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A Computational Time and Model Size1

A.1 Training Details2

We use the chair category as an example to illustrate the training pipeline. With 500 training samples,3

the training takes about 24 hours to converge, (4 hours for stage one (α = 1) and 20 hours for stage4

two (α = 0)), on a single Tesla V100 GPU. Please see Algorithm 1 and Section 4.1 in the main paper5

for more details on the two stage training paradigm. The source code will be released to public upon6

publication.7

Algorithm 1 : The training phase of our approach consists of two stages: (1) A pre-training stage
trained with LACD and Lrec (2) A fine-tuning stage trained with LACD, Lrec, and Lcross

(A) STAGE-1: PRE-TRAINING B 4 hours on Chair category

1: Randomly sub-sample k points from the input point cloud SA;
2: Initialize weight of the global feature encoder E(·), canonical mapping encoder Φ(·) and

inverse mapping decoder Ψ(·);
3: for epoch in range [0,T) do
4: foreach iteration do
5: zA ← E(SA);
6: UA ← Φ([p, zA]), where p ∈ SA;
7: ŜA→A ← Ψ([q, zA]), where q ∈ UA;
8: Obtain loss LACD (α = 1) and Lrec;
9: Update weight;

(B) STAGE-2: FINE-TUNING B 20 hours on Chair category

1: Generate randomly paired samples SA and SB ;
2: while not converged do
3: foreach iteration do
4: zA ← E(SA);
5: UA ← Φ([p, zA]), where p ∈ SA;
6: ŜA→A ← Ψ([q, zA]), where q ∈ UA;
7: Obtain loss LACD (α = 0) and Lrec;
8: zB ← E(SB);
9: UB ← Φ([p, zB ]), where p ∈ SB ;

10: ŜA→B ← Ψ([q, zB ]), where q ∈ UA;
11: ŜB→A ← Ψ([q, zA]), where q ∈ UB ;
12: Obtain loss Lcross;
13: Update weight;
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A.2 Inference Details8
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Figure 1: The inference flow of our approach.

Please see Fig 1 and Section 3.2 in the main9

paper for more details on the inference pipeline.10

Our proposed CPAE model contains 2.07M pa-11

rameters which is 2.5× less than the 5.22M pa-12

rameters in [1]. At inference time, the compu-13

tational time for label transfer between a pair14

of shapes (each with 2048 points) is 0.03 sec-15

ond including runtimes of the nearest neighbor16

search for both shapes.17

B Application on Texture Transfer18

Given a source 3D shape, we transfer texture19

from the source shape to multiple target shapes using computed correspondences. Our method is able20

to detect points that do not have correspondents in the source 3D shape (e.g., airplane without tail21

wings or stabilizers).22

(a) Source (b) Targets

Figure 2: Applications on texture transfer.
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C Qualitative Results of Instance-aware Primitives23

In Figure 3, we demonstrate more examples of the instance-aware primitives as discussed in Section24

3.1 in the main paper. Two observations can be made from this figure: a) The instance-aware25

primitives produced by our canonical mapping are closely adhered to a canonical sphere. b) points of26

the same semantic parts are mapped to nearby locations on the primitives, as shown by the colored27

keypoints in Figure 3. These observations demonstrate that our model is able to learn correspondence28

across different shapes in the same category.29

Figure 3: Iinstance-aware primitives on five different categories from the KeypointNet dataset [2]
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D Qualitative Results of Part Label Transfer30

In Figure 4, we show more qualitative results of the part label transfer task. Thanks to the dense31

correspondences learned by our model, we can transfer part labels for small parts (e.g. the handle32

of mugs or the tail wings of airplanes) and handle large intra-class variations (e.g. different legs of33

chairs in row three in Figure 4).34

Shape A Shape B B → A A → B

Figure 4: Part label transfer results. B→A refers to transferring shape B’s label to shape A.
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E Correspondence Confidence Heatmap Visualization35

We use the confidence score (mentioned in main paper Section 3.4) to draw heatmaps for multiple36

target shapes in the same categories. As shown in Fig. 5, the predicted confidence heat maps37

successfully indicate the intra-class variations and capture uncertainty in correspondence prediction.38

For instance, low confidences can be found in mugs with different handles, knives with different39

blades, guitars with different bodies, etc.40

Figure 5: Correspondence confidence heatmaps. Red boxes indicate source shapes. The darker the
heatmap, the lower the confidence.

F Limitation41

There are two main limitations for our approach: (a) we encode the shape information of a point42

cloud in a global vector – i.e., fine details like corners and edges may be blurred after reconstruction.43

(b) We found the correspondences predicted near holes maybe wrong, possibly due to the sparsity of44

points in the point cloud and the nature of Chamfer and Earth Mover’s distance matrices. We leave45

these limitations for future works.46

5



Figure 6: Failure cases.
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