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Abstract

This paper proposes a method to visualize the discrimination power of intermediate-
layer visual patterns encoded by a DNN. Specifically, we visualize (1) how the
DNN gradually learns regional visual patterns in each intermediate layer during the
training process, and (2) the effects of the DNN using non-discriminative patterns
in low layers to construct disciminative patterns in middle/high layers through
the forward propagation. Based on our visualization method, we can quantify
knowledge points (i.e. the number of discriminative visual patterns) learned by
the DNN to evaluate the representation capacity of the DNN. Furthermore, this
method also provides new insights into signal-processing behaviors of existing
deep-learning techniques, such as adversarial attacks and knowledge distillation.

1 Introduction

Deep neural networks (DNNs) have achieved superior performance in various tasks, but the black-box
nature of DNNs makes it difficult for people to understand its internal behavior. Visualization methods
are usually considered as the most direct way to understand the DNN. Recently, several attempts
have been made to visualize the DNN from different aspects, e.g. illustrating the visual appearance
that maximizes the prediction score of a given category [50, 66, 35], inverting intermediate-layer
features to network inputs [12], extracting receptive fields of neural activations [73], estimating
saliency/importance/attribution maps [74, 45, 75, 32], visualizing the sample distribution, such as
PCA [38], t-SNE [54], etc.

In spite of above explanations of the DNN, there is still a large gap between visual explanations of
the patterns in the DNN and the theoretical analysis of the DNN’s discrimination power. In other
words, visualization results usually cannot reflect the discrimination power of features in the DNN.

Therefore, instead of simply visualizing the entire sample, we divide intermediate-layer features into
feature components, each of which represents a specific image region. We visualize the discrimination
power of these feature components, and we consider discriminative feature components as knowledge
points learned by the DNN. Based on above methods, we can diagnose the feature representation of a
pre-trained DNN from the following perspectives.

•We visualize the emergence of intermediate visual patterns in a temporal-spatial manner and evaluate
their discrimination power. (1) We visualize how the discrimination power of each individual visual
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Figure 1: Diagrammatic sketch for the emergence of visual patterns encoded by the DNN in a temporal-spatial
manner. The visualization result enables people to analyze the quantity and quality of intermediate features.

pattern increases during the learning process. (2) We illustrate effects of using non-discriminative
patterns in low layers to gradually construct discriminative patterns in high layers during the forward
propagation. As Figure 1 shows, the regional feature of the cat head emerges as a discriminative
pattern for the cat category, while wall features are non-discriminative.

• Based on the the visualization result, we can further measure the quantity and quality of intermediate
patterns encoded by a DNN. In Figure 1, we count knowledge points encoded in a DNN as regional
patterns with strong discrimination power, and further evaluate whether each knowledge point is
reliable for classification. This provides a new perspective to analyze the DNN.

A distinct contribution of this study is to bridge the empirical visualization and the quantitative
analysis of a DNN’s discrimination power. In comparison, Kim et al. [23] used concept activation
vectors to model the relationship between visual features and manually annotated semantic concepts.
Cheng et al. [7] quantified the number of visual concepts encoded by the DNN. However, these two
methods cannot reflect the discrimination power of regional visual concepts. On the other hand,
some researchers derived mathematical bounds on the representational power of a DNN [68, 13]
under certain assumptions of the network architecture. To this end, we believe that bridging regional
patterns and a DNN’s discrimination power is a more convincing and more intuitive way to reveal the
internal behavior of a DNN than mathematical bounds under certain assumptions.

Besides, our method provides insightful understanding towards existing deep-learning techniques,
such as adversarial attacks and knowledge distillation. (1) For adversarial attacks, we discover
that adversarial attacks mainly affect unreliable regional features in high layers of the DNN. The
visualization result also enables us to categorize attacking behaviors of all image regions into four
types. (2) For knowledge distillation, we discover that the student DNN usually encodes less reliable
knowledge points, compared with the teacher DNN. Although knowledge distillation is able to force
the student DNN to mimic features of a specific layer in the teacher DNN, there is still a big difference
of features in other layers between the student DNN and the teacher DNN.

Contributions of this paper can be summarized as follows. (1) We propose a method to visualize
the discrimination power of intermediate-layer features in the DNN, and illustrate the emergence of
intermediate visual patterns in a temporal-spatial manner. (2) Based on the visualization result, we
quantify knowledge points encoded by a DNN. (3) The proposed method also provides new insights
into existing deep-learning techniques, such as the adversarial attack and the knowledge distillation.

2 Related work

Visual explanations for DNNs. Visualization of DNNs is the most direct way to explain visual
patterns encoded in the DNN. Some studies reconstructed the network input based on a given
intermediate-layer feature [34, 48, 12], while others aimed to generate an input image that cause high
activations in a given feature map [67]. Zhou et al. [73] extracted the actual image-resolution receptive
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field of neural activations in DNNs. Recently, Goh et al. [17] visualized the multi-modal neurons in the
CLIP models [39]. Kim et al. [23] proposed TCAV to represent manually annotated semantic concepts.
Another type of researches diagnosed and visualized the pixel-wise saliency/importance/attribution
on real input images [42, 32, 24, 75, 14, 74, 5]. What is more, the distribution of intermediate-
layer features could be visualized via dimensionality reduction methods, e.g. PCA [38], LLE [43],
MDS [10], ISOMAP [52], t-SNE [54], etc. Recently, Law et al. [25] visualized the feature of each
sample in a low-dimensional space by exploiting probability scores of the DNN, while Li et al. [27]
achieved this by assigning each category in the task with a main direction. Sophisticated interfaces
have been built up to visualize the architecture and the knowledge of DNNs [19, 60, 53].

Instead of visualizing visual appearance or merely visualizing the distribution of sample features, our
method visualizes the emergence of intermediate visual patterns in a temporal-spatial manner, which
provides a new perspective to explain DNNs.

Theoretical analysis of the representation capacity of DNNs. Formulating and evaluating the
discrimination power of DNNs is another direction to explain DNNs. The information-bottleneck
theory [64, 47] provides a generic metric to quantify information encoded in DNNs, which is further
exploited to evaluate the representation capacity of DNNs [18, 65]. Achille and Soatto [1] further used
the information-bottleneck to improve the feature representation. Furthermore, several metrics were
also proposed to analyze the robustness or generalization capacity of DNNs, such as the CLEVER
score [62], the stiffiness [15], the sensitivity metrics [37], etc. Zhang et al. [69] studied the role of
different layers towards the generalization of deep models. Based on this, module criticality [4]
was proposed to analyze a DNN’s generalization power. Cheng et al. [7] quantified visual concepts
in input images from the perspective of pixel-wise entropies. Liang et al. [29] diagnosed feature
representation between different DNNs via knowledge consistency. Some studies also theoretically
proved the generalization bound for two-layer neural networks [68, 13, 36] and deep CNNs [31, 28].

In fact, our research group led by Dr. Quanshi Zhang have proposed game-theoretic interactions as a
new perspective to explain the representation capacity of trained DNNs. The interactions have been
used to explain the hierarchical structure of information processing in DNNs [70, 72], generalization
power [71], the complexity [8] and the aesthetic level [9] of the encoded visual concepts, adversarial
robustness [40, 58], and adversarial transferability [57] of DNNs. The interaction was also used to
learn baseline values of Shapley values [41].

However, there is still a lack of connections between the explanations of visual concepts and the
analysis of a DNN’s discrimination power. To this end, our method enables people to use the
discrimination power of local regions to explain the overall discrimination power of the entire DNN.

3 Algorithm

Given a pre-trained DNN, we propose an algorithm to project the feature of an entire sample and
features corresponding to different image regions into a low-dimensional space, in order to visualize
(1) how the discrimination power of a sample feature increases during the learning process, (2) effects
of the DNN constructing discriminative features in high layers using non-discriminative features in
low layers, and (3) how discriminative regional features gradually emerge during the training process.
The visualization result reflects whether the sample feature and each regional feature are biased to
incorrect categories, which regional features play a crucial role in classification, whether a regional
feature is shared by multiple categories, etc. Furthermore, the visualization enables people to quantify
knowledge points encoded in the DNN. Such analysis can help people explain existing deep-learning
techniques, e.g. adversarial attacks and knowledge distillation.

3.1 Radial distribution to analyze the discrimination power of features

Preliminaries: the vMF distribution. Given a pre-trained DNN and an input image x ∈ Rn, let
us consider the output feature of a specific layer, denoted by f ∈ Rd. To analyze the discimination
power of f , previous literature usually considered the feature to follow a radial distribution of massive
pseudo-categories (much more than the real category number) [61, 56, 25]. As Figure 1(right) shows,
each category/pseudo-category c has a mean direction µc (c = 1, ..., C) in the feature space. The
significance of classifying x towards category c is measured by the projection f>µc, and cos(f, µc)
indicates the similarity between f and category c. For example, a typical case is the softmax operation,
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p(y|f) = Softmax(Wf), W ∈ RC×d. The c-th row of W indicates the direction corresponding to the
c-th category.

To this end, the von Mises-Fisher (vMF) mixture model [3, 20] was proposed to model the radial
distribution, where the c-th mixture component assumes that the likelihood of each feature f belonging
to category c ∈ {1, ..., C} follows a vMF distribution.

p(f) =
∑

c
p(y = c)pvMF(f |y = c), pvMF(f |y = c) = Cd(κc) · exp[κc · cos(µc, f)], (1)

where Cd(κc) = κ
d/2−1
c

(2π)d/2Id/2−1(κc)
is the normalization constant. Actually, the vMF distribution can be

considered as a spherical analogue to the Gaussian distribution on the unit sphere. µc ∈ Rd measures
the mean direction of category c. The increase of κc ≥ 0 decreases the variance of f’s orientation
w.r.t. the mean direction µc. Please see the supplementary material for more details.

Radial distribution with noise. The vMF distribution assumes that f is a clean feature without
noise, which makes the inference of f purely based on its orientation and independent of the strength
‖f‖2. However, in real applications, f usually contains the meaningful and clean feature f? and
the meaningless noise ε ∼ N (0, σ2Id), i.e. f = f? + ε. The existence of the noise decreases the
classification confidence if the strength of f is low. Therefore, we have

p(f |y = c) =

∫
p(ε) · pvMF

(
f? = f − ε|y = c

)
dε. (2)

For simplicity, we can assume that all features f of a specific strength l follow a vMF distribution,
because they have similar vulnerabilities to noises. Specifically, let f = [o, l], where l = ‖f‖2 and
o = f/l represent the strength and orientation of f . Then, the likelihood of f belonging to category c
is given as follows (proof in the supplementary material).

p(f = [o, l]|y = c) = p(l|y = c) · pvMF(o|y = c, l) = p(l|y = c) · pvMF(o|µc, κ(l)), (3)

where κ(l) increases along with l = ‖f‖2, and p(l|y = c) is the prior distribution of ‖f‖2 for category
c. The variance parameter κ(l) is determined based on statistics of all features of the same strength l.
We can prove the classification result p(y=c|f) is confident when the feature f has a large strength.

3.2 Visualization of the sample-wise discrimination power

In this section, we visualize the discrimination power of the feature f ∈ Rd of each entire sample
x ∈ X. The visualization is supposed to illustrate the classification confidence of each feature
towards different categories. Therefore, the goal is to learn a linear transformation to project f into
a low-dimensional space, i.e. g = Mf ∈ Rd

′
(d′ � d), which ensures that the similarity between

each sample feature f and different categories is preserved. The basic idea of learning the linear
transformation M is to use the projected feature g for classification, and to force the classification
based on g to mimic the classification based on the original feature f . Let y ∈ Y = {1, ..., C} denote a
category. Thus, the objective is to minimize the KL divergence between the classification probability
of the DNN P (y|x) and the classification probability QM (y|x) based on the projected feature g.

min
M

KL [P (Y |X)‖QM (Y |X)]⇒ min
M

Ex
[∑

y
P (y|x) log

P (y|x)

QM (y|x)

]
, (4)

where P (y|x) is usually computed using a softmax operation. QM (y|x) is computed by assuming
the distribution p(g) as a mixture model, where each mixture component p(g|y) follows a revised
vMF distribution in Eq. (3). Let g = [lg, og], where lg = ‖g‖2 and og = g/lg denote the strength and
orientation of g. Then, we have

p (g) =
∑

y
πy · p (lg|y) · pvMF (og|µy, κ(lg)) , (5)

where πy denotes the prior of the y-th category. We assume the prior of g’s strength is independent
with the category, i.e. p(lg|y) = p(lg). Then, QM (y|x) can be measured by the posterior probability
p(y|g) in the mixture model, i.e.

QM (y|x) =
p(y) · p(g|y)

p(g)
=

πy · pvMF(og|µy, κ(lg))∑
y′ πy′ · pvMF(og|µy′ , κ(lg))

. (6)

The training of the sample-level visualization alternates between the following two steps. (i) Given
the current linear transformation M , we update the mixture-model parameters {π, µ} = {πy, µy}y∈Y
via the maximium likelihood estimation (MLE) max{π,µ}

∏
g p(g). (ii) Given the current state of

{π, µ}, we update M to minimize the KL divergence KL(P (Y |X)‖QM (Y |X)) in Eq. (4). The
supplementary material provides more discussions and derivations about the learning process.
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3.3 Visualization of the regional discrimination power

In this section, we visualize the discrimination power of features extracted from different regions in
each input sample. Let f∈RK×H×W be an intermediate-layer feature of a sample x, which is composed
of HW regional features for HW positions. Each r-th regional feature is a K-dimensional vector,
and is supposed to mainly describe the r-th region in the input, corresponding to the receptive field
(region) of f (r). In fact, the actual receptive field of f (r) is much smaller than the theoretical receptive
field [73]. The discrimination power of each regional feature f (r) is analyzed in terms of both the
importance and reliability, i.e. (1) whether f (r) has a significant impact on the classification, and (2)
whether f (r) pushes the classification towards the ground-truth category without significant bias.

The visualization of regional discrimination power needs two overcome to challenges. First, we need
to formulate and estimate specific importance of different regions for inference during the learning of
visualization. Second, the visualization of regional discrimination power is supposed to be aligned
with the coordinate system for sample-wise discrimination power.

The goal of the visualization is to project regional features into a low-dimensional space via a linear
transformation Λ, i.e. h(r) = Λf (r) ∈ Rd

′
(d′�K). Each projected regional feature h(r) is supposed

to reflect the importance and reliability of the original feature f (r). The strength ‖h(r)‖2 reflects the
importance, and the orientation of h(r) represents the reliability of classification towards different
categories. Just like t-SNE [54], we use the projected features h = {h(1), ..., h(HW )} to infer the
similarity between samples. In this study, the distinct idea of learning Λ is to use the regional
similarities (based on h) as the hidden mechanism of mimicking the sample-wise similarity. Let
x1, x2 ∈ X be two samples, and the probability of x2 conditioned on x1 represents the sample-wise
similarity of x2 to x1. Then, the objective of learning Λ is to minimize the KL divergence between
the conditional probability P (x2|x1) inferred by the DNN and the conditional probability QΛ(x2|x1)

inferred by the projected regional features h. In this way, each regional feature h(r) can well reflect
feature representation f (r) used by the DNN.

Lsimilarity =KL[P (X2|X1)‖QΛ(X2|X1)]⇒ ∂Lsimilarity

∂Λ
=−Epdata(x1)

[
EP (x2|x=x1)

∂ logQΛ(x2|x1)

∂Λ

]
(7)

P (x2|x1) reflects the similarity of x2 to x1 encoded by the DNN, which is computed using DNN’s
categorical outputs z2, z1 ∈ RC . We assume z2 follows a vMF distribution with mean direction z1, i.e.
P (x2|x1) = 1

Z
exp[κp · cos(z2, z1)], where Z =

∑
x2

exp[κp · cos(z2, z1)].

QΛ(x2|x1) reflects the similarity of x2 to x1 inferred by the projected regional features h2 and h1. Just
like the bag-of-words model [51, 11], each projected regional feature h(r)

2 is assumed to independently
contribute to the inference of QΛ(h2|h1) to simplify the computation. Furthermore, h(r)

2 is weighted
by its importance w(r)

2 > 0, i.e. QΛ(x2|x1) ∝
∏
r QΛ(h

(r)
2 |h1)w

(r)
2 . Just like in [59], a large value of

w
(r)
2 means the r-th region in x2 is important for inference and peaks h(r)

2 ’s contribution QΛ(h
(r)
2 |h1),

while a weight w(r)
2 near zero flattens out QΛ(h

(r)
2 |h1). Details of the estimation of w(r)

2 will be
introduced later. In this way, we have

∂ logQΛ(x2|x1)

∂Λ
=
∑

r
w

(r)
2

∂ logQΛ(h
(r)
2 |h1)

∂Λ
, (8)

where QΛ(h
(r)
2 |h1) represents the likelihood of the sample x1 containing a regional feature h(r′)

1 ∈ h1,
that is similar to the regional feature h(r)

2 in sample x2. Thus, we compute QΛ(h
(r)
2 |h1) as follows.

QΛ(h
(r)
2 |h1)=QΛ(h

(r)
2 |h

(r′)
1 )=pvMF

(
h

(r)
2

∣∣∣µ=h
(r′)
1 , κ(‖h(r)

2 ‖)
)
, s.t. r′=arg max

r′
QΛ(h

(r)
2 |h

(r′)
1 ) (9)

Here, we assume h(r)
2 follows a revised vMF distribution in Eq. (3) with mean direction h(r′)

1 , where
the r′-th region in x1 is selected as the most similar region to the r-th region in x2.

As is shown above, the loss Lsimilarity enables h(r) to mimic feature representation of f (r) in terms of
encoding the sample-wise similarity. Furthermore, we also expect h(r) to reflect the discrimination
power of each regional feature. Therefore, we align the regional features h to the coordinate system of
g representing the sample-wise discrimination power, in order to represent the regional discrimination
power. To this end, we maximize the mutual information between the regional features and the
sample features, as the second loss. In other words, this loss enables the discrimination power of
regional feature to infer that of the corresponding sample feature.

Lalign = −MI(h(X); g(X))⇒ ∂Lalign

∂Λ
= −EQΛ(h,g)

[
∂ logQΛ(h|g)

∂Λ

]
(10)
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Figure 2: Visualization of sample features
learned by VGG-16 in the coordinate sys-
tem of the Tiny ImageNet categories1.

dataset Tiny ImageNet COCO 2014 CUB-200-2011

DNN VGG-16 ResNet-34 MobileNet-V2 ResNet-50 ResNet-34

PCA -0.65 -0.78 -0.81 -0.56 -0.78

t-SNE -0.50 -0.36 -0.66 -0.67 -0.50

LLE -0.38 -0.51 -0.27 -0.09 -0.58

ISOMAP -0.66 -0.83 -0.77 -0.65 -0.75

DRPR -0.87 -0.89 -0.88 -0.77 -0.77

ours -0.94 -0.94 -0.95 -0.84 -0.90

Table 1: The negative correlation (↓) between the visualized sample
features’ strength and the samples’ classification uncertainty.

The joint probability QΛ(h, g) = p(g) ·
∏
r QΛ(h(r)|g)w

(r)

reflects the fitness between the discrim-
ination power of a sample and that of its compositional regions. QΛ(h(r)|g) reflects the fitness
between the sample feature g and each r-th regional feature h(r), which is assumed to follow a vMF
distribution with mean direction g, i.e. QΛ(h(r)|g) = pvMF(h(r)|g, κ′). In this way, the second loss can
be equivalently written as Lalign = −Ex[

∑
r w

(r) · cos(g, h(r))], where κ′ has been eliminated (proof in
the supplementary material).

In sum, the loss functions in Eq. (7) and (10) enable h(r) to reflect both the feature representation of
f (r) and align h(r) to the coordinate system of g’s discrimination power. Thus, we learn Λ using both
losses L = Lsimilarity + α · Lalign (α > 0).

Estimation of each region’s importance w(r). In Eq. (8), we need to estimate the importance of
each r-th region as w(r). Just like Eq. (7), the objective of estimating w = [w(1), ..., w(HW )] in each
sample is also formulated as the minimization of the KL divergence between P (x2|x1) inferred by
the DNN and Qw(x2|x1) inferred by f .

min
w

KL(P (X2|X1)‖Qw(X2‖X1))⇒ min
w

Ex1

[∑
x2

P (x2|x1) log
P (x2|x1)

Qw(x2|x1)

]
(11)

Unlike Eq. (8), we estimate w by formulating Qw(x2|x1) using raw features f , instead of the
projected features h, for more accurate estimation. We assume each regional feature f

(r)
2 con-

tributes independently to Qw(x2|x1), i.e. Qw(x2|x1) ∝
∏
r Qw(f

(r)
2 |f1)w

(r)
2 . Then, just like Eq. (9),

Qw(f
(r)
2 |f1) = maxr′ Qw(f

(r)
2 |f

(r′)
1 ). In the quantification of Qw(f

(r)
2 |f

(r′)
1 ), we further consider the

different importance of each channel in f
(r)
2 . To this end, we further estimate the importance of

each channel of f2 as v2 = [v
(1)
2 , ..., v

(K)
2 ] ∈ RK , where v(k)

2 ∈ R denotes the importance of the k-th
channel. In this way, we quantify Qw(f

(r)
2 |f

(r′)
1 ) as follows.

Qw(f
(r)
2 |f

(r′)
1 ) ∝ exp

[
κ′ ·

∑
k

(
v

(k)
2 ·

f
(r)
2,k

‖f (r)
2 ‖2

·
f

(r)
1,k

‖f (r)
1 ‖2

)]
, (12)

where f
(r)
2,k and f

(r)
1,k are neural activations of the k-th channel in the r-th region in f2 and f1,

respectively. In our experiments, w2 and v2 were jointly optimized via Eq. (11). For fair comparison
between different samples, we force each element in w2 and v2 to be non-negative, and force their
L1-norm to be 1. I.e. w2 � 0, v2 � 0, ‖w2‖1 = 1, and ‖v2‖1 = 1. This ensures that magnitudes
of region’s/channel’s importance in different samples are similar. Besides, this constraint can also
stabilize the optimization process of w2 and v2. The optimization process of w2 and v2 alternates
between the following two steps. (i) We first update w2 and v2 via Eq. (11) using the gradient descent
method. (ii) We force each element in w2 and v2 to be non-negative and force their L1-norm to be 1,

i.e. the importance of the r-th region w(r)
2 is normalized to |w

(r)
2 |

‖w2‖1
(r = 1, ..., HW ), and the importance

of the k-th channel v(k)
2 is normalized to |v

(k)
2 |
‖v2‖1

(k = 1, ...,K).

3.4 Quantifying knowledge points and the ratio of reliable knowledge points

Visualizing the discrimination power of regional features provides us a new perspective to analyze
the representation capacity of a DNN, i.e. counting knowledge points encoded in different layers, and
quantifying the ratio of reliable knowledge points. Up to now, Cheng et al. [7] was the first attempt to
quantify the knowledge points encoded in an intermediate layer using the information theory, but
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Figure 3: The emergence of regional patterns through the learning process in the coordinate system of visualizing
the Tiny ImageNet categories2.
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Figure 4: The emergence of regional patterns through the forward propagation in the coordinate system of
visualizing the Tiny ImageNet categories2. Coordinates along the vertical axis reflect the discrimination power
of the target category.

the knowledge points were extracted based on the discard of the pixel-wise information, instead of
representing the discrimination power of regional features. In comparison, we quantify the total
knowledge points and reliable ones, in terms of their discrimination power. Experiments show that
the quantity and quality of knowledge points can well explain knowledge distillation in practice.

Specifically, given a regional feature h(r), if h(r) is discriminative enough for classification of any
category, i.e. maxc p(y = c|h(r)) > τ , then we count this regional feature as a knowledge point. The
classification probability p(y = c|h(r)) = πc·exp[κ(‖h(r)‖2)·cos(h(r),µc)]∑

c′ πc′ ·exp[κ(‖h(r)‖2)·cos(h(r),µc′ )]
, which is similar to Eq.

(6). Furthermore, among all knowledge points, those pushing the classification towards the correct
classification, i.e. knowledge points satisfying ctruth = arg maxc p(y = c|h(r)), are taken as reliable
knowledge points. In this way, the ratio of reliable knowledge points is defined as the ratio of reliable
knowledge points to total knowledge points, which reflects the quality of visual patterns.

4 Experiments

In this section, we used our method to visualize sample features and regional features in VGG-16 [49],
ResNet-34/50 [21], MobileNet-V2 [44], which were learned for object classification, based on the
Tiny ImageNet dataset [26], the MS COCO 2014 dataset [30], and the CUB-200-2011 dataset [55].
For the MS COCO 2014 dataset and the CUB-200-2011 dataset, we used images cropped by the
annotated bounding boxes for both training and testing. Note that the analysis of classification for
massive categories requires a large number of category directions in the coordinate system, which
will hurt the visualization clarity of the radial distribution. Therefore, to clarify the visualization
result, we randomly selected 10 categories from each dataset2. Please see the supplementary material
for details on the DNNs and datasets.

Visualization and verification of sample features’ discrimination power. In this experiment, we
projected sample features f into a 3-dimensional space (i.e. d′= 3) for visualization. Specifically,
we selected the feature before the last fully-connected layer as the sample feature f . Figure 2 shows
the projected sample features g and each category direction µc. The visualization result revealed the
semantic similarity between categories. For example, cat features were similar to dog features, and
bus features were similar to lifeboat features. Besides, the supplementary material shows how the
discrimination power of sample features gradually increased through the training process.

Furthermore, in order to examine whether g reflected the discrimination power of sample features,
we evaluated the Pearson correlation coefficient between the strength ‖g‖2 and the classification
uncertainty of each sample x. To this end, the classification uncertainty of each sample xwas measured
as the entropy of its output probability, i.e. H(Y |X = x). In Table 1, we compared our method
with several visualization methods, such as PCA [38], t-SNE [54], LLE [43], ISOMAP [52], and the

2For the Tiny ImageNet dataset, we selected steel arch bridge, school bus, sports car, tabby cat, desk, golden
retriever, tailed frog, iPod, lifeboat, and orange. Please see the supplementary material for other datasets.
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Figure 5: Visualization of the regional importance estimated by our
method. Our regional importance is similar to the Shapley value of
f (r), which verifies the trustworthiness of our method.

dataset DNN correlation

Tiny ImageNet
VGG-16 0.7707±0.16

ResNet-34 0.8248±0.09

MobileNet-V2 0.8169±0.13

COCO 2014 ResNet-50 0.7572±0.18

CUB-200-2011 ResNet-34 0.7765±0.17

Table 2: The Pearson correlation coef-
ficient between ‖h(r)‖2 and w(r). The
feature strength and feature importance
were positively related to each other.
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Figure 6: (left) The increase of total knowledge points and reliable knowledge points during training. The
ratio of reliable knowledge points, rreliable = # of reliable points/# of all points, increases through the forward
propagation. (right) Visualization of image regions of knowledge points towards different categories.

recent DRPR [25]. Compared with baseline methods, the strength of our projected sample features
g was more strongly correlated to the classification uncertainty. The supplementary material also
verified the effectiveness of our method by illustrating contour maps of the classification probability.

Emergence of discriminative regional features. Next, we projected regional features f into a
3-dimension space (i.e. d′ = 3) to analyze the importance and reliability of each f (r) towards
classification. We set α = 0.1. Figure 3 shows the emergence of projected regional features h(r)

through the training process, when we selected the output feature of the conv_53 layer of VGG-16
as f (r). The ellipsoid represented the estimated Gaussian distribution of h(r) for image regions
cropped from each category. The visualization result showed that the discrimination power and
reliability of regional features gradually increased during training. Besides, Figure 4 visualizes
regional features extracted from different layers of VGG-16. For clarity, we further selected image
regions corresponding to reliable knowledge points in the conv_53 layer. Figure 4 visualizes the
selected regions, as well as their regional features. It showed that these regions were not discriminative
in low layers, but became discriminative in high layers.

Visualization and verification of the estimated regional importance. In this experiment, we
estimated regional importance w(r) with κ̃ set to 1000. The estimated w(r) was further verified from
the following two perspectives. From the first perspective, we compared the estimated regional
importance w(r) and the Shapley value [46, 32] φ(r) of each r-th region, when we selected the output
feature of the conv_53 layer of VGG-16 as regional features f (r). To this end, the Shapley value
φ(r) was computed as the numerical contribution of f (r) to the DNN output. The Shapley value is the
unique unbiased and widely-used [6, 16, 63] metric that fairly allocates the numerical contribution
to input features, which satisfies the linearity axiom, the dummy axiom, the symmetry axiom, and
the efficiency axiom [2]. Figure 5 shows the high similarity between w(r) and φ(r) among different
regions r, which demonstrated the trustworthiness of the estimated regional importance w(r).

Besides, we calculated the Pearson correlation coefficient between the strength of projected features
‖h(r)‖2 and their corresponding importance w(r). Table 2 shows the mean value and the standard
deviation of the Pearson correlation coefficient through all input samples in each dataset, when we
used the output feature of the last convolutional layer as regional features f . This proved that feature
strength and feature importance were significantly and positively related to each other.

Quantifying knowledge points and the ratio of reliable knowledge points. Figure 6(left) shows
the increase of knowledge points in different layers through the training of VGG-16. For fair
comparison, we normalized the average strength of regional features Ex,r[‖h(r)‖2 given x] in each layer
to the average strength of regional features in the conv_53 layer, and therefore we could simply set
τ = 0.4. Besides, we also computed the ratio of reliable knowledge points in each layer. Figure 6(left)
shows that the ratio of reliable knowledge points in high layers (e.g. the conv_53 layer) was higher
than that in low layers (e.g. the conv_33 layer), which demonstrated the increasing quality of visual
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patterns through the forward propagation. Besides, Figure 6(right) highlights the image regions of
knowledge points towards different categories. Regional features in high layers were usually more
likely to be localized on the foreground than regional features in low layers.

The adversarial attack mainly affected unreliable regional features in high layers. We used our
method to analyze the change of regional features when we applied the adversarial attack [33] to
VGG-16. Given a normal sample x, the adversarial sample xadv = x + δ was generated via the
untargeted PGD attack [33], subject to ‖δ‖∞ ≤ 1

255
. The attack was iterated for 20 steps with

the step size of 0.1
255

. In Figure 7(left), we found that important regions for the classification of
the original image (the first row) were usually different from important regions that attacked the
classification towards the target category (the second row). More specifically, let h(r)

ori and h
(r)
adv

denote two corresponding regional features in the same layer before and after the attack. Let us
select important regions {r} for attacking from adversarial samples, satisfying p(y = cadv|h(r)

adv ) > 0.4.
Figure 7(right) illustrates the histogram for the selected regions’ classification utilities p(y = cori|h(r)

ori )
in the original image. We found that most important regions after the attack were not so important
before the attack. Besides, we compared the utility of the attack to regional features in different layers.
Let ∆orientation = Ex[Er(cos(h

(r)
ori , h

(r)
adv ))] and ∆strength = Ex[Er(|‖h(r)

ori ‖2 − ‖h
(r)
adv‖2|)] measure the utility

of the attack to regional features’ orientation and strength. Figure 8 shows that the adversarial attack
mainly affected regional features in high layers, e.g. the conv_53 layer in VGG-16. We further
categorized all image regions into four types, in terms of their attacking behaviors. To this end, we
visualized the trajectories of regional features in the conv_53 during the attack. As Figure 8(right)
shows, Type 1 illustrates important image regions for the dog category that were directly transferred
to the cat category without much difficulties. Type 2 illustrates important dog regions, in which dog
features were first damaged and then cat features were built up and became important cat regions.
Type 3 indicates unimportant dog regions that were pushed to important cat regions. Type 4 indicates
important dog regions that were damaged by the attack and became unimportant regions.

The DNN learned via knowledge distillation encoded less reliable visual patterns. In this ex-
periment, we learned two student DNNs (two VGG-16 nets) for knowledge distillation [22]. One
student DNN was learned by distilling the output feature of the conv_53 layer after the ReLU
operation in the teacher DNN (a pre-trained VGG-16) to the corresponding layer in the student
DNN. The other student DNN was learned by distilling the output feature of the penultimate fully-
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connected layer after the ReLU operation in the teacher DNN to the corresponding layer in the student
DNN. Figure 9(left) compares the number of all knowledge points and reliable knowledge points
encoded by the teacher DNN and the two student DNNs, when we quantified knowledge points in
conv_33/conv_43/conv_53 layers. We found that student DNNs usually encoded less reliable
knowledge points than the teacher DNN.

• Furthermore, the student DNN usually learned even less reliable concepts in a layer, if this layer
was farther from the target layer used for distillation. To verify this conclusion, we compared the
number of knowledge points between the above two student DNNs. As Figure 9(left) shows, the
student DNN distilled using features of the fully-connected layer encoded much less reliable concepts
than the student DNN distilled using features of the conv_53 layer, which verified our conclusion.

• Although the knowledge distillation could force the student DNN to well mimic features of a specific
layer in teacher DNN, there was still a big difference of other layers’ regional features between
the student DNN and the teacher DNN. To this end, we evaluated the quality of student DNNs
mimicking the teacher DNN. We selected h(r)

student and h(r)
teacher as two corresponding regional features

of the student DNN and the teacher DNN in the same layer. Then, we used 1 − cos(h
(r)
student, h

(r)
teacher)

and ‖h(r)
student‖2 − ‖h

(r)
teacher‖2 to measure the difference of orientation and the difference of strength

between the two regional features. Figure 9(right) shows the histogram of 1− cos(h
(r)
student, h

(r)
teacher) and

‖h(r)
student‖2−‖h

(r)
teacher‖2, when we used the conv_53 layer to evaluate the similarity between the student

DNN and the teacher DNN. The similarity between student DNN features and teacher DNN features
was lower when the student DNN was distilled based on features in the fully-connected layer (far
from the conv_53 layer), which verified our conclusion.

5 Conclusion

In this paper, we propose a method to visualize intermediate visual patterns in a DNN. The vi-
sualization illustrates the emergence of intermediate visual patterns in a temporal-spatial manner.
The proposed method also enables people to measure the quantity and quality of visual patterns
encoded by the DNN, which provides a new perspective to analyze the discrimination power of DNNs.
Furthermore, the proposed method provides insightful understanding towards the signal-processing
behaviors of existing deep-learning techniques.
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