f_{1} \| f_{0}\right)= & \sum_{k=0}^{n} f_{1}(k) \log \left(\frac{f_{1}(k)}{f_{0}(k)}\right)=\mathbb{E}_{f_{1}}\left[\log \left(\frac{f_{1}(X)}{f_{0}(X)}\right)\right] \leq \log \left(\mathbb{E}_{f_{1}}\left[\frac{f_{1}(X)}{f_{0}(X)}\right]\right) \\
& =\log \left(\mathbb{E}_{\operatorname{Binom}(N, 0.5)}\left[\left(\frac{f_{1}(X)}{f_{0}(X)}\right)^{2}\right]\right) \leq \log \left(e^{8 \epsilon^{4} N(N-1)}\right)=8 \epsilon^{4} N(N-1)
\end{aligned}
$$

Now we turn to the proof of Lemma 2, Let $p_{m}=\mathbb{P}\left\{X \in \mathcal{X}_{m}\right\}$ for each $m=1,2, \ldots$ Define a distribution P_{0}^{\prime} on $(W, Z) \in \mathbb{N} \times\{0,1\}$ as:

$$
\text { Draw } W \sim \sum_{m=1}^{\infty} p_{m} \delta_{m} \text {, and draw } Z \sim \operatorname{Bernoulli}(0.5), \text { independently from } W
$$

and for any signs $a_{1}, a_{2}, \cdots \in\{ \pm 1\}$, define a distribution P_{a}^{\prime} on $(W, Z) \in \mathbb{N} \times\{0,1\}$ as:
Draw $W \sim \sum_{m=1}^{\infty} p_{m} \delta_{m}$, and conditional on W, draw $Z \mid W=m \sim \operatorname{Bernoulli}\left(0.5+a_{m} \cdot \epsilon_{m}\right)$.
Then define $\tilde{P}_{0}^{\prime}=\left(P_{0}^{\prime}\right)^{n}$ and define \tilde{P}_{1}^{\prime} as the following mixture distribution.

- Draw $A_{1}, A_{2}, \ldots \stackrel{\text { iid }}{\sim} \operatorname{Unif}\{ \pm 1\}$.
- Conditional on A_{1}, A_{2}, \ldots, draw $\left(W_{1}, Z_{1}\right), \ldots,\left(W_{n}, Z_{n}\right) \stackrel{\text { iid }}{\sim} P_{A}^{\prime}$.

Note that $\left(X_{1}, Z_{1}\right), \ldots,\left(X_{n}, Z_{n}\right) \sim \tilde{P}_{0}$ can be drawn by first drawing $\left(W_{1}, Z_{1}\right), \ldots,\left(W_{n}, Z_{n}\right) \sim$ \tilde{P}_{0}^{\prime} and then drawing $X_{i} \mid W_{i} \sim P_{X \mid X \in \mathcal{X}_{W_{i}}}$ for each i. Similarly, $\left(X_{1}, Z_{1}\right), \ldots,\left(X_{n}, Z_{n}\right) \sim \tilde{P}_{1}$ is equivalent to first drawing $\left(W_{1}, Z_{1}\right), \ldots,\left(W_{n}, Z_{n}\right) \sim \tilde{P}_{1}^{\prime}$ and then drawing $X_{i} \mid W_{i} \sim P_{X \mid X \in \mathcal{X}}^{W_{i}}$ for each i. This implies $\mathrm{d}_{\mathrm{TV}}\left(\tilde{P}_{1} \| \tilde{P}_{0}\right) \leq \mathrm{d}_{\mathrm{TV}}\left(\tilde{P}_{1}^{\prime} \| \tilde{P}_{0}^{\prime}\right)$.
Now we can calculate the probability mass function of \tilde{P}_{0}^{\prime} as

$$
\tilde{P}_{0}^{\prime}\left(\left(w_{1}, z_{1}\right), \ldots,\left(w_{n}, z_{n}\right)\right)=\prod_{i=1}^{n}\left(p_{w_{i}} \cdot 0.5\right)
$$

and for \tilde{P}_{1}^{\prime} as
$\tilde{P}_{1}^{\prime}\left(\left(w_{1}, z_{1}\right), \ldots,\left(w_{n}, z_{n}\right)\right)=\mathbb{E}_{A_{i} \sim}{ }^{\text {iid Unif }\{ \pm 1\}}\left[\prod_{i=1}^{n}\left(p_{w_{i}} \cdot\left(0.5+A_{w_{i}} \epsilon_{m}\right)^{z_{i}} \cdot\left(0.5-A_{w_{i}} \epsilon_{m}\right)^{1-z_{i}}\right)\right]$.
Defining summary statistics

$$
n_{m}=\sum_{i=1}^{n} \mathbb{1}\left\{w_{i}=m\right\} \text { and } k_{m}=\sum_{i=1}^{n} \mathbb{1}\left\{w_{i}=m, z_{i}=1\right\}
$$

we can rewrite the above as

$$
\tilde{P}_{0}^{\prime}\left(\left(w_{1}, z_{1}\right), \ldots,\left(w_{n}, z_{n}\right)\right)=\prod_{m=1}^{\infty} p_{m}^{n_{m}} \cdot 0.5^{n_{m}}
$$

and

$$
\begin{aligned}
\tilde{P}_{1}^{\prime}\left(\left(w_{1}, z_{1}\right), \ldots,\left(w_{n}, z_{n}\right)\right) & =\mathbb{E}_{A_{i} \stackrel{\text { iid Unif }\{ \pm 1\}}{ }\left[\prod_{m=1}^{\infty} p_{m}^{n_{m}} \cdot\left(0.5+A_{m} \epsilon_{m}\right)^{k_{m}} \cdot\left(0.5-A_{m} \epsilon_{m}\right)^{n_{m}-k_{m}}\right]} \\
& =\prod_{m=1}^{\infty} p_{m}^{n_{m}} \cdot \frac{1}{2} \sum_{a_{m} \in\{ \pm 1\}}\left(0.5+a_{m} \epsilon_{m}\right)^{k_{m}} \cdot\left(0.5-a_{m} \epsilon_{m}\right)^{n_{m}-k_{m}}
\end{aligned}
$$

We then calculate

$$
\begin{aligned}
\mathrm{d}_{\mathrm{KL}}\left(\tilde{P}_{1}^{\prime} \| \tilde{P}_{0}^{\prime}\right) & =\mathbb{E}_{\tilde{P}_{1}}\left[\log \left(\frac{\tilde{P}_{1}^{\prime}\left(\left(W_{1}, Z_{1}\right), \ldots,\left(W_{n}, Z_{n}\right)\right)}{\tilde{P}_{0}^{\prime}\left(\left(W_{1}, Z_{1}\right), \ldots,\left(W_{n}, Z_{n}\right)\right)}\right)\right] \\
& =\mathbb{E}_{\tilde{P}_{1}^{\prime}}\left[\log \left(\frac{\prod_{m=1}^{\infty} p_{m}^{N_{m}} \cdot \frac{1}{2} \sum_{a_{m} \in\{ \pm 1\}}\left(0.5+a_{m} \epsilon_{m}\right)^{K_{m}} \cdot\left(0.5-a_{m} \epsilon_{m}\right)^{N_{m}-K_{m}}}{\prod_{m=1}^{\infty} p_{m}^{N_{m}} \cdot(0.5)^{N_{m}}}\right)\right] \\
& =\sum_{m=1}^{\infty} \mathbb{E}_{\tilde{P}_{1}^{\prime}}\left[\log \left(\frac{\frac{1}{2} \sum_{a_{m} \in\{ \pm 1\}}\left(0.5+a_{m} \epsilon_{m}\right)^{K_{m}} \cdot\left(0.5-a_{m} \epsilon_{m}\right)^{N_{m}-K_{m}}}{(0.5)^{N_{m}}}\right)\right] \\
& =\sum_{m=1}^{\infty} \mathbb{E}_{\tilde{P}_{1}^{\prime}}\left[\mathbb{E}_{\tilde{P}_{1}^{\prime}}\left[\left.\log \left(\frac{\frac{1}{2} \sum_{a_{m} \in\{ \pm 1\}}\left(0.5+a_{m} \epsilon_{m}\right)^{K_{m}} \cdot\left(0.5-a_{m} \epsilon_{m}\right)^{N_{m}-K_{m}}}{(0.5)^{N_{m}}}\right) \right\rvert\, N_{m}\right]\right]
\end{aligned}
$$

where

$$
N_{m}=\sum_{i=1}^{n} \mathbb{1}\left\{W_{i}=m\right\} \text { and } K_{m}=\sum_{i=1}^{n} \mathbb{1}\left\{W_{i}=m, Z_{i}=1\right\}
$$

Next, we calculate the conditional expectation in the last expression above. If $N_{m}=0$ then trivially it is equal to $\log (1)=0$. If $N_{m} \geq 1$, then under \tilde{P}_{1}^{\prime}, we can see that

$$
K_{m} \mid N_{m} \sim 0.5 \cdot \operatorname{Binom}\left(N_{m}, 0.5+\epsilon_{m}\right)+0.5 \cdot \operatorname{Binom}\left(N_{m}, 0.5-\epsilon_{m}\right)
$$

and therefore,

$$
\begin{aligned}
& \mathbb{E}_{\tilde{P}_{1}^{\prime}}\left[\left.\log \left(\frac{\frac{1}{2} \sum_{a_{m} \in\{ \pm 1\}}\left(0.5+a_{m} \epsilon_{m}\right)^{K_{m}} \cdot\left(0.5-a_{m} \epsilon_{m}\right)^{N_{m}-K_{m}}}{(0.5)^{N_{m}}}\right) \right\rvert\, N_{m}\right] \\
= & \mathrm{d}_{\mathrm{KL}}\left(0.5 \cdot \operatorname{Binom}\left(N_{m}, 0.5+\epsilon_{m}\right)+0.5 \cdot \operatorname{Binom}\left(N_{m}, 0.5-\epsilon_{m}\right) \| \operatorname{Binom}\left(N_{m}, 0.5\right)\right) \leq 8 N_{m}\left(N_{m}-1\right) \epsilon_{m}^{4},
\end{aligned}
$$

where the last step applies LemmaE.1. Therefore,

$$
\begin{aligned}
\mathrm{d}_{\mathrm{KL}}\left(\tilde{P}_{1}^{\prime} \| \tilde{P}_{0}^{\prime}\right) & \leq \sum_{m=1}^{\infty} \mathbb{E}_{\tilde{P}_{1}^{\prime}}\left[8 N_{m}\left(N_{m}-1\right) \epsilon_{m}^{4}\right] \\
& =8 \sum_{m=1}^{\infty} \epsilon_{m}^{4} \mathbb{E}_{\tilde{P}_{1}^{\prime}}\left[N_{m}^{2}-N_{m}\right] \\
& =8 \sum_{m=1}^{\infty} \epsilon_{m}^{4}\left(\left(n p_{m}\left(1-p_{m}\right)+n^{2} p_{m}^{2}\right)-n p_{m}\right) \\
& =8 \cdot n(n-1) \sum_{m=1}^{\infty} \epsilon_{m}^{4} p_{m}^{2}
\end{aligned}
$$

since $N_{m} \sim \operatorname{Binom}\left(n, p_{m}\right)$ by definition. Applying Pinsker's inequality and $\mathrm{d}_{\mathrm{TV}}\left(\tilde{P}_{1} \| \tilde{P}_{0}\right) \leq$ $\mathrm{d}_{\mathrm{TV}}\left(\tilde{P}_{1}^{\prime} \| \tilde{P}_{0}^{\prime}\right)$ completes the proof.

E. 3 Proof of Lemma C. 1

Define

$$
Z_{m}= \begin{cases}\left(n_{m}-1\right) \cdot\left(\left(\bar{y}_{m}-\mu\left(x^{(m)}\right)\right)^{2}-n_{m}^{-1} s_{m}^{2}\right), & n_{m} \geq 2 \\ 0, & n_{m}=0 \text { or } 1\end{cases}
$$

Then $Z=\sum_{m=1}^{\infty} Z_{m}$. Now we calculate the conditional mean and variance. Conditional on $X_{1}, \ldots, X_{n}, \bar{y}_{m}$ and s_{m}^{2} are the sample mean and sample variance of n_{m} i.i.d. draws from a distribution with mean $\mu_{P}\left(x^{(m)}\right)$ and variance $\sigma_{P}^{2}\left(x^{(m)}\right)$, supported on $[0,1]$, where we let $\sigma_{P}^{2}\left(x^{(m)}\right)$ be the variance of the distribution of $Y \mid X=x^{(m)}$, under the joint distribution P. For any m with $n_{m} \geq 2$, we therefore have
$\mathbb{E}\left[\bar{y}_{m} \mid X_{1}, \ldots, X_{n}\right]=\mu_{P}\left(x^{(m)}\right), \operatorname{Var}\left(\bar{y}_{m} \mid X_{1}, \ldots, X_{n}\right)=n_{m}^{-1} \sigma_{P}^{2}\left(x^{(m)}\right)=\mathbb{E}\left[n_{m}^{-1} s_{m}^{2} \mid X_{1}, \ldots, X_{n}\right]$,
and so

$$
\begin{aligned}
& \mathbb{E}\left[\left(\bar{y}_{m}-\mu\left(x^{(m)}\right)\right)^{2}-n_{m}^{-1} s_{m}^{2} \mid X_{1}, \ldots, X_{n}\right] \\
& \quad=n_{m}^{-1} \sigma_{P}^{2}\left(x^{(m)}\right)+\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2}-n_{m}^{-1} \sigma_{P}^{2}\left(x^{(m)}\right)=\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2}
\end{aligned}
$$

Next, we have $\left(n_{1}, \ldots, n_{M}\right) \sim \operatorname{Multinom}(n, p)$, which implies that marginally $n_{m} \sim \operatorname{Binom}\left(n, p_{m}\right)$ and so

$$
\mathbb{E}\left[\left(n_{m}-1\right)_{+}\right]=\mathbb{E}\left[n_{m}-1+\mathbb{1}\left\{n_{m}=0\right\}\right]=n p_{m}-1+\left(1-p_{m}\right)^{n} .
$$

Combining these calculations completes the proof for the expected value $\mathbb{E}[Z]$ and conditional expected value $\mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]$.
Next, we calculate conditional and marginal variance. We have

$$
\begin{aligned}
& \operatorname{Var}\left(\left(\bar{y}_{m}-\mu\left(x^{(m)}\right)\right)^{2}-n_{m}^{-1} s_{m}^{2} \mid X_{1}, \ldots, X_{n}\right) \\
& =\operatorname{Var}\left(\left(\bar{y}_{m}-\mu\left(x^{(m)}\right)\right)^{2}-n_{m}^{-1} s_{m}^{2}-\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2} \mid X_{1}, \ldots, X_{n}\right) \\
& \leq \mathbb{E}\left[\left(\left(\bar{y}_{m}-\mu\left(x^{(m)}\right)\right)^{2}-n_{m}^{-1} s_{m}^{2}-\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2}\right)^{2} \mid X_{1}, \ldots, X_{n}\right] \\
& =\mathbb{E}\left[\left(\left(\bar{y}_{m}-\mu_{P}\left(x^{(m)}\right)\right)^{2}+2\left(\bar{y}_{m}-\mu_{P}\left(x^{(m)}\right)\right)\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)-n_{m}^{-1} s_{m}^{2}\right)^{2} \mid X_{1}, \ldots, X_{n}\right] \\
& \begin{array}{r}
\leq 4 \mathbb{E}\left[\left(\left(\bar{y}_{m}-\mu_{P}\left(x^{(m)}\right)\right)\right)^{4} \mid X_{1}, \ldots, X_{n}\right] \\
\quad+2 \mathbb{E}\left[\left(2\left(\bar{y}_{m}-\mu_{P}\left(x^{(m)}\right)\right)\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)\right)^{2} \mid X_{1}, \ldots, X_{n}\right] \\
\\
\quad+4 \mathbb{E}\left[\left(n_{m}^{-1} s_{m}^{2}\right)^{2} \mid X_{1}, \ldots, X_{n}\right]
\end{array}
\end{aligned}
$$

where the last step holds since $(a+b+c)^{2} \leq 4 a^{2}+2 b^{2}+4 c^{2}$ for any a, b, c. Now we bound each term separately. First, we have

$$
\begin{aligned}
& \mathbb{E}\left[\left(\left(\bar{y}_{m}-\mu_{P}\left(x^{(m)}\right)\right)\right)^{4} \mid X_{1}, \ldots, X_{n}\right] \\
& =\frac{1}{n_{m}^{4}} \sum_{\substack{i_{1}, i_{2}, i_{3}, i_{4} \text { s.t. } \\
X_{i_{1}}=X_{i_{2}}=X_{i_{3}}=X_{i_{4}}=x^{(m)}}} \mathbb{E}\left[\prod_{k=1}^{4}\left(Y_{i_{k}}-\mu_{P}\left(x^{(m)}\right)\right) \mid X_{1}, \ldots, X_{n}\right] \\
& =\frac{1}{n_{m}^{4}}\left[n_{m} \cdot \mathbb{E}\left[\left(Y-\mu_{P}\left(x^{(m)}\right)\right)^{4} \mid X=x^{(m)}\right]+3 n_{m}\left(n_{m}-1\right) \cdot \mathbb{E}\left[\left(Y-\mu_{P}\left(x^{(m)}\right)\right)^{2} \mid X=x^{(m)}\right]^{2}\right] \\
& \leq \frac{1}{n_{m}^{4}}\left[n_{m} \cdot \sigma_{P}^{2}\left(x^{(m)}\right)+3 n_{m}\left(n_{m}-1\right) \cdot\left(\sigma_{P}^{2}\left(x^{(m)}\right)\right)^{2}\right] \\
& \leq \frac{1}{n_{m}^{4}}\left[n_{m} \cdot \frac{1}{4}+3 n_{m}\left(n_{m}-1\right) \cdot\left(\frac{1}{4}\right)^{2}\right]=\frac{3 n_{m}+1}{16 n_{m}^{3}},
\end{aligned}
$$

where the second step holds by counting tuples $\left(i_{1}, i_{2}, i_{3}, i_{4}\right)$ where either all four indices are equal, or there are two pairs of equal indices (since otherwise, the expected value of the product is zero). Next,

$$
\begin{aligned}
& \mathbb{E}\left[\left(2\left(\bar{y}_{m}-\mu_{P}\left(x^{(m)}\right)\right)\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)\right)^{2} \mid X_{1}, \ldots, X_{n}\right] \\
& =4\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2} \mathbb{E}\left[\left(\bar{y}_{m}-\mu_{P}\left(x^{(m)}\right)\right)^{2} \mid X_{1}, \ldots, X_{n}\right] \\
& =4\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2} \cdot n_{m}^{-1} \sigma_{P}^{2}\left(x^{(m)}\right) \\
& \leq n_{m}^{-1}\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2} .
\end{aligned}
$$

Finally, since $s_{m}^{2} \leq \frac{n_{m}}{4\left(n_{m}-1\right)}$ holds deterministically,

$$
\begin{aligned}
& \mathbb{E}\left[\left(n_{m}^{-1} s_{m}^{2}\right)^{2} \mid X_{1}, \ldots, X_{n}\right] \leq n_{m}^{-2} \cdot \frac{n_{m}}{4\left(n_{m}-1\right)} \cdot \mathbb{E}\left[s_{m}^{2} \mid X_{1}, \ldots, X_{n}\right] \\
&=n_{m}^{-2} \cdot \frac{n_{m}}{4\left(n_{m}-1\right)} \cdot \sigma_{P}^{2}\left(x^{(m)}\right) \leq \frac{1}{16 n_{m}\left(n_{m}-1\right)}
\end{aligned}
$$

Combining everything, then,

$$
\begin{aligned}
& \operatorname{Var}\left(\left(\bar{y}_{m}-\mu\left(x^{(m)}\right)\right)^{2}-n_{m}^{-1} s_{m}^{2} \mid X_{1}, \ldots, X_{n}\right) \\
& \leq 4 \cdot \frac{3 n_{m}+1}{16 n_{m}^{3}}+2 \cdot n_{m}^{-1}\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2}+4 \cdot \frac{1}{16 n_{m}\left(n_{m}-1\right)}
\end{aligned}
$$

and so for $n_{m} \geq 2$,

$$
\begin{aligned}
& \operatorname{Var}\left(Z_{m} \mid X_{1}, \ldots, X_{n}\right) \\
& \qquad \begin{aligned}
& \leq\left(n_{m}-1\right)^{2} \cdot\left[4 \cdot \frac{3 n_{m}+1}{16 n_{m}^{3}}+2 \cdot n_{m}^{-1}\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2}+4 \cdot \frac{1}{16 n_{m}\left(n_{m}-1\right)}\right] \\
& \leq 1+2\left(n_{m}-1\right) \cdot\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2}=0.5+2 \mathbb{E}\left[Z_{m} \mid X_{1}, \ldots, X_{n}\right]
\end{aligned}
\end{aligned}
$$

If instead $n_{m}=0$ or $n_{m}=1$ then $Z_{m}=0$ by definition, and so $\operatorname{Var}\left(Z_{m} \mid X_{1}, \ldots, X_{n}\right)=0$. Therefore, in all cases, we have

$$
\operatorname{Var}\left(Z_{m} \mid X_{1}, \ldots, X_{n}\right) \leq \mathbb{1}\left\{n_{m} \geq 2\right\}+2 \mathbb{E}\left[Z_{m} \mid X_{1}, \ldots, X_{n}\right]
$$

It is also clear that, conditional on X_{1}, \ldots, X_{n}, the Z_{m} 's are independent, and so

$$
\operatorname{Var}\left(Z \mid X_{1}, \ldots, X_{n}\right)=\sum_{m=1}^{\infty} \operatorname{Var}\left(Z_{m} \mid X_{1}, \ldots, X_{n}\right) \leq N_{\geq 2}+2 \mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]
$$

Finally, we need to bound $\operatorname{Var}\left(\mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]\right)$. First, we have

$$
\begin{aligned}
\operatorname{Var}\left(\mathbb{E}\left[Z_{m} \mid X_{1}, \ldots, X_{n}\right]\right)=\operatorname{Var}\left(\left(n_{m}-1\right)_{+}\right) & \cdot\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{4} \\
\leq & \operatorname{Var}\left(\left(n_{m}-1\right)_{+}\right) \cdot\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2},
\end{aligned}
$$

and we can calculate

$$
\begin{aligned}
& \operatorname{Var}\left(\left(n_{m}-1\right)_{+}\right) \\
& =\operatorname{Var}\left(n_{m}+\mathbb{1}\left\{n_{m}=0\right\}\right) \\
& =\operatorname{Var}\left(n_{m}\right)+\operatorname{Var}\left(\mathbb{1}\left\{n_{m}=0\right\}\right)+2 \operatorname{Cov}\left(n_{m}, \mathbb{1}\left\{n_{m}=0\right\}\right) \\
& =\operatorname{Var}\left(n_{m}\right)+\operatorname{Var}\left(\mathbb{1}\left\{n_{m}=0\right\}\right)-2 \mathbb{E}\left[n_{m}\right] \mathbb{E}\left[\mathbb{1}\left\{n_{m}=0\right\}\right] \text { since } n_{m} \cdot \mathbb{1}\left\{n_{m}=0\right\}=0 \text { almost surely } \\
& =n p_{m}\left(1-p_{m}\right)+\left(1-p_{m}\right)^{n}\left(1-\left(1-p_{m}\right)^{n}\right)-2 n p_{m}\left(1-p_{m}\right)^{n} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& 2 \mathbb{E}\left[\left(n_{m}-1\right)_{+}\right]-\operatorname{Var}\left(\left(n_{m}-1\right)_{+}\right) \\
& =2 n p_{m}-2+2\left(1-p_{m}\right)^{n}-n p_{m}\left(1-p_{m}\right)-\left(1-p_{m}\right)^{n}\left(1-\left(1-p_{m}\right)^{n}\right)+2 n p_{m}\left(1-p_{m}\right)^{n} \\
& =n p_{m}\left(1+p_{m}\right)+\left(1-p_{m}\right)^{n}\left(1+2 n p_{m}+\left(1-p_{m}\right)^{n}\right)-2 \\
& \geq 0,
\end{aligned}
$$

where the last step holds since, defining $f(t)=n t(1+t)+(1-t)^{n}\left(1+2 n t+(1-t)^{n}\right)$, we can see that $f(0)=2$ and $f^{\prime}(t) \geq 0$ for all $t \in[0,1]$. This verifies that

$$
\begin{aligned}
& \operatorname{Var}\left(\mathbb{E}\left[Z_{m} \mid X_{1}, \ldots, X_{n}\right]\right) \leq \operatorname{Var}\left(\left(n_{m}-1\right)_{+}\right) \cdot\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2} \\
& \leq 2 \mathbb{E}\left[\left(n_{m}-1\right)_{+}\right] \cdot\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2}=2 \mathbb{E}\left[Z_{m}\right]
\end{aligned}
$$

Next, for any $m \neq m^{\prime}$,

$$
\begin{aligned}
& \operatorname{Cov}\left(\mathbb{E}\left[Z_{m} \mid X_{1}, \ldots, X_{n}\right], \mathbb{E}\left[Z_{m^{\prime}} \mid X_{1}, \ldots, X_{n}\right]\right) \\
& =\operatorname{Cov}\left(\left(n_{m}-1\right)_{+},\left(n_{m^{\prime}}-1\right)_{+}\right) \cdot\left(\mu_{P}\left(x^{(m)}\right)-\mu\left(x^{(m)}\right)\right)^{2} \cdot\left(\mu_{P}\left(x^{\left(m^{\prime}\right)}\right)-\mu\left(x^{\left(m^{\prime}\right)}\right)\right)^{2} \\
& \leq 0
\end{aligned}
$$

For the last step, we use the fact that $\operatorname{Cov}\left(\left(n_{m}-1\right)_{+},\left(n_{m^{\prime}}-1\right)_{+}\right) \leq 0$, which holds since, conditional on n_{m}, we have $n_{m^{\prime}} \sim \operatorname{Binom}\left(n-n_{m}, \frac{p_{m^{\prime}}}{1-p_{m}}\right)$, and so the distribution of $n_{m^{\prime}}$ is stochastically smaller whenever n_{m} is larger. Therefore,

$$
\operatorname{Var}\left(\mathbb{E}\left[Z \mid X_{1}, \ldots, X_{n}\right]\right) \leq \sum_{m=1}^{\infty} \operatorname{Var}\left(\mathbb{E}\left[Z_{m} \mid X_{1}, \ldots, X_{n}\right]\right) \leq \sum_{m=1}^{\infty} 2 \mathbb{E}\left[Z_{m}\right]=2 \mathbb{E}[Z]
$$

E. 4 Proofs of Lemma C. 2 and Lemma D. 1

Replacing p with $1-s$, equivalently, we need to show that, for all $s \in[0,1]$,

$$
\frac{n(n-1)(1-s)^{2}}{2+n(1-s)} \leq n(1-s)-1+s^{n} \leq \frac{n^{2}(1-s)^{2}}{1+n(1-s)}
$$

After simplifying, this is equivalent to proving that

$$
\frac{n(1-s)^{2}+2 n(1-s)}{2+n(1-s)} \geq 1-s^{n} \geq \frac{n(1-s)}{1+n(1-s)}
$$

which we can further simplify to

$$
\begin{equation*}
\frac{n(1-s)+2 n}{2+n(1-s)} \geq 1+s+\cdots+s^{n-1} \geq \frac{n}{1+n(1-s)} \tag{E.2}
\end{equation*}
$$

by dividing by $1-s$ (note that this division can be performed whenever $s<1$, while if $s=1$, then the desired inequalities hold trivially).
Now we address the two desired inequalities separately. For the left-hand inequality in E.2), define

$$
h(s)=(2+n(1-s)) \cdot\left(s+s^{2}+\cdots+s^{n-1}\right)=n s+2\left(s+s^{2}+\cdots+s^{n-1}\right)-n s^{n} .
$$

We calculate $h(1)=2(n-1)$, and for any $s \in[0,1]$,

$$
\begin{array}{rl}
h^{\prime}(s)=n+\sum_{i=1}^{n-1} 2 i s^{i-1}-n^{2} s^{n-1} \geq n+\sum_{i=1}^{n-1} & 2 i s^{n-1}-n^{2} s^{n-1} \\
& =n+s^{n-1}\left(\sum_{i=1}^{n-1} 2 i-n^{2}\right)=n-n s^{n-1} \geq 0
\end{array}
$$

where the first inequality holds since $s^{i-1} \geq s^{n-1}$ for all $i=1, \ldots, n-1$, and the second inequality holds since $s^{n-1} \leq 1$. Therefore, $h(s) \leq \bar{h}(1)=2(n-1)$ for all $s \in[0,1]$, and so

$$
\begin{aligned}
1+s+\cdots+s^{n-1} & =\frac{\left(1+s+\cdots+s^{n-1}\right) \cdot(2+n(1-s))}{2+n(1-s)} \\
& =\frac{2+n(1-s)+h(s)}{2+n(1-s)} \leq \frac{2+n(1-s)+2(n-1)}{2+n(1-s)}=\frac{n(1-s)+2 n}{2+n(1-s)}
\end{aligned}
$$

as desired.
To verify the right-hand inequality in (E.2), we have

$$
\begin{aligned}
1+s+\cdots+s^{n-1} & =\frac{\left(1+s+\cdots+s^{n-1}\right) \cdot(1+n(1-s))}{1+n(1-s)} \\
& =\frac{(n+1)\left(1+s+\cdots+s^{n-1}\right)-n\left(s+s^{2}+\cdots+s^{n}\right)}{1+n(1-s)} \\
& =\frac{n+\left(1+s+\cdots+s^{n-1}\right)-n s^{n}}{1+n(1-s)} \\
& \geq \frac{n}{1+n(1-s)},
\end{aligned}
$$

where the last step holds since, for $s \in[0,1]$, we have $s^{i} \geq s^{n}$ for all $i=0,1, \ldots, n-1$.

References

Siu-On Chan, Ilias Diakonikolas, Paul Valiant, and Gregory Valiant. Optimal algorithms for testing closeness of discrete distributions. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages 1193-1203. SIAM, 2014.

