
A Why Optimism?

In this section we describe the common proof template behind the principle of optimism in Stochastic
Bandit problems. We illustrate this in the setting of binary classification that we work with.

As we mentioned in Section 2, we work with decision rules based on producing at time t a model ✓t
that is used to make a prediction of the form µ(f✓t(xt)) of the probability that point xt should be
accepted. If f✓t(xt) � 0, point xt will be accepted and its label yt observed, whereas if f✓t(xt) < 0,
the point will be discarded and the label will remain unseen. Here we define an optimistic algorithm
in this setting:
Definition 2 (Optimistic algorithm). We say an algorithm is optimistic for this setting if the models
selected at all times t satisfy f✓t(xt) � f✓?(xt) for all t.

We now show the regret of any optimistic algorithm can be upper bounded by the model’s estimation
error,

R(t) =
tX

`=1

max(0, 2µ(f✓?(xt))� 1)� at(2µ(f✓?(xt))� 1)

(i)


tX

`=1

2at (µ(f✓t(xt))� µ(f✓?(xt)))

Let’s see why inequality (i) holds. Notice that for any optimistic model, the false negative rate must
be zero. Rejection of a point xt may occur only for points that are truly negative. This implies the
instantaneous regret satisfies

max(0, 2µ(f✓?(xt))�1)�at(2µ(f✓?(xt))�1) = at (max(0, 2µ(f✓?(xt))� 1)� 2µ(f✓?(xt)) + 1) .

By definition at = 1 only when f✓t(xt) � 0. This observation plus the optimistic nature of the
models {✓t}t implies that max(0, 2µ(f✓?(xt))� 1)  2µ(f✓t(xt))� 1 and thus inequality (i).

As a consequence of this discussion we can conclude that in order to control the regret of an
optimistic algorithm, it is enough to control its estimation error. In other words, finding a model that
overestimates the response is not sufficient, the models’ error must converge as well.

B PLOT Theory - Proof of Theorem 1

In this section we prove the results stated in Theorem 1. The following property of the logistic
function will prove useful.
Remark 1. The logistic function µ is 1/4 Lipschitz.

Throughout the discussion we will make use of the notation B(x, R) to denote the k ·k2 ball of radius
R centered around point x.

In this section we will make the following assumptions.
Assumption 3 (Bounded Support PX ). PX has bounded support. All x 2 supp(PX ) satisfy
kxk  B.
Assumption 4 (Lipschitz F⇥). The function class F⇥ is L�Lipschitz and contains all constant
functions (f✓ such that f✓(x) = c for c 2 [�2, 2]).
Assumption 5 (⌧�Gap). For all x 2 supp(PX ), the values f✓?(x) are bounded away from zero.

|f✓?(x)| � ⌧ > 0.

where ⌧ 2 (0, 1).

The following supporting result regarding the logistic function will prove useful.
Lemma 1. For x 2 (0, 1), the logistic function satisfies, 1

2 + cx  µ(x)  1
2 + x where c = e

(1+e)2

and e = exp(1).
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Proof. The derivative of µ satisfies µ0
(x) = (1 � µ(x))µ(x) and is a decreasing function in the

interval (0, 1) with a minimum value of e
(1+e)2 .

Consider the function g(x) = µ(x) �
�
1
2 + cx

�
. It is easy to see that g(0) = 0 and that g0(x) =

µ0
(x)� c � 0 for all x 2 (0, 1), therefore, g(x) is increasing in the interval (0, 1) and we conclude

that g(x) � 0 for all x 2 (0, 1). The result follows:

µ(x) �
1

2
+ cx 8x 2 (0, 1).

To prove the second direction we consider the function h(x) =
1
2 + x � µ(x). Observe that

h0
(x) = 1� (1� µ(x))µ(x) and therefore h0

(x) � 0 since h(0) = 0 this implies ther result.

We will make use of Pinsker’s inequality,
Lemma 2 (Pinsker’s inequality). Let P and Q be two distributions defined on the unvierse U . Then,

DKL(P k Q) =
1

2 ln(2)
kP�Qk

2
1

Recall the unregularized and normalized negative cross entropy loss over a dataset Dt equals,

L̄(✓|Dt) =
1

|Dt|

X

(x,y)2Dt

�y log (µ(f✓(x)))� (1� y) log (1� µ(f✓(x)) (3)

We can extend this definition to the population level. For any distribution Q we define the unregular-
ized normalized cross entropy loss over Q whose labels are generated according to a logistic model
with parameter ✓? as

L̄(✓|Q) = E(x,y)⇠Q [�y log (µ(f✓(x)))� (1� y) log (1� µ(f✓(x))]

= Ex⇠Qx [KL (µ(f✓?(x) k µ(f✓(x)))]� Ex⇠Qx [H(µ(f✓?(x))]

As an immediate consequence of the last equality, we see that when f✓? 2 F , the vector ✓? is a
minimizer of the population cross entropy loss. From now on we’ll use the notation bPt to denote the
empirical distribution over datapoints given by Dt.

Observe also that if x 2 supp(PX ), for all x0
2 Rd such that kx � x0

k 
⌧
2L , we have that as a

consequence of Assumption 4,

|f✓(x)� f✓(x
0
)| 

⌧

2
, 8✓ 2 ⇥.

and therefore because of Assumption 5,

|f✓?(x
0
)| �

⌧

2
.

Now let’s consider x 2 supp(PX ) such that f✓(x) > 0. By Assumption 5, this implies that
f✓(x) � ⌧ . Similarly if x 2 supp(PX ) such that f✓(x) < 0 implies that f✓(x)  �⌧ .

Let’s start by considering the case when 8(x, y), (x0, y0) 2 Dt satisfy kx � x0
k  ⌧2. Let’s for a

moment assume that f✓?(x) > 0 for all (x, y) 2 Dt and therefore (by Assumption 5) that f✓?(x) � ⌧ .
If this is the case, we will assume that
Lemma 3. If Dt satisfies the following properties,

1. 8(x, y), (x0, y0) 2 Dt it holds that kx� x0
k 

⌧2

128L .

2. There exists (x̃, y) 2 Dt such that f✓?(x) > 0.
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3. ŷ =
1

|Dt|
P

(x,y)2Dt
y �

1
4 +

µ(⌧)
2 .

Then,
b✓t = argmin

✓
L̄(✓|Dt)

Satisfies, fb✓t
(x) > 0 for all (x, y) 2 Dt.

Proof. First observe that as a consequence of the L-Lipschitzness of f✓? having all points in Dt

be contained within a ball of radius ⌧2

128L implies that for all (x, y), (x0, y0) 2 Dt the difference
|µ(f✓?(x))� µ(f✓?(x

0
))| 

1
4 |f✓?(x)� f✓?(x

0
)| 

L
4 kx� x0

k 
L⌧2

4⇥128L =
⌧2

128⇥4 . In particular
this also implies that |f✓?(x)� f✓?(x

0
)| 

⌧2

128 
⌧

128 . The last inequality holds because ⌧2  ⌧ .

Let ex be a point in Dt such that f✓?(ex) > 0. By Assumption 5, f✓?(ex) � ⌧ and therefore,
µ(f✓?(ex)) � µ(⌧). This implies that for all (x, y) 2 Dt, µ(f✓?(x)) � µ(⌧) � ⌧

128⇥4 and that
f✓?(x) �

127⌧
128 .

By Lemma 1 µ(⌧) � 1
2 +c⌧ where c ⇡ .196 and therefore µ(f✓?(x)) �

1
2 +(c� 1

128⇥4 )⌧ �
1
2 +

4⌧
25

for all (x, y) 2 Dt. In other words, all points in Dt should have true positive average labels with a
probability gap value (away from 1/2) of at least 4⌧

25 .

We will prove this Lemma by exhibiting an L�Lipschitz classifier whose loss always lower bounds
the loss of any classifier that rejects any of the points. But first, let’s consider a classifier parametrized
by ✓̃ such that f✓̃(x)  0 for some (x, y) 2 Dt. If this holds, the radius ⌧

128L of Dt and the
L�Lipschitzness of the function class imply,

f✓̃(x
0
) 

⌧

128
, 8x0

2 Dt.

And therefore that µ(f✓̃(x))  µ( ⌧
128 ) 

1
2 +

⌧
128 . Similar to the argument we made for ✓? above,

Lipschitzness implies,
��µ(f✓̃(x))� µ(f✓̃(x

0
))
��  L⌧2

4⇥ 128L
=

⌧2

128⇥ 4


⌧

128⇥ 4
(4)

Combining these observations we conclude that

µ(f✓̃(x)) <
1

2
+

⌧

128
<

1

2
+

4⌧

25
 µ(f✓?(x)), 8x 2 Dt. (5)

Let’s now consider ✓const be a parameter such that f✓constant(x) = µ�1
(
1
2 +

487⌧
6400 ) so that

µ(f✓constant(x)) =
1
2 + (

4
25 �

1
128 )/2 =

1
2 +

487⌧
6400 for all x 2 Dt. This is a constant classifier

whose responses lie exactly midway between the lower bounds for the predictions of ✓? and ✓̃.

Denote by Dt(1) = {(x, y) 2 Dt s.t. y = 1} and Dt(0) = {(x, y) 2 Dt s.t. y = 0}.

Recall that L0
(✓|Dt) =

P
(x,y)2Dt

�y log (µ(f✓(x))� (1� y) log (1� µ(f✓(x)). Hence,

L
0
(✓̃|Dt)� L

0
(✓constant|Dt) =

X

(x,y)2Dt

y log

✓
µ(f✓constant(x))

µ(f✓̃(x))

◆
+

(1� y) log

✓
1� µ(f✓constant(x))

1� µ(f✓̃(x))

◆

=

X

(x,y)2Dt(1)

log

✓
µ(f✓constant(x))

µ(f✓̃(x))

◆
+

X

(x,y)2Dt(0)

log

✓
1� µ(f✓constant(x))

1� µ(f✓̃(x))

◆

By Equations 4, 5,
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min
0z 1

2+
⌧

128

|Dt(1)| log

✓
µ(f✓constant(x))

z

◆
+ |Dt(0)| log

 
1� µ(f✓constant(x))

1� z + ⌧2

512

!

 L
0
(✓̃|Dt)� L

0
(✓constant|Dt)

Notice that µ(f✓constant(x)) =
1
2 +

487⌧
6400 > 1

2 +
⌧

128 +
⌧2

512 and therefore log
✓

1�µ(f✓constant (x))

1�z+ ⌧2
512

◆
 0

for all z 
1
2 +

⌧
128 .

Recall that by Assumption 5, the gap ⌧ 2 (0, 1) and therefore by Lemma 1, µ(⌧) � 1
2 + c⌧ where

c ⇡ .196. Let’s try showing that L0(✓̃|Dt)�L0(✓constant|Dt)
|Dt| > 0. Since by assumption |Dt(1)|

|Dt| �

1
4 +

µ(⌧)
2 �

1
2 +

c⌧
2 �

1
2 +

49⌧
500 , this statement holds if

min
0z 1

2+
⌧

128

✓
1

2
+

49⌧

500

◆
log

✓ 1
2 +

487⌧
6400

z

◆
+

✓
1

2
�

49⌧

500

◆
log

 
1
2 �

487⌧
6400

1� z + ⌧2

512

!
> 0 (6)

for all ⌧ 2 (0, 1). The optimization problem corresponding to z can be considered first. Let

g⌧ (z) =
�
1
2 +

49⌧
500

�
log

�
1
z

�
+
�
1
2 �

49⌧
500

�
log

✓
1

1�z+ ⌧2
512

◆
. The derivative of g⌧ w.r.t z equals,

@g⌧ (z)

@z
=

�
1
2 +

49⌧
500

�

z
�

�
1
2 �

49⌧
500

�

1� z + ⌧2

512

Thus, this expression has a single minimizer at

z⇤(⌧) =
1
2 +

⌧2

1024 +
49⌧3

500 +
49⌧2

512⇤500
1�

49⌧
250

A simple algebraic substitution shows us that z⇤(⌧) � 1
2 +

⌧
128 . Thus the right value to substitute for

z in the expression above equals the boundary point 1
2 +

⌧
128 . Substituting this expression back into

the optimization problem 6 it remains to show that for all ⌧ 2 (0, 1),

✓
1

2
+

49⌧

500

◆
log

✓ 1
2 +

487⌧
6400

1
2 +

⌧
128

◆
+

✓
1

2
�

49⌧

500

◆
log

 
1
2 �

487⌧
6400

1
2 �

⌧
128 +

⌧2

512

!
> 0

The last expression can be rewritten as,

DKL

✓
1

2
+

487⌧

6400
k
1

2
+

⌧

128

◆
+

✓
49⌧

500
�

487⌧

6400

◆✓
log

✓ 1
2 +

487⌧
6400

1
2 +

⌧
128

◆
� log

✓ 1
2 �

487⌧
6400

1
2 �

⌧
128

◆◆

| {z }
�0

+

✓
1

2
�

49⌧

500

◆
log

 
1
2 �

⌧
128

1
2 �

⌧
128 +

⌧2

512

!

By Pinsker’s inequality (see Lemma 2 ),

DKL

✓
1

2
+

487⌧

6400
k
1

2
+

⌧

128

◆
�

1

2 ln(2)

✓
2 ⇤

✓
487

6400
�

1

128

◆
⌧

◆2

� 0.013⌧2.

The following inequalities also hold,
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1
2 �

⌧
128

1
2 �

⌧
128 +

⌧2

512

= 1�

⌧2

512
1
2 �

⌧
128 +

⌧2

512

� 1�

✓
⌧2

512

◆
/(

1

2
) = 1�

⌧2

256
.

Since for all x 
1

256 we have that g(x) = log(1 � x) + 2x is increasing for 0  x 
1
2 and sinc

⌧  1 this implies that

log

 
1
2 �

⌧
128

1
2 �

⌧
128 +

⌧2

512

!
� log

✓
1�

⌧2

256

◆
� �

⌧2

128
.

Therefore,

✓
1

2
�

49⌧

500

◆
log

 
1
2 �

⌧
128

1
2 �

⌧
128 +

⌧2

512

!
� �

✓
1

2
�

49⌧

500

◆
⌧2

128
= �

201

64000
⌧ > �0.004⌧2

Therefore,

✓
1

2
+

49⌧

500

◆
log

✓ 1
2 +

487⌧
6400

1
2 +

⌧
128

◆
+

✓
1

2
�

49⌧

500

◆
log

 
1
2 �

487⌧
6400

1
2 �

⌧
128 +

⌧2

512

!
� 0.013⌧2�0.004⌧2 = 0.009⌧2.

Since ✓constant parametrizes an L�Lipschitz function, f✓constant this finalizes the result. It implies
the constant classifier has a better loss than any classifier having at least one negative label.

The reverse version of Lemma 4 also holds.
Lemma 4 (Reverse version of Lemma 3). If Dt satisfies the following properties,

1. 8(x, y), (x0, y0) 2 Dt it holds that kx� x0
k 

⌧2

128L .

2. There exists (x̃, y) 2 Dt such that f✓?(x) < 0.

3. ŷ =
1

|Dt|
P

(x,y)2Dt
y 

1
4 +

µ(�⌧)
2 .

Then,
b✓t = argmin

✓
L̄(✓|Dt)

Satisfies, fb✓t
(x) < 0 for all (x, y) 2 Dt.

Proof. The proof of Lemma 3 applies to this setting.

We’ll use the notation Dt(1, R,x) = {(x, y) 2 Dt(R,x) s.t. y = 1} and Dt(0, R,x) = {(x, y) 2

Dt(R,x) s.t. y = 0} and ŷ(x) =
|Dt(1, ⌧2

128L ,x)|
|Dt( ⌧2

128L ,x)|

Let’s consider a ⌧2

256L -cover N (B, ⌧2

256L ) of the radius B-ball (for an in depth discussion of properties
of ✏�covers see Chapter 5 of [41] ) in Rd. We will further refine this cover into one made of disjoint
subsets. It is easy to see that such a cover can be constructed out of a covering made of possibly
overlapping balls via the following steps. We further trim the cover to be made of regions all with
positive probability under PX .

1. Since N (B, ⌧2

256L ) is finite any point x 2 B(0, B) lies in the intersection of finitely many
elements from N (B, ⌧2

256L ).
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2. For each n 2 |N (B, ⌧2

256L )| the subset of points of B(0, B) that lie in the intersection of
exactly n balls from N (B, ⌧2

256L ) is a finite collection of connected subsets.

3. For each region alluded in the previous item and within each ball of N (B, ⌧2

256L ), assign a
specific ball to be the one preserving that region. All of this is possible because these sets
are finite.

4. The previous procedure induces the desired disjoint covering.

Let Ñ (B, ⌧2

256L ) be that cover. For any x 2 B(0, B) we will use the notation s(x) to denote the
element of Ñ (B, ⌧2

256L ) containing x and b(x) to denote the center of the ball (inherited from the
original covering) whose modified version (s(x)) in Ñ (B, ⌧2

256L ) contains x.

Let’s define a quantized population distribution P
b overn

x̄ s.t. x̄ is a ‘center" of an element in Ñ (B, ⌧2

256L )

o
⇥ {0, 1} with probabilities P

b
(x̄) =

R
x s.t. b(x)=x̄ PX (x)dx for x̄ 2 N (B, ⌧2

256L ). And P
b
(ȳ = 1|x̄) =

R
x s.t. b(x)=x̄ P(y=1,x)dx

Pb(x̄) .

For any x 2 B(0, B) we define ȳ(x̄, R) = Px⇠PX ,y⇠Ber(µ(f✓? (x)))
(y = 1|x 2 B(x̄, R)) to be the

conditional

Let x 2 supp(PX ) be any point in the support of PX . By x̄ = b(x) from N (B, ⌧2

256L ) satisfies
B(x̄, ⌧2

128L ) ⇢ B(x, ⌧2

128L ). Consequently at any time t, point xt satisfies {x 2 Dt s.t. x 2 s(xt)} ✓

Dt(
⌧2

128L ,xt).

The following concentration result will prove useful,
Lemma 5 (Hoeffding Inequality). Let {Mt}

1
t=1 be a martingale difference sequence with |Mt|  ⇣

and let � 2 (0, 1]. Then with probability 1� � for all T 2 N

TX

t=1

Mt  2⇣

s

T ln

✓
6 lnT

�

◆
.

for a proof see Lemma A.1 from [7].

Let x be a fixed point in B(0, B). Let’s define the martingale sequences M (1)
t (x) = PX (x̃ 2

B(x, ⌧
128L )) � 1

n
xt 2 B(x, ⌧2

128L )

o
and M (2)

t (x) = 1
n
xt 2 B(x, ⌧2

128L )

o
·

⇣
yt � ȳ(x, ⌧2

128L )

⌘
.

As a consequence of Lemma 5 we see that with probability at least 1� � for all t 2 N,

TX

t=1

M (1)
t  4

s

t ln

✓
6 ln t

�

◆
(7)

Let’s define this event as E1(�). And similarly with probability at least 1� 2� for all t 2 N,

�����

TX

t=1

M (2)
t

�����  4

s

t ln

✓
6 ln t

�

◆
(8)

Let’s define this event as E2(�).

Let pmin = min
s2Ñ (B, ⌧2

256L )
PX (s). Equation 7 implies that whenever E1(�) holds, for all t 2 N

pmint  tPX (x̃ 2 B(x,
⌧

128L
)) 

tX

`=1

1

⇢
x` 2 B(x,

⌧2

128L
)

�
+ 4

s

t ln

✓
6 ln t

�

◆
(9)

Let t0 2 N be the first integer t such that pmint� 4

q
t ln

�
6 ln t
�

�
�

pmint
2 . For all t � t0 we have that
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pmin

2
t 

tX

`=1

1

⇢
x` 2 B

✓
x,

⌧2

128L

◆�

We will make use of the following supporting result,
Lemma 6. Let c1 � 1, c2 > 0. For all t � 4c1 log(4c1c2),

t � c1 log(c2t)

Proof. The following fact will prove useful,

1. The function x � ln(x) for all x � 1.

• Proof: Let g(x) = x � ln(x), observe that g(1) = 0 and g0(x) = 1 �
1
x � 0 for all

x � 1. This finalizes the proof.

Let’s start by expanding c1 log(c2t) = c1 log(c2)+c1 log(t). A necessary condition for the inequality
t
2 � c1 log(c2t) to hold is that t � c1 log(c2). Consider the function g(t) =

t
2 � c1 log(t). It’s

derivative equals g0(t) = 1
2 �

c1
t which implies that g is increasing for all t � 2c1.

Since c1 � 1,

log(4c1) � log log(4c1)

Thus

4 log(4c1) � 2 log(4c1) + 2(log log(4c1))

And therefore

4c1 log(4c1) � 2c1 log(4c1 log(4c1))

this implies that g(4c1 log(4c1)) � 0. The increasing nature of g for all t � 2c1 implies that
as long as t � 2c1 log(c2) + 4c1 log(4c1), then t � c1 log(c2t). We can relax that condition to
t � 4c1 (log(c2) + log(4c1)), the result follows.

We can derive a more precise bound for t0 as follows,

Lemma 7. With probability 1� �, for all t � 256
p2
min

ln

⇣
768

p2
min�

⌘
we have that

pmin

2
t 

tX

`=1

1

⇢
x` 2 B

✓
x,

⌧2

128L

◆�
(10)

Proof. We only need to show that t � 256
p2
min

ln

⇣
768

p2
min�

⌘
is a sufficient choice for t0. Recall t0 is the

first integer such that pmint� 4

q
t ln

�
6 ln t
�

�
�

pmint
2 . The following two facts will prove useful,

1. The function x � ln(x) for all x � 1.

• Proof: Let g(x) = x � ln(x), observe that g(1) = 0 and g0(x) = 1 �
1
x � 0 for all

x � 1. This finalizes the proof.

2. The function x � 2 ln(x) for all x � 2.

• Proof: Let g(x) = x� ln(2x), observe that g(2) > 0 and that g0(x) = 1�
1
x � 0 for

all x � 1. This finalizes the proof.
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The required inequality pmint� 4

q
t ln

�
6 ln t
�

�
�

pmint
2 holds if

pmin

2
t � 4

s

t ln

✓
6 ln t

�

◆

Which holds iff,
p2min

64
t � ln

✓
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And therefore, it is enough to set t � 256
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As a consequence of Lemma 7 we conclude that provided t is sufficiently large
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Thus,
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✓
x,

⌧2

128L

◆
+

4

q
t ln

�
6 ln t
�

�

Pt
`=1 1

�
x` 2 B

�
x, ⌧2

128L

� 

Thus whenever x satisfies f✓?(x)  �⌧ then ȳ
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Thus the following sister corollary to 1 holds,
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Consider the sample points {xt, yt}1t=1 all produced i.i.d. from distribution P . For any t 2 N
consider Ut the ’leave-point-t’ process {x`, y`}` 6=t with skip t indexing.

We will apply Corollaries 1 and 2 to the {Ut}
1
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t2 to obtain the
following result,
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To simplify this expression we can take t � 106
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Taking a union bound over all t 2 N (and thus over all processes Ut) and using Lemma 6 implies that
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Let’s call the event alluded by in Lemma 8 as E?. Note that whenever E? holds, all the events
E1(

�
t2 ) \ E2(

�
t2 ) also hold for all t (each corresponding to xt).

In the ensuing discussion we’ll condition on E?.

We are ready to link these results with those of Lemma 3 to derive guarantees for the PLOT algorithm.
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Let’s see that in case xt is such that f✓?(xt) � ⌧ , the empirical average of the pseudo-label augmented
dataset (where effectively xt has been added Wt times) is always at least 1

4 +
µ(⌧)
2 thus satisfying the

conditions of Lemma 3. This will imply that PLOT will accept xt.

The inequalities above are equivalent to the relationships
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point xt with f✓?(xt) � ⌧ will be accepted. Since Wt is explicitly designed to satisfy this condition,
we conclude that xt will be accepted.

We are left with showing that points xt such that f✓?(xt)  �⌧ will not be spuriously accepted too
many times.
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⇣
xt,

⌧2

128L

⌘
and let ↵t =

1
4 �

ȳ
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Then,
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Thus by Lemma 6 this is satisfied for all t such that,
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Relaxing this via the inequality Bt � pmin and 0  2� Ct � 2↵t  2, this condition holds for all t
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We have concluded that whenever E? holds,

1. for all t, if xt satisfies f✓?(xt) � ⌧ , the PLOT Algorithm will accept point xt.
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, if f✓?(xt)  �⌧ the PLOT Algorithm will reject xt.

By observing that regret is only collected when a mistake is made and mistakes are only made when
a point xt with f✓?(xt)  �⌧ is accepted, incurring in an instantaneous regret of order↵t. Since for
any level of ↵t the total number of times such a point could have been accepted by PLOT is upper
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Since ↵ is of the order of ⌧ this concludes the proof of Theorem 1.
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