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Abstract

Natural language instructions for visual navigation often use scene descriptions
(e.g., ‘bedroom’) and object references (e.g., ‘green chairs’) to provide a bread-
crumb trail to a goal location. This work presents a transformer-based vision-and-
language navigation (VLN) agent that uses two different visual encoders – a scene
classification network and an object detector – which produce features that match
these two distinct types of visual cues. In our method, scene features contribute
high-level contextual information that supports object-level processing. With this
design, our model is able to use vision-and-language pretraining (i.e., learning the
alignment between images and text from large-scale web data) to substantially
improve performance on the Room-to-Room (R2R) [1] and Room-Across-Room
(RxR) [2] benchmarks. Specifically, our approach leads to improvements of 1.8%
absolute in SPL on R2R and 3.7% absolute in SR on RxR. Our analysis reveals even
larger gains for navigation instructions that contain six or more object references,
which further suggests that our approach is better able to use object features and
align them to references in the instructions.

1 Introduction

The vision-and-language navigation (VLN) task [1] requires an agent to follow a path through an
environment that is specified by natural language navigation instructions. A central component of this
task is associating (or grounding) the instruction to visual landmarks in the environment. Figure 1
provides an illustrative example from the Room-to-Room (R2R) dataset [1]: ‘Exit the bedroom and
turn left. Continue down the hall and into the room straight ahead and stop before the desk with two
green chairs.’ The visual landmarks in this instruction include scene descriptions (e.g., ‘bedroom’
and ‘hall’) and specific object references (e.g., ‘desk’ and ‘two green chairs’). To be successful, a
VLN agent should be able to (a) recognize and (b) ground both types of visual cues.

Learning the appropriate grounding between referring expressions in an instruction and the corre-
sponding visual regions is difficult in VLN due to the limited visual diversity seen in training. For
example, the Room-to-Room (R2R) [1] and Room-Across-Room (RxR) [2] datasets only use 61
unique training environments, so models simply cannot learn about the long-tail of visual cues that
appear in new testing (or validation) scenes. To address this challenge, recent work has shown the
promise of transferring visual grounding with multimodal representation models that are pretrained
on a large amount of image-text web data before finetuning on the embodied VLN task [3, 4]. In this
work, we build on this general approach.

For visual recognition, most VLN methods [1, 4–14] first encode observations with a convolutional
network that was trained to solve an image-level classification task – either using ImageNet [15] or
the Places [16] scene recognition dataset. While ImageNet features may identify objects mentioned
in the instructions and Places features might match the scene descriptions, neither solution was
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Navigation Instructions: “Exit the bedroom and turn left. Continue down the hall and 
into the room straight ahead and stop before the desk with two green chairs.”
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Figure 1: Illustrative VLN Instruction. Visual landmarks in the instruction include scene descriptions
(e.g., ‘bedroom’ and ‘hall’) and object references (e.g., ‘desk’ and ‘green chairs’). Unlike most
previous methods, our model uses both scene ( ) and object features ( ) to match the visual
references in the instructions. We employ a novel attention mechanism and view aggregation strategy
to select the most relevant features for action prediction.

explicitly trained to recognize both types of visual cues, which is a limitation that we address in this
paper. Furthermore, pretrained multimodal representation models have typically been trained with
features from object detection networks rather than the image-level representations commonly used
in VLN. Despite this, prior work leveraging these models [4] has continued to use the standard set of
image-level features – leading to a significant domain shift between pretraining and VLN finetuning.

In this work, we address these issues 1) by using multiple visual encoders to explicitly encode the
inductive bias that the world is composed of objects and scenes and 2) by using object-level features
from a detection network that match the features used to pretrained multimodal representation models.
The starting point for our work is a VLNœ BERT [4] agent that processes scene-level features from a
Places [16] CNN with a transformer-based [17] multimodal representation model that is modified with
a recurrence mechanism designed for the VLN task. Our work extends this approach by including
object features as an additional input to the multimodal processing. However, we find that simply
adding object features to VLNœ BERT does not improve (but rather slightly reduces) performance.
Thus, we propose architectural changes that allow the model to take better advantage of these two
distinct types of visual information. Specifically, we change the attention pattern within the the
transformer to effectively freeze the scene representations and focus the processing on the object-level
inputs. The result is a new VLN agent that produces contextualized object representations by using
scene features as high-level contextual cues.

We experiment with our proposed approach on the Room-to-Room (R2R) [1] and Room-Across-Room
(RxR) [2] datasets. Empirically, we find that our model substantially improves VLN performance over
our VLNœ BERT baseline on R2R and outperforms state-of-the-art methods on English language
instructions in RxR. Specifically, our proposed approach improves success weighted by path length
(SPL) on the unseen validation split in R2R by 1.8 absolute percentage points. On RxR – a more
challenging dataset due to indirect paths and greater variations in path length – we see even larger
improvements. Success rate (SR) improves by 3.7 absolute percentage points, alongside a gain of
2.4 absolute percentage points on the normalized dynamic time warping (NDTW) metric. Through
ablation experiments we find that (consistent with the observations in [3]) vision-and-language
pretraining is vital to our approach, which suggests that strong visual grounding is key for using object-
level features in VLN. Additionally, on RxR instructions that include six or more object references
(i.e., object-heavy instructions), our method has even larger improvements over VLNœ BERT of 7.9
absolute percentage points in SR.

To summarize, we make the following contributions:

• We propose a scene- and object-aware transformer (SOAT) model for vision-and-language
navigation that uses both scene-level and object-level features – explicitly encoding the
inductive bias that the world is composed of objects and scenes. Our model uses a novel at-
tention masking technique and view aggregation strategy, which both improve performance.
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• We demonstrate that our approach outperforms a strong baseline approach by 1.8 absolute
percentage points in SPL on R2R and by 3.7 absolute percentage points in SR on RxR.

• We show that our method has significantly stronger performance on instructions that mention
six or more objects (7.9 absolute percentage points of improvement in SR), which further
suggests that our model is better able to recognize and ground object references.

2 Related Work

Vision-and-Language Navigation. The Room-to-Room (R2R) [1] and Room-Across-Room
(RxR) [2] datasets both situate the VLN task within Matterport3D [18] indoor environments. Since
the release of R2R there has been steady improvement in VLN task performance [4–14]. Some of
the key innovations include using instruction-generation via ‘speaker’ models for data augmenta-
tion [5, 10], combining imitation and reinforcement learning [6], using auxiliary losses [7, 13], and
different pretraining strategies [4, 12, 14]. All of these methods have one thing in common – they
process visual observations with a single convolutional network pretrained to solve an classification
task (using either the ImageNet [15] or Places [16] datasets). In contrast, this work explores using a
combination of features from visual encoders pretrained for scene classification and object detection.

Object Detectors in VLN. Intuitively, object detections should naturally match the object cues
(e.g., ‘green chairs’) mentioned in VLN instructions. Indeed, several recent studies [3, 19–21]
have demonstrated the utility of using object detectors for VLN. In [19, 20] object classification
labels from an object detector are encoded using a GLoVe [22] embedding. Similarly, [21] convert
detections into a feature vector using the classification label, object area, and detector confidence.
Unlike these methods, our model directly uses object features produced by a detector, which provide
a richer, high-dimensional representation of each region. Additionally, our approach takes advantage
of vision-and-language pretraining, which eases the burden of learning the grounding between natural
language and object representations from scratch using only VLN data, as is done in these prior
methods. In [3], object features are used in a model that solves a path selection task in VLN, which
requires pre-exploring an environment before executing the navigation task. By comparison, this
work focuses on navigating without pre-exploration.

3 Preliminaries: VLN, Visual Encoders, Multimodal Transformers

This section reviews the vision-and-language navigation (VLN) task and describes how multimodal
transformers are used in the recently proposed VLNœ BERT [4] model. Our approach builds on
VLNœ BERT and is described in Section 4.

3.1 Vision-and-Language Navigation

In VLN, agents are placed in a photo-realistic 3D environment and must navigate to a goal location
that is specified through natural language navigational instructions I (illustrated in Figure 1). At
each timestep t, the agent receives a set of panoramic observations Ot “ tot,iu

36
i“1 composed of

RGB images from 36 viewing angles (12 headings ˆ 3 elevations). We follow the VLN with known
navigation graph setting [1, 2] – agents have access to a graph that specifies a set of navigable
locations from each viewpoint in the environment. We agree with the limitations of this setting
discussed in [23]. However, we report results for the nav-graph setting to be consistent with the long
line of prior work in this area. We plan on generalizing to continuous environments in the future.
Using the nav-graph, agents select an action from the set At “ tat,iu

Nt
i“0 consisting of Nt navigable

locations and the stop action. The agent is successful if it calls stop within 3m of the goal location.

3.2 Multimodal Transformers

Here we provide a brief overview of multimodal transformers (e.g., OSCAR [24]), which provide a
basis for the VLNœ BERT architecture. Multimodal transformers are an extension of transformer-
based [17] language models such as BERT [25] that process image-text pairs. As in BERT, the text
input is tokenized, encoded with a learned embedding, and then combined with positional information
(i.e., word order). Commonly, the visual input (i.e., the image) is first preprocessed by an object
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Figure 2: Model architectures. (a) VLNœ BERT uses a multimodal transformer to encode state
history, instruction tokens and scene features from candidate views. The candidate view corresponding
to the scene features with the highest attention score is chosen as the next action. (b) Our approach
includes object features as additional input. In view aggregation, the visual feature (either object or
scene) with the maximum attention score is selected to represent each candidate view. For action
prediction, the model chooses the candidate view with the highest attention score as the next action.

detector (e.g., a Faster R-CNN [26] model trained on Visual Genome [27]) to produce a set of region
features that are combined with spatial information (e.g., the offset to the bounding box in the image).
To summarize, the multimodal input consisting of L word tokens tw1, . . . , wLu andM image regions
tr1, . . . , rMu can be written as

[CLS], w1, . . . , wL, [SEP], r1, . . . , rM

where [CLS] is a special token used as a global representation of the input and the [SEP] token
separates modalities. This set of multimodal inputs are fed to a series of transformer encoder
layers [17] to produce contextualized representations for each input using attention-based processing.

3.3 Multimodal Transformers for VLN

The input interface for multimodal transformers can be easily adapted to process the language
instructions and panoramic image from each timestep in VLN. However, VLN requires sequentially
following navigation instructions (e.g., ‘Exit the bedroom...’ then ‘Continue down the hall...’ then

‘stop before the desk with two green chairs.’). Accordingly, maintaining a history of the agent’s
state is helpful for understanding which sub-instruction to follow at each timestep. Traditional
VLN agents use recurrent neural networks (e.g., LSTM [28]) to model state history. In contrast,
VLNœ BERT [4] introduces a generic recurrence mechanism that can, in principle, be added to
any multimodal transformer model to refashion it for the VLN task. In this work we extend the
OSCAR [24] instantiation of VLNœ BERT.

As shown in Figure 2a, VLNœ BERT [4] uses a multimodal transformer to process word tokens
from the navigation instructions and scene features for a set of “candidate” views from a panoramic
observation. There is one candidate view for each navigable action in At, corresponding with the
views that best align with each navigable direction (there are„4 such views on average). Accordingly,
the output representation for each view is used to compute the probability of moving in that direction.
The recurrence mechanism in VLNœ BERT is operationalized using a state token st, which is fed as
an input to the multimodal transformer and is updated at each timestep.

Initialization. The state token st is initialized by passing word tokens from the navigation instruction
I along with special [CLS] and [SEP] tokens through the multimodal transformer. The output
representation for the [CLS] token is used to set s0 and the outputs for the word tokens (denoted as
ψpIq) are used as the language representation during navigation.

Visual Inputs. For each RGB image in the Nt candidate views, VLNœ BERT runs a convolutional
network trained on Places [16] to extract high-level scene features. To facilitate the stop action an
all-zeros feature vector is added to the set of visual inputs. We denoted this set of visual inputs as V t.
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Figure 3: Selective attention: during navigation the instruction and scene features are kept frozen –
i.e., they are not updated in the transformer layers and just serve as keys and values. The state token
and object features are updated through self-attention by attending to all input tokens.

Navigation. At each timestep, the input to the multimodal transformer is composed of the state token
st, the encoded instruction ψpIq, and the visual inputs V t. To reduce computation, the instruction
representation is not updated during navigation; the encoded word tokens simply serve as keys and
values when processed by the multimodal transformer.

Actions are predicted using “state-conditioned” attention scores for the scene features. These scores
are produced at the final layer of the multimodal transformer. Concretely, let the final layer outputs for
the state token st and scene features V t be denoted as ψpstq P Rd and ψpV tq P RpNt`1qˆd where
Nt is the number of navigable locations and d is the model’s hidden dimension size. State-conditioned
attention scores are calculate using a scaled dot-product as

αpVtq “
ψpstqψpV tq

T

?
d

(1)

These scores αpVtq are normalized using the softmax function ãpVtq “ softmaxpαpVtqq and used
as the probability of moving to one of theNt navigable locations or stopping. Finally, the state history
is maintained by constructing the next state token st`1 with the output representation for the state
token ψpstq using a “refinement” procedure detailed in the Appendix.

4 Approach

Motivated by the observation that VLN instructions often use scene descriptions (e.g., ‘bedroom’)
and object references (e.g., ‘green chairs’) to provide visual cues, our goal is to design a model that
effectively uses scene and object features for VLN. One straightforward idea is to add an object
feature input to VLNœ BERT [4]. However, we find that this simple solution does not improve VLN
performance (as we show in Table 3 row 2), which is perhaps why object features were not used
for navigation in [4].2 Thus, we redesigned the VLNœ BERT architecture to create a scene- and
object-aware transformer (SOAT) model that benefits from access to both scene and object features.

First, we modify the processing in the model to focus on object features by designing the attention
mask shown in Figure 3 and described in Section 4.2. The mask only allows the state token and
object features to be updated by the multimodal transformer. Second, as illustrated in Figure 2b,
the output from our model includes scene and object representations for each candidate view. Thus,
we design a simple approach (discussed in Section 4.3) to aggregate this information into a single
representation for each view, which is used for action prediction.

4.1 Visual Inputs

To generate scene and object features we use two different visual encoders to process RGB images
from the panoramic observations. Matching VLNœ BERT, we use a CNN trained on the Places [16]
dataset to extract scene features for each candidate view, and use an all-zeros feature vector for the
stop action to produce the set of scene features V t. For object features, we use the same object

2Object features were used in [4] to select objects for a referring expressions task [29] but not for navigation.
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detector that was used to pretrain the multimodal transformer (i.e., OSCAR [24]) that we use to
initialize our model – avoiding any additional domain gap between pretraining and fine-tuning.
Specifically, we use a Faster R-CNN [26] detector trained on Visual Genome [27] using the training
procedure from [30]. We denote the set of object features for detections from all of the candidate
views as Gt. Note that for a given image the detector may or may not detect any objects. As a result,
in our model, each candidate view is represented with one scene feature and zero or more object
feature vectors. As illustrated in Figure 2b, the full set of inputs to our model include the state token
st, encoded instructions ψpIq, and the visual inputs consisting of scene V t and object Gt features.

4.2 Selective Object Attention

Simply adding object features as an additional input to the model does not improve performance.
To overcome this challenge, we adjust the processing to focus on the object feature inputs. This is
accomplished using the attention mask show in Figure 3 (right). Like VLNœ BERT, with this atten-
tion mask, the encoded navigation instructions ψpIq are not updated in the multimodal transformer.
However, in our approach the scene features V t are also kept frozen. As a result, these inputs only
serve as keys and values during the attention based processing. The state token st and object features
Gt operate as queries, keys and values, which is standard in transformer-based models.

Intuitively, this attention mask allows scene features to provide contextual information to support
refining the object representations. Note that the (unaltered) scene features are still used for action
prediction (described in Section 4.3), which provides flexibility in how the model uses both types
of visual representations. We hypothesize that this design leads to more effective transfer learn-
ing (demonstrated in Section 5), because the object-centric processing more closely matches the
pretraining setup in which the model only operates on language and object features.

4.3 View Aggregation

At each timestep of navigation, the multimodal transformer uses selective object attention (described
above) to produce contextualized representations of the state ψpstq and object features ψpGtq. As
illustrated in Figure 2b, the object representations ψpGtq alongside the unaltered scene features V t

are used for view aggregation and action prediction. Specifically, state-conditioned attention scores
are calculated for the scene and object features using a scaled dot-product (as in Equation (1)) as

αpVtq “
ψpstqV

T
t?

d
, αpGtq “

ψpstqψpGtq
T

?
d

(2)

where d is the model’s hidden dimension size. As a result, each candidate view is represented with
one scene feature attention score and zero or more object feature attention scores.

For view aggregation, we select the maximum attention score for all of the scene and object features in
a given view, and use the corresponding visual input to represent that view. Intuitively, this approach
allows the model to either select a relevant object (which may be mentioned in the instructions such
as ‘green chairs’) or the full scene (which might match scene descriptions such as ‘hallway’) to
represent each navigable viewpoint (i.e., candidate view). Finally, for action prediction, we take the
softmax over the selected attention scores and use these normalized scores to represent the probability
of moving to each navigable location or stopping.

5 Experiments

Datasets. We evaluate our method on the Room-to-Room (R2R) [1] and Room-Across-Room
(RxR) [2] datasets. R2R is built using Matterport3D (MP3D) [18] indoor scenes and contains
21,567 path-instruction pairs, which are divided into four splits: training (14,025), val-seen (1,020),
val-unseen (2,349) and test-unseen (4,173). Val-seen uses environments from the training split but
the path-instruction pairs are novel. Val-unseen and test-unseen use new environments and new
path-instruction pairs to evaluate generalization performance. We augment the R2R training data
with 1M instructions generated by the speaker model from [14].

RxR [2] is a recently introduced multi-lingual VLN dataset that also uses MP3D scenes. It contains
126K path-instruction pairs in 3 languages (Hindi, English and Telugu). English instructions are
collected from two regions: India (en-IN) and US (en-US). Since our model is pretrained on English
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Table 1: R2R and RxR results on val-unseen. Rows 1 and 2 indicate performance of the random and
human baselines. Rows 3-7 are results from prior state-of-the-art methods. Rows 8 and 9 provide
results of VLNœ BERT [4] and our method in the same setting. : indicates reproduced results.

Pretraining R2R RxR

Methods Web VLN TL NE Ó SR Ò SPL Ò NE Ó SR Ò SDTW Ò NDTW Ò

1 Random 9.77 9.23 16 - 9.5 5.1 3.8 27.6
2 Human - - - - 1.32 90.4 74.3 77.7

3 RxR baseline[2] - - 37 32 10.1 25.6 20.3 41.3
4 EnvDrop [10] 10.70 5.22 52 48 - - - -
5 PREVALENT [14] X 10.19 4.71 58 53 - - - -
6 VLNœ BERT [4] (init. OSCAR) X 11.86 4.29 59 53 - - - -
7 VLNœ BERT [4] (init. PREVALENT) X 12.01 3.93 63 57 - - - -

8 VLNœ BERT [4] (init. OSCAR) : X 12.16 4.40 58 51 7.31 40.5 33.0 52.4
9 Ours X 12.15 4.28 59 53 6.72 44.2 36.4 54.8

language data, we focus on the English language subset of RxR (both en-IN and en-US), which
includes 26,464 path-instruction pairs for training and 4,551 pairs in the val-unseen split.

Evaluation. We follow the standard evaluation protocols for R2R and RxR as shown in Table 1.
When applicable, we use an Ò to indicate higher is better and a Ó to indicate lower is better. On R2R,
we report: Trajectory Length (TL), Navigation Error (NE Ó) - average distance between the target
and the agent’s final position, Success Rate (SR Ò) - percentage of trajectories in which agent stopped
within 3 meters of the target, and Success weighted by normalized inverse of Path Length (SPL Ò).
On RxR dataset, in addition to the NE and SR metrics, we also report the Normalized Dynamic Time
Warping (NDTW Ò) and Success weighted by normalized Dynamic Time Warping (SDTW Ò) metrics,
which explicitly measure path adherence. Additional details are included in the Appendix.

Baselines. In Table 1, we compare our approach (Row 9) with recent state-of-the-art methods.
EnvDrop [10] (Row 4) trains an encoder-decoder model [5] on augmented data (in addition to R2R
training data) generated with back-translation using “dropped out” scenes in order to generalize well
to unseen environments. PREVALENT [14] (Row 5) builds on EnvDrop by pretraining a multimodal
transformer model on augmented data. After pretraining, PREVALENT feeds contextualized word
embeddings from this pretrained transformer into the EnvDrop [10] encoder-decoder to fine-tune on
R2R dataset. VLNœ BERT (Row 6-8) extends PREVALENT by directly fine-tuning the pretrained
multimodal transformer for navigation. VLNœ BERT uses two initializations – OSCAR (Row 6) and
PREVALENT (Row 7). For fair comparison, we also report results reproduced with the released
implementation3 of VLNœ BERT by training from the OSCAR initialization (Row 8). Importantly,
all these methods use either scene or object features as visual inputs for navigation.

Implementation Details. We implemented our model in PyTorch [31] and trained on a single Nvidia
TitanX GPU. Consistent with VLNœ BERT [4], we initialize our model with a pretrained OSCAR
model [24]. For both R2R and RxR, we fine-tune with behaviour cloning and reinforcement learning
(RL) objectives adapted from prior work [4, 10, 14]. As in [4], 50% of each batch consists of
behaviour cloning rollouts and 50% from RL (policy gradient). We train with a constant learning rate
of 1e-5 using the AdamW optimizer with a batch size of 16 for 300k iterations. Like VLNœ BERT,
we extract scene features with a ResNet-152 model [32] pretrained on the Places dataset [16]. For
object features, we extract detections from a pretrained bottom-up attention model [30], and adopt
the filtering procedure from [3] to discard redundant detections. In all of our experiments we use the
same hyperparameters for the VLNœ BERT baseline and our approach.

5.1 Main Results

Performance on R2R and RxR. Rows 8 and 9 of Table 1 provide a comparison with the
VLNœ BERT baseline on R2R (left) and RxR (right). RxR is a more challenging dataset because
there is more variation in path lengths and agents often need to follow indirect paths to a goal. On
RxR, our approach (row 9), which uses both scene and object features, beats the scene features only
VLNœ BERT baseline (row 8) by 3.7% on SR, 3.4% on SDTW and 2.4% on NDTW. On R2R, our
approach (row 9) provides a 1.8% gain in SPL over the VLNœ BERT baseline (row 8). The larger

3https://github.com/YicongHong/Recurrent-VLN-BERT
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Table 2: R2R test results. : indicates reproduced results.

Pretraining R2R Test Unseen

Methods Web VLN TL NE Ó SR Ò SPL Ò

1 Random 9.89 9.79 13 12
2 Human 11.85 1.61 86 76

3 EnvDrop [10] 11.66 5.23 51 47
4 PREVALENT [14] X 10.51 5.30 54 51
5 VLNœ BERT [4] (init. OSCAR) X 12.34 4.59 57 53
6 VLNœ BERT [4] (init. PREVALENT) X 12.35 4.09 63 57

7 VLNœ BERT [4] (init. OSCAR) : X 12.78 4.55 58 52
8 Ours X 12.26 4.49 58 53

gains on RxR may result from a greater number of object references in RxR instructions (which is
suggested by the linguistic analysis in [2]), which are required to describe the more complex paths.
This hypothesis is consistent with our analysis in section 5.2 that shows larger gains from our method
on instructions that contain 6 or more object references. These significant improvements highlight
the benefit of using object features for challenging datasets like RxR.

Table 1 rows 3-7 show the results for state-of-the-art methods on R2R and RxR. On RxR, our method
outperforms the previous state-of-the-art established by the RxR baseline (row 3) by 13.5% absolute
on NDTW and 18.6% absolute on SR. On R2R, our approach is competitive with the previous state-
of-the-art across all metrics. Table 2 reports results on the R2R test-unseen split, which again shows
that our approach is competitive with prior work. In both tables VLNœ BERT with a PREVALENT
initialization outperforms our approach. However, we note that PREVALENT [14] uses an alternative
pretraining setup with scene features and augmented VLN data, which is orthogonal to our goals
of using object features and transferring visual grounding for VLN. Combining these two different
pretraining strategies is an interesting direction for future work.

5.2 Ablations and Analysis

Table 3: Ablation Study on R2R. : indicates reproduced results.

Object View Selective Val Unseen

Models Features Aggregation Attention SR Ò SPL Ò

1 Baseline [4]: 57.90 51.43
2 X 57.26 50.96
3 X X 57.85 51.73
4 X X 57.73 52.46
5 X 57.60 52.06
6 Ours X X X 58.71 53.24

Do object features help without the proposed architectural changes? Table 3 presents the
results of an ablation experiment on R2R that demonstrates the importance of each design choice in
our model. In row 2 object features are used as an additional input to VLNœ BERT with no other
architectural changes (e.g., selective attention or view aggregation). In this ablation, the visual inputs
(scene and object features) all get refined with self-attention and action probabilities are calculated in
a similar fashion to VLNœ BERT [4]. We see that merely using object features as an additional input
leads to slightly reduced performance on val-unseen (rows 1 vs. 2). Rows 3 and 4 demonstrate that
using object features with either view aggregation (Section 4.3) or selective attention (Section 4.2)
reverses this trend. Furthermore, row 6 demonstrates that the largest gains are seen when all three
modifications to the VLNœ BERT baseline are used together – resulting in a 1.8% gain in SPL.
Additionally, row 5 shows that using selective attention without object features does not out perform
our full approach. More details are provided in the appendix. To summarize, using object features
only leads to improved performance with the architectural changes proposed in this work.
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Table 4: Results on R2R without vision-and-language pretraining.

R2R Val Unseen

Models TL NE Ó SR Ò SPLÒ

1 VLNœ BERT [4] 10.31 5.21 49.21 45.53
2 Ours 12.00 4.99 50.36 44.69

Do object features help without vision-and-language pretraining? Table 4 reports results of
the VLNœ BERT baseline and our approach without vision-and-language pretraining on the R2R
val-unseen split. As evident from Table 4, both the approaches perform similarly across all metrics.
This demonstrates that transferring visual grounding is crucial for our approach to work; our ap-
proach improves performance compared to the VLNœ BERT baseline (Table 1 Row 7 vs Row 8)
predominantly because it more effectively utilizes the large-scale vision-and-language pretraining.

Table 5: Results on a subset of RxR instructions divided by the number of object references.

Object Heavy Instructions Not Object Heavy Instructions

Models NE Ó SR Ò SDTW Ò NDTW Ò NE Ó SR Ò SDTW Ò NDTW Ò

1 VLNœ BERT [4] 8.46 33.89 26.36 46.95 4.07 58.21 50.33 67.75
2 Ours 7.27 41.80 32.92 52.46 3.77 61.64 53.87 69.37

How does our method perform on instructions that heavily mention objects? The RxR dataset
contains long instructions that frequently mention objects and scenes. Specifically, RxR contains 6
entity references per instruction on average, which is nearly double the amount of entities referenced
in R2R (3.7) [2]. Here, we evaluate our model on a subset of RxR instructions that heavily contain
object references. To find this subset, we first randomly pick 500 instructions from val-unseen split in
RxR. Then, we extract noun entities from the instructions using a standard NLP parser [33]. Next,
we manually inspect these nouns and remove direction, scene, or other non-object references. This
results in a list that only contains object references. Finally, we split the randomly selected 500
instructions into two sets containing 6 or more object object references (i.e., object heavy instructions)
or less than 6 object references (i.e., not object heavy instructions). The threshold of 6 was selected
to match the average number of entity references in RxR instructions [2]. With this process 354 of
the 500 instructions were selected for object heavy set.

Results of our method and VLNœ BERT baseline on these subsets are reported in Table 5. On the
object heavy subset, our approach gives even stronger performance improvements over VLNœ BERT
baseline than seen on the full RxR val-unseen split. Specifically, we obtain an absolute improvement
of 7.91% for Success Rate (SR), 6.56% for SDTW score and 5.51% for NDTW. These gains are
approximately twice the improvement on val-unseen split and larger that the „3% improvements
on the complementary subset containing 146 instructions with less that 6 object references (Table 5
right). These results suggest that our approach is able to exploit object features and appropriately
align them with object references to follow visually grounded navigation instructions.

6 Conclusion

In this work, we propose a novel scene- and object-aware transformer (SOAT) model, which uses
scene and object features for vision-and-language navigation. We introduce a selective attention
pattern in the transformer for processing these two distinct types of visual inputs such that scene
tokens only provide contextual information for object-centric processing. As a result, our approach
improves overall performance over a strong baseline on the R2R and RxR benchmarks. Our analysis
shows that vision-and-language pretraining is crucial for exploiting the newly added object features.
We obtain even larger performance improvement on instructions that heavily mention objects, which
suggests that our approach is able to effectively ground object references in the instructions to the
visual object features.
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