## A Proofs

Proof of Theorem 2.1. For each $\mu \in \Pi\left(\hat{\rho}_{\boldsymbol{\theta}, \nu}, \pi\right)$, define $\mu\left(\theta=\theta_{i} \mid \xi\right)=\nu_{i \mid \xi}$. Then we have $\left\{\nu_{i \mid \xi}\right\}_{i=1}^{n} \in \mathcal{V}$ for each fixed $\xi$, and $\nu_{i}=\mathbb{E}_{\xi \sim \pi}\left[\nu_{i \mid \xi}\right], \forall i \in[n]$. We have

$$
\mathbb{E}_{(\theta, \xi) \sim \mu}\left[f_{\xi}(\theta)\right]=\mathbb{E}_{\xi \sim \pi}\left[\sum_{i=1}^{n} \nu_{i \mid \xi} f_{\xi}\left(\theta_{i}\right)\right] \geq \mathbb{E}_{\xi \sim \pi}\left[\min _{i \in[n]} f_{\xi}\left(\theta_{i}\right)\right]
$$

Taking inf on $\mu$ and $\boldsymbol{\nu}$ yields that

$$
\inf _{\boldsymbol{\nu} \in \mathcal{V}} W_{f}\left(\hat{\rho}_{\boldsymbol{\theta}, \boldsymbol{\nu}}, \pi\right) \geq \mathbb{E}_{\xi \sim \pi}\left[\min _{i \in[n]} f_{\xi}\left(\theta_{i}\right)\right]
$$

On the other hand, for $\nu_{i}^{*}=\mathbb{E}_{\xi \sim \pi}\left[\mathbb{P}\left(i \in \arg \min _{j \in[n]} f_{\xi}\left(\theta_{j}\right)\right)\right]$, we define a coupling $\mu_{\boldsymbol{\theta}, \pi}^{*}$ such that 1) its marginal on $\mathcal{V}$ equals $\pi$, and 2)

$$
\mu_{\boldsymbol{\theta}, \pi}^{*}\left(\theta=\theta_{i} \mid \xi\right)=\mathbb{P}\left(i \in \underset{j \in[n]}{\arg \min } f_{\xi}\left(\theta_{j}\right)\right):=\nu_{i \mid \xi}^{*}
$$

It is easy to show that $\mu_{\boldsymbol{\theta}, \pi}^{*}$ matches with $\nu_{i}^{*}$ in that $\nu_{i}^{*}=\mu_{\boldsymbol{\theta}, \pi}^{*}\left(\theta=\theta_{i}\right)$, and hence we have $\mu_{\boldsymbol{\theta}, \pi}^{*}=\Pi\left(\hat{\rho}_{\boldsymbol{\theta}, \boldsymbol{\nu}^{*}}, \pi\right)$. With this, we have

$$
\begin{aligned}
W_{f}\left(\hat{\rho}_{\boldsymbol{\theta}, \boldsymbol{\nu}^{*}}, \pi\right) & \leq \mathbb{E}_{(\theta, \xi) \sim \mu_{\boldsymbol{\theta}, \pi}^{*}}\left[f_{\xi}(\theta)\right] \\
& =\mathbb{E}_{\xi \sim \pi}\left[\sum_{i=1}^{n} \nu_{i \mid \xi}^{*} f_{\xi}\left(\theta_{i}\right)\right] \\
& =\mathbb{E}_{\xi \sim \pi}\left[\min _{i \in[n]} f_{\xi}\left(\theta_{i}\right)\right] .
\end{aligned}
$$

This proves that $\inf _{\boldsymbol{\nu} \in \mathcal{V}} W_{f}\left(\hat{\rho}_{\boldsymbol{\theta}, \boldsymbol{\nu}}, \pi\right)=\mathbb{E}_{\xi \sim \pi}\left[\min _{i \in[n]} f_{\xi}\left(\theta_{i}\right)\right]$.
Proof of Theorem 2.3. Note that

$$
W_{f}(\hat{\rho}, \pi)-L^{*}=\inf _{\mu \in \Pi(\hat{\rho}, \pi)} \mathbb{E}_{(\theta, \xi) \sim \mu}\left[\left(f_{\xi}\left(\theta_{i}\right)-f_{\xi}\left(\theta_{\xi}\right)\right)\right]
$$

The result then follows immediately from Assumption 2.2 and the definition of $p$-Wasserstein distance. Therefore, for any $\boldsymbol{\theta}$ and $\boldsymbol{\nu}$,

$$
W_{p_{1}}\left(\hat{\rho}_{\boldsymbol{\theta}^{*}, \boldsymbol{\nu}^{*}}, \rho^{*}\right) \leq \frac{1}{h_{1}}\left(W_{f}\left(\hat{\rho}_{\boldsymbol{\theta}^{*}, \boldsymbol{\nu}^{*}}, \pi\right)-L^{*}\right) \leq \frac{1}{h_{1}}\left(L\left(\hat{\rho}_{\boldsymbol{\theta}, \boldsymbol{\nu}}, \pi\right)-L^{*}\right) \leq \frac{h_{2}}{h_{1}} W_{p_{2}}\left(\hat{\rho}_{\boldsymbol{\theta}, \boldsymbol{\nu}}, \rho^{*}\right)
$$

which yields (5).

