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Abstract

We propose a novel framework for multi-person 3D motion trajectory prediction.
Our key observation is that a human’s action and behaviors may highly depend on
the other persons around. Thus, instead of predicting each human pose trajectory
in isolation, we introduce a Multi-Range Transformers model which contains of a
local-range encoder for individual motion and a global-range encoder for social
interactions. The Transformer decoder then performs prediction for each person by
taking a corresponding pose as a query which attends to both local and global-range
encoder features. Our model not only outperforms state-of-the-art methods on
long-term 3D motion prediction, but also generates diverse social interactions.
More interestingly, our model can even predict 15-person motion simultaneously
by automatically dividing the persons into different interaction groups. Project
page with code is available at https://jiashunwang.github.io/MRT/.

1 Introduction

Given a few time steps of human motion, we are able to forecast how the person will continue
to move and imagine the complex dynamics of their motion in the future. The ability to perform
such predictions allows us to react and plan our own behaviors. Similarly, a predictive model for
human motion is an essential component for many real world computer vision applications such as
surveillance systems, and collision avoidance for robotics and autonomous vehicles. The research
on 3D human motion prediction has caught a lot of attention in recent years [44, 43], where deep
models are designed to take a few steps of 3D motion trajectory as inputs and predict a long-term
future 3D motion trajectory as the outputs.

While encouraging results have been shown in previous work, most of the research focus on single
human 3D motion prediction. Our key observation is that, how a human acts and behaves may highly
depend on the people around. Especially during interactions with multiple agents, an agent will need
to predict the other agents’ intentions, and then respond accordingly [54]. Thus instead of predicting
each human motion in isolation, we propose to build a model to predict multi-person 3D motion and
interactions. Such a model needs the following properties: (i) understand each agent’s own motion
in previous time steps to obtain smooth and natural future motion; (ii) within a crowd of agents,
understand which agents are interacting with each other and learn to predict based on the social
interactions; (iii) the time scale for prediction needs to be long-term.

In this paper, we introduce Multi-Range Transformers for multi-person 3D motion trajectory pre-
diction. The Transformer [63] has shown to be very effective in modeling long-term relations in
language modeling [16] and recently in visual recognition [17]. Inspired by these encouraging results,
we propose to explore Transformer models for predicting long-term human motion (3 seconds into
the future). Our Multi-Range Transformers contain a local-range Transformer encoder for each
individual person trajectory, a global-range Transformer encoder for modeling social interactions,
and a Transformer decoder for predicting each person’s future motion trajectory in 3D.
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Figure 1: Our motion prediction results. Left: The last time step of the input sequence. Right: The
predicted diverse and continuous motion with multi-person social interactions. We use different color
to indicate different persons and the darker color for the further in future for predictions.

Specifically, given the human pose joints (with 3D locations in the world coordinate) in 1-second time
steps as inputs, the local-range Transformer encoder processes each person’s trajectory separately
and focuses on the local motion for smooth and natural prediction. The global-range Transformer
encoder performs self-attention on 3D pose joints across different persons and different time steps,
and it automatically learns which persons that one person should be attending to model their social
interactions. Our Transformer decoder will then take a single human 3D pose in one time step as
the query input and encoder features as the key and value inputs to compute attention for prediction.
We perform prediction for different persons by using different query pose inputs. By using only one
time step person pose as the query for the decoder instead of a sequence of motion steps, we create a
bottleneck to force the Transformer to exploit the relations between different time steps and persons
in the encoders, instead of just repeating the existing motion alone [43].

We perform our experiments on multiple datasets including CMU-Mocap [1], MuPoTS-3D [48],
3DPW [64] for multi-person motion prediction in 3D (with 2 ∼ 3 persons). Our method achieves
a significant improvement over state-of-the-art approaches for long-term predictions and the gain
enlarges as we increase the future prediction time steps from 1 second to 3 seconds. Qualitatively,
we visualize that our method can predict interesting behaviors and interactions between different
persons while previous approaches will repeat the same poses as it goes to further steps in the future.
More interestingly, we extend the task to perform prediction with 9 ∼ 15 persons by mixing the
CMU-Mocap [1] and the Panoptic [24] datasets. We visualize part of the prediction results with
multi-person interactions in Fig. 1. We show that Multi-Range Transformers can not only perform
predictions with a crowd of persons, but also learn to automatically group the persons into different
social interaction clusters using the attention mechanism.

2 Related Work

3D Motion Prediction. Predicting future human pose in 3D has been widely studied with Recurrent
Neural Networks (RNNs) [15, 19, 31, 41, 46, 51, 20, 22, 26, 72, 21]. For example, Fragkiadaki et
al. [19] propose a Encoder-Recurrent-Decoder (ERD) model which incorporates nonlinear encoder
and decoder networks before and after recurrent layers. Besides using RNNs, temporal convolution
networks have also show promising results on modeling long-term motion [37, 28, 10, 10, 44, 43, 5].
For example, Li et al. [37] use a convolutional long-term encoder to encode the given history motion
into hidden variable and then use a decoder to predict the future sequence. While these approaches
show encouraging results, most of these studies fix the pose center and ignore the global body
trajectory. Instead of solving two problems separately, recent works start looking into jointly predict
human pose and the trajectory in the world coordinate [70, 73, 71, 65, 11]. For example, Cao et
al. [11] introduce to predict human motion under the constraint of 3D scene context. Our work also
predicts the human motion with both 3D poses and the trajectory movements at the same time. Going
beyond single human prediction, we predict multi-human motion and interaction.

Social interaction with multiple persons. Multi-person trajectory prediction has been a long
standing problem in decades [25, 47, 67, 52, 75, 7, 6, 23, 18, 49, 36, 42, 56, 8, 34, 61, 69, 62].
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For example, Alahi et al. [7] present a LSTM [27] model which jointly reasons across multiple
individuals in a scene. Gupta et al. [23] propose to predict socially plausible futures with Generative
Adversarial Networks. However, most of these approaches focus on the global movement of the
humans. To model more fine-grained human-human interactions, recent research have proposed to
predict multi-person poses and trajectories at the same time [58, 57, 3, 2]. For example, Shu et al. [58]
propose a MCMC based algorithm automatically discovers semantically meaningful interactive social
affordance from RGB-D videos. Adeli et al. [2] introduce to combine context constraints in multi-
person motion prediction. Inspired by these works, we propose a novel Multi-Range Transformers
model which scales up the long-term prediction with even more than 10 persons.

Transformers. Transformer is first introduced by Vaswani et al. [63] and has been widely applied
in language processing [16, 55, 9] and computer vision [66, 29, 50, 14, 35, 17, 12, 13, 60, 68, 59,
45, 39, 53]. For example, Dosovitskiy et al. [17] introduce that using Transformer alone can lead
to competitive performance in image classification. Beyond recognition tasks, Transformers have
also been applied in modeling the human motion [11, 40, 38, 5, 43]. Aksan et al. [5] use space-time
self-attention mechanism with skeleton joints to synthesize long-term motion. Mao et al. [43] propose
to extract motion attention to capture the similarity between the current motion and the historical
motion. Beyond modeling single human motion, we introduce multi-range encoders to combine local
motion trajectory and global interactions, and a decoder to predict multi-person motion.

3 Method

3.1 Representation

Given a scene with N persons and their corresponding history motion, our goal is to predict their
future 3D motion. Specifically, given Xn

1:k = [xn1 , ..., x
n
k ] representing the history motion of person

n where n = 1, ..., N , and k is the time step. We aim to predict the future motion Xn
k+1:T where T

represents the end of the sequence. We use a vector xnk ∈ R3J containing the Cartesian coordinates
of the J skeleton joints to represent the pose of the person n at time step k. In contrast to most
previous motion prediction works which center the pose (joint positions) at the origin, we instead use
the absolute joint positions in the world coordinate. In our method, xnk contains both the trajectory
and the pose information. For simplicity, we omit subscript n when n only represents an arbitrary
person, e.g., taking xn1:k as x1:k.

3.2 Network Architecture

We propose a Multi-Range Transformers architecture, which allows each person to query other
persons’ and their own history of motion for generating socially and physically plausible future
motion in 3D. The network architecture is shown in Fig. 2. The proposed architecture is composed
of a motion predictor P and a motion discriminator D. In the predictor P , two Transformer-based
encoders encode the individual (local) and global motion separately and one Transformer-based
decoder decodes a smooth and natural motion sequence.

To ensure the smoothness of the motion, the model requires dense sampling of the input sequence.
We apply our local-range encoder to each individual’s motion to achieve this. For modeling the
interaction of all the persons in the whole scene, we apply our global-range encoder to their motions,
which performs a relatively sparse sampling of the sequences. And this only need to be calculated
once for the whole scene.

The motion discriminator D is a Transformer-based classifier to determine whether the generated
motion is natural. We apply Discrete Cosine Transform (DCT) [4, 44] to encode the inputs for the
encoders and the Inverse Discrete Cosine Transform (IDCT) for the decoder outputs. We introduce
the architectures for each component as following.

3.2.1 Local-range Transformer Encoder

When predicting one person’s motion, we first use our Local-range Transformer encoder to process
this person’s history motion. We use offset ∆xi = xi+1 − xi between two time steps to represent
the motion. We apply DCT and a linear layer to ∆x1:k and then add the sinusoidal positional
embedding [63] to get the local motion embedding for k time steps l1:k = [l1, ..., lk]. We concatenate

3



F
C

F
C

F
C

F
C

Temporal positional 
encoding

Spatial positional 
encoding

Local-range 
Transformer 

Encoder

Global-range 
Transformer 

Encoder

Transformer 
Decoder

Motion 
Discriminator

Multi-head
Attention

Add & Norm

Feed
Forward

Add & Norm

𝐿 x

Transformer Decoder

D
C
T

I
D
C
T

Encoder
Feature Query

Figure 2: Network architecture. Individual input motion is sent to the Local-range Transformer
Encoder and all the person’s motions are sent to the Global-range Transformer Encoder. ⊗ represents
concatenate and ⊕ represents add. The encoded motion features are used as the key and value
together with the query person skeleton for the Transformer Decoder. The output is the future motion
prediction results. On the right, we show the architecture of the Transformer decoder. The encoder
architecture is similar with the decoder except that the query, key and value are from the same input.

them as a set of tokens Eloc = [l1, ..., lk]T and feed them to the Transformer encoder. There are L
stack alternating layers in the local-range encoder and we introduce the technique we use in each
layer.

Firstly, a Multi-Head Attention is used for extracting the motion information,

MultiHead(Q,K, V ) = [head1; ...; headh]WO

where headi = softmax(
Qi(Ki)T√

dK
)V i

(1)

WO is a projection parameter matrix, dK is the dimension of the key and h is the number of the
heads we use. We use self-attention and get the query Qloc, key Kloc, and value Vloc from Eloc for
each headi,

Qi
loc = ElocW

(Q,i)
loc , Ki

loc = ElocW
(K,i)
loc , V i

loc = ElocW
(V,i)
loc

(2)

where W (Q,i)
loc , W (K,i)

loc , W (V,i)
loc are projection parameter matrices. loc represents the local-range. We

then employ a residual connection and the layer normalization techniques to our architecture. We
further apply a feed forward layer, again followed by a residual connection and a layer normalization
following [63]. The whole process forms one layer of local-range Transformer encoder. We stack L
such Transformer encoders to update the local motion embedding and obtain the local motion feature
e1:k = [e1, ..., ek] as the output, with ei represents the feature for time step i.

3.2.2 Global-range Transformer Encoder

In the global-range Transformer encoder, we aim to encode all the N people’s motion in the scene. In
our method, this only needs to be calculated one time and then can be concatenated with any person’s
local motion feature to predict the correspond person’s future motion. We first apply a linear layer
to each person’s motion xn1:k and plus the sinusoidal positional embedding to get the global motion
embedding g1:N1:k = [g11 , ..., g

1
k, ..., g

N
1 , ..., g

N
k ] for N persons in k time steps. We use L layers of

Transformers to encode the global motion embedding. We apply the Multi-head Attention mechanism
similar to Eq. 1 to the global embedding which calculated as,

Qi
glob = EglobW

(Q,i)
glob , K

i
glob = EglobW

(K,i)
glob , V i

glob = EglobW
(V,i)
glob

(3)

where Eglob = [g11 , ..., g
1
k, ..., g

N
1 , ..., g

N
k ]T and W (Q,i)

glob , W (K,i)
glob and W (V,i)

glob are projection parameter
matrices. glob represents the global-range. Then we feed them to the normalization and feed-forward
layers same as local-range Transformer encoder. After applying such L Transformer encoders to
the global embedding, we can get the output o1:N1:k . We add our spatial positional encoding to the
output and get the global motion feature f1:N1:k . We concatenate the local e1:k and global f1:N1:k features
together as H = [e1, ..., ek, f

1
1 , ..., f

1
k , ..., f

N
1 , ..., f

N
k ]T and feed them to the decoder.
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3.2.3 Positional Encoding

Temporal positional encoding. We apply the sinusoidal positional encoding [63] to the inputs in
both local and global-range encoder. This technique is routine in many Transformer-based methods
for injecting information about the relative or absolute temporal position to the models.

Spatial positional encoding. We propose a spatial positional encoding (SPE) technique on the
outputs of the global-range Transformer encoder. Before forwarding to the Transformer decoder, we
want to provide the spatial distance between the query token xk and the tokens of every time step of
each person x1:N1:k . Intuitively, the location information helps clustering different persons in different
social interactions groups, especially in a scene with a crowd of persons. We calculate SPE as,

SPE(xnt , xk) = exp(− 1

3J
||xnt − xk||22) (4)

where n = 1, ..., N , t = 1, ..., k, and xnt , xk ∈ R3J . SPE(·) will explicitly calculate the spatial
distance between two persons. All the SPE (xnt , xk) will then add to ont (the output of the global-range
encoder) respectively in order to get the global feature f1:N1:k .

3.2.4 Transformer Decoder

We send the local-global motion feature H together with a static human pose xk at time step k into
the decoder. We use the similar Multi-head attention mechanism as the Transformer encoders. But
differently, we take the single pose as the query and use the feature from the encoders to get keys
and values. We also apply L layers of Transformer decoder. Specifically, we apply a linear layer to
xk and then get q in order to get the query Qdec, we get the key Kdec and value Vdec both from the
local-global motion feature H as,

Qi
dec = qTW

(Q,i)
dec , Ki

dec = HW
(K,i)
dec , V i

dec = HW
(V,i)
dec

(5)

where W (Q,i)
dec ,W (K,i)

dec and W (V,i)
dec are projection parameter matrices. At the end of the decoder, we

apply two fully connected layers followed by Inverse Discrete Cosine Transform (IDCT) [4, 44] and
output an offset motion sequence [∆x̂k, ...,∆x̂T−1] which can easily lead to the future 3D motion
trajectory x̂k+1:T . The model outputs a sequence of motion directly instead of a pose each time and
this design can prevent generating freezing motion [40]. Note we also add residual connections and
layer normalization between layers.

3.2.5 Motion Discriminator

The design of such encoder-decoder architecture helps to predict the future motion. To ensure a
natural and continuous long-term motion, we use a discriminator D to adversially train the Predictor
P . The output motion x̂k+1:T is given as input to the Transformer encoder with the same architecture
of the local-range encoder and we further use another two fully connected layers to predict values
∈ {1, 0} representing that x̂k+1:T are real or fake poses. We use the ground-truth future poses to
provide as the positive examples. We train the predictor P and discriminator D jointly.

3.3 Training and Inference

We train our predictor P with both the reconstruction loss and the adversarial loss,

LP = λrecLrec + λadvLadv (6)

where λadv and λrec are constant coefficients to balance the training loss. We calculate the Lrec and
Ladv as follows,

Lrec =
1

T − k
ΣT−1

t=k ||∆x̂t −∆xt||22

Ladv =
1

T − k
||D(x̂k+1:T )− 1||22

(7)

We train our discriminator D following [33] with loss LD,

LD =
1

T − k
||D(x̂k+1:T )||22 +

1

T − k
||D(yk+1:T )− 1||22 (8)
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where x̂k+1:T is from the predicted motion and yk+1:T is from the real motion. We train the
discriminator that classifies the real ones as 1, where 1 ∈ RT−k represents all the poses are natural.

We propose an efficient strategy which is progressively increasing the input sequence length during
training and inference. Since Transformer-based encoders are used, there is no limit to the length
of the input sequence. During training, we provide x1:k to predict x̂k+1:2k (xk as the query), and
we provide x1:2k to predict x̂2k+1:3k (2k as the query) and so on. We sample different lengths of
sequence in this way input during training. During inference, we predict the future motion in an
auto-regressive way. Given x1:k, our model predicts x̂k+1:2k. Then, given the input and our prediction
results, we use them as inputs for our model again to predict x̂2k+1:3k, and so on. The advantage of
such design is that when predicting longer motions, we still maintain the early motions as inputs to
the model, instead of using a fixed length to predict each of the future time steps [44, 43], which may
cause the loss of early interactive information. Through the experiment, we find this strategy could
largely reduce the error accumulation.

4 Experiments

4.1 Datasets

We perform our experiments on multiple datasets. CMU-Mocap [1] contains high quality motion
sequences of 1 ∼ 2 persons in each scene. Panoptic [24], MuPoTS-3D [48] and 3DPW [64] datasets
are collected using cameras with pose estimation and optimization. Consequently, the estimated joint
positions in the latter datasets contain more noise and are less smooth in comparison to CMU-Mocap.
For multi-person data, there are about 3 ∼ 7 persons in each scene in Panoptic, 2 ∼ 3 persons in
MuPoTS-3D each scene and 2 persons in 3DPW. It is worth noting that in the Panoptic dataset, most
of the scenes are people standing and chatting, with small movement. The skeleton joint positions in
3DPW are obtained from a moving camera so that there is more unnatural foot skating.

Dataset settings. We design two different settings to evaluate our method. The first setting consists
of a small number of people (2 ∼ 3). We use CMU-Mocap as our training data. CMU-Mocap
contains a large number of scenes with a single person moving and a small number of scenes with
two persons interacting and moving. We sample from these two parts and mix them together as our
training data. We make all the CMU-Mocap data consists of 3 persons in each scene. We sample test
set from CMU-Mocap in a similar way. We evaluate the generalization ability of our model by testing
on MuPoTS-3D and the 3DPW dataset with the model trained on the entire CMU-Mocap dataset.

The second setting consists of scenes with more people. For the training data, we sample motions
from CMU-Mocap and Panoptic and then mix them. We integrate CMU-Mocap and Panoptic scenes
to build a single scene with more people. For the test data, we sample one version from both CMU-
Mocap and Panoptic, namely Mix1. And we sample one version from CMU-Mocap, MuPoTS-3D
and 3DPW, namely Mix2. There are 9 ∼ 15 persons in each scene in Mix1 and 11 persons in Mix2.
The positive motion data for discriminator is sampled from CMU-Mocap’s single person motion.

4.2 Implementation Details

In our experiments, we give 1 second history motion (k = 15 time steps) as input and recursively
predict the future 3 seconds (45 time steps) as Sec. 3.3 described. We use L = 3 alternating layers
with 8 heads in each Transformer. We use Adam [32] as the optimizer for our networks. During
training, we set 3× 10−4 as the learning rate for predictor P and 5× 10−4 as the learning rate for
discriminator D. We set λrec = 1 and λadv = 5× 10−4. For experiments with 2 ∼ 3 persons, we
set a batch size of 32 and for scene with more people, we set a batch size of 8.

4.3 Metrics and Methods for Comparisons

Metrics. We first use Mean Per Joint Position Error (MPJPE) [30] without aligning as the metric to
compare the multi-person motion prediction results in 1, 2 and 3 seconds. Without aligning, MPJPE
will reflect the error caused by both trajectory and pose. We also compare the root error and pose
error (MPJPE with aligning) separately. The root error is the L2 root joint position error. Further,
we compare the distribution of the movement between the start and end of the outputs on different
datasets. Specifically, we measure this movement by calculating the mean L2 distance between the
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CMU-Mocap MuPoTS-3D 3DPW Mix1 Mix2
method (3 persons) (2 ∼ 3 persons) (2 persons) (9 ∼ 15 persons) (11 persons)

1 s 2s 3s 1 s 2s 3s 1 s 2s 3s 1 s 2s 3s 1 s 2s 3s
LTD [44] 1.37 2.19 3.26 1.19 1.81 2.34 4.67 7.10 8.71 2.10 3.19 4.15 1.72 2.58 3.45
HRI [43] 1.49 2.60 3.07 0.94 1.68 2.29 4.07 6.32 8.01 1.80 3.14 4.21 1.60 2.71 3.67
SocialPool [2] 1.15 2.71 3.90 0.92 1.67 2.51 4.17 7.17 9.27 1.85 3.39 4.84 1.72 3.06 4.26
Ours w/o Local 1.42 2.20 2.99 1.28 2.10 2.78 3.96 5.94 7.75 2.09 3.34 4.34 1.85 2.92 3.83
Ours w/o Global 0.99 1.71 2.50 0.92 1.67 2.50 4.17 6.85 8.91 1.77 3.10 4.19 1.42 2.29 3.06
Ours w/o D 1.13 1.84 2.57 0.92 1.62 2.26 4.17 6.41 8.09 1.75 3.00 4.00 1.34 2.19 2.95
Ours w/o SPE 1.05 1.68 2.37 0.92 1.51 2.23 3.92 6.18 7.79 1.75 3.09 4.13 1.31 2.15 2.92
Ours 0.96 1.57 2.18 0.89 1.59 2.22 3.87 6.12 7.83 1.73 2.99 3.97 1.29 2.09 2.82

Table 1: MPJPE on different datasets. We compare our method with the previous SOTA methods and
ablative baselines on predicting 1, 2 and 3 seconds motion. Best results are shown in boldface.

CMU-Mocap MuPoTS-3D 3DPW
method Root Pose Root Pose Root Pose

1s 2s 3s 1s 2s 3s 1s 2s 3s 1s 2s 3s 1s 2s 3s 1s 2s 3s
LTD [44] 0.97 1.73 2.62 0.98 1.21 1.37 0.89 1.39 1.91 0.88 1.14 1.31 4.28 6.79 8.41 1.54 1.76 1.98
HRI [43] 0.96 2.06 3.11 1.05 1.37 1.58 0.66 1.30 2.16 0.73 1.07 1.30 3.67 6.42 8.64 1.43 1.75 1.94
SocialPool [2] 0.96 2.01 2.96 1.03 1.41 1.71 0.96 1.38 2.21 0.72 1.08 1.30 3.76 6.86 9.07 1.60 1.95 2.15
Ours 0.60 1.12 1.71 0.79 1.05 1.22 0.67 1.25 1.86 0.69 0.99 1.19 3.42 5.69 7.30 1.52 1.75 1.93

Table 2: Root and pose error on different datasets. We compare our method with the previous SOTA
methods on predicting 1, 2 and 3 seconds motion. Best results are shown in boldface.

start and end skeleton joint positions. This surrogate metric is designed to measure whether a method
could predict a plausible movement, instead of standing and repeating. We also perform a user study
using Amazon Mechanical Turk (AMT) to compare the realness of the predicted motion. We let the
user to score each motion prediction from 1 to 5, with a higher score implying the video looks more
natural inspired by [65, 74].

Methods for comparisons. We argue that for multi-person motion prediction, joint positions are
more relevant compared to angle-based representations, since most of the data suitable for this task
is obtained by cameras and pose estimation, containing only the position representations. Another
consideration for comparison method selection is many related studies only model the pose fixing
at the origin, while we need to select methods that could predict absolute motion. We select two
competitive state-of-the-art person motion prediction methods: LTD [44] is a graph-based method
and HRI [43] is an attention-based method. Both of them allow absolute coordinate inputs, which
fits our task and settings well. Most relevant to our work is SocialPool [2], a method which uses
GRU [15] to model the motion sequences and proposes to use a social pool to model the interaction.
We remove the image input of it as well as the image feature, keeping the sequence to sequence and
social pool structures. We use the same data to train these methods.

4.4 Evaluation Results

4.4.1 Quantitative Results

We report the MPJPE in 0.1 meters of 1 second, 2 seconds and 3 seconds predicted motion on
CMU-Mocap, MuPoTS-3D and 3DPW, Mix1 and Mix2 respectively in Tab. 1. In both cases with
a small number and a large number of people, our method achieves state-of-the-art performance
for different prediction time lengths. We achieve up to 20% improvement when compared to the
previous single-person-based methods [44, 43] and achieve up to 30% improvement compared to the
multi-person-based method [2]. In SocialPool [2], the same global feature is added to all the persons
which interferes with the model’s prediction for each individual, especially when there are a large
number of people. Because of this, SocialPool’s performance is even not as good as the previous
single-person-based method. However, in our design the model can use the features corresponding
to one person to query the global motion feature which automatically allows it to use the motion
information belonging to other persons. Therefore, our method can achieve good results on scenes
with any number of people. We also compare the root error and pose error respectively in Tab. 2.
The results are in 0.1 meters. Generally, our method can predict the trajectory of the root and the
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Figure 3: Distribution of the movement between the start and end of the predictions on different
datasets. X-axis shows the moving distance. Ours is the most similar to the ground truth while the
others intend to predict smaller movement. The model is only trained on CMU-Mocap.

method CMU-Mocap MuPoTS-3D 3DPW Mix1 Mix2
LTD [44] 3.61±0.83 3.66±0.93 3.65±0.76 3.71±0.93 3.75±0.90
HRI [43] 3.36±0.96 3.59±1.25 3.76± 0.72 3.67±0.89 3.71±0.90
SocialPool [2] 3.49±0.87 3.66±1.19 3.66±0.86 3.62±0.92 3.49±1.02
Ours 3.62±0.78 3.68±0.98 3.78±0.82 3.74±0.83 3.77±0.82
GT 3.78±0.76 3.85±0.96 3.77±0.81 3.77±0.87 3.88±0.79

Table 3: User study. We perform a user study using the AMT. We provide the average of the human
evaluated score w.r.t. the average ± the standard deviations. Best results are shown in boldface.

poses more accurately, especially for the root prediction. We will also introduce in the following
experiments that previous methods often intend to predict a shorter movement.

We show the distribution of the moving distance between the start and the end of the predictions in
Fig. 3. It shows that other methods intend to predict a motion with less movement, with much higher
value in y-axis close to 0 in x-axis. We observe the results of other methods sometimes just stay in
the same spatial location while the ground truth is moving with a large distance. On the contrary, the
distribution of our result is very similar to the ground truth on CMU-Mocap and even on completely
unseen MuPoTS-3D and 3DPW datasets. The reason is that our Transformer encoders can take any
time length motion as input for modeling the long-term motion. And using the decoder to output a
∆x motion is also beneficial to model the position movement. For user study, we report the average
and the standard error of the score in Tab. 3. A higher average score means users think that the results
are more “natural looking” and a lower standard error indicates that the scores are more stable. Our
results get better reviews consistently across all datasets.

4.4.2 Qualitative Results

We provide qualitative comparisons in Fig. 4. Our predictions are more natural and smooth while
being close to the real record. It can be seen that RNN-based method (SocialPool [2]) will quickly
produce freezing motion, which is consistent with the claims in [5, 40]. Another finding is that when
predicting the absolute skeleton joint positions, decoding based on an input seed sequence (HRI [43])
or adding the input sequential residual (LTD [44]) to the output, will make the predicted motion have
hysteresis and repeat the history. For example, in a forward motion, the prediction may jump back
into temporally unreasonable position and then continue to move forward. We argue the positions of
the past sequences have a negative impact on the model’s prediction using the previously proposed
design. This is also consistent with the conclusion we get in Fig. 3. However, our method, using a
static pose as query and predicting a ∆x sequence, could solve this problem effectively.

4.4.3 Ablation Study
1f 2f 4f half all

1 second 0.96 0.96 0.96 1,03 1.03
2 seconds 1.57 1.58 1.57 1.71 1.73
3 seconds 2.18 2.22 2.26 2.44 2.50

Table 4: MPJPE with different decoder query
input length on CMU-Mocap. “f” denotes
frame. “half” denotes half of the sequence
and “all” denotes the whole sequence.

We perform ablation study on different modules
of our network. We provide the MPJPE re-
sults on different datasets in Tab. 1. We re-
move the local-range encoder, global-range encoder,
discriminator and the spatial positional encoding
respectively. After removing each module, the
overall performance of the model has declined.
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LTD
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Figure 4: Qualitative comparison with other methods. Left two columns are input and right three
columns are outputs. Our result is the closest to the real record and the others fail to predict a walking
motion and predict a less accurate interaction motion. The input data is from CMU-Mocap.

1-layer 3-layer 6-layer 9-layer
1 second 1.02 0.96 1.07 2.69
2 seconds 1.71 1.57 1.79 4.71
3 seconds 2.47 2.18 2.58 6.83

Table 5: MPJPE with different number of
Transformer layers on CMU-Mocap.

1 second 2 seconds 3 seconds
fixed length 0.96 1.91 2.91
ours 0.96 1.57 2.18

Table 6: MPJPE on CMU-Mocap of our
method and fixed length input.

All DCT No DCT Ours
1 second 0.99 1.44 0.96
2 seconds 1.65 2.43 1.57
3 seconds 2.37 3.47 2.18

Table 7: MPJPE on CMU-Mocap. Best re-
sults are shown in boldface.

We find local-range encoder could largely reduce
the prediction error. We also prove the effectiveness
of the global-range encoder and an adversial train-
ing would improve the prediction performance. It
is worth noting that our spatial positional encoding
performs better in a scene with more people, which
is in line with our expectations.

We report the MPJPE with different decoder query
input length on CMU-Mocap in Tab. 4. We success-
fully prove that using only a single pose as the query
for the decoder instead of a sequence of motion could
create a bottleneck to force the Transformer to learn
to predict the future instead of repeating the existing
motion. We further explore the suitable number of
the Transformer layers. We conduct experiments us-
ing 1, 3, 6 and 9 layers respectively on CMU-Mocap.
The results in Tab. 5 show that a 3-layer-Transformer
is suitable for both shorter and longer prediction. Fur-
thermore, to prove the effectiveness of our strategy described in 3.3, we conduct an experiment
using a fixed length (one second motion) as input to the encoders and we report the quantitative
comparisons using MPJPE on CMU-Mocap in Tab. 6. It can be seen our strategy is helpful in
reducing the accumulation error, especially for long-term prediction.

We conduct ablation study on the role of DCT [4, 44]. In our method, we apply DCT to the input of
the local-range Transformer encoder and apply IDCT to the output of the decoder. Because DCT
can provide a more compact representation, which nicely captures the smoothness of human motion,
particularly in terms of 3D coordinates [44]. We train a model which we apply all the input with
DCT and apply IDCT to the output of the decoder, namely “All DCT”. And we further train a model
without any DCT or IDCT, namely “No DCT”. We show the MPJPE on Mocap [1] in Tab. 7. We
prove our design is more suitable for this task. Though DCT is quite helpful when predicting the
human motion, from the experiment we find that for modeling the human interaction, position-based
representation is more suitable.

4.5 Analysis of Attention

In this section, we discuss the attention results of each person in the decoder. In our model, the person
in the last frame will query his/her past motion as well as the history motion of everyone. We give a
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Figure 5: We show the input sequence, query person and the corresponding attention scores in the
decoder. The dotted red box shows that the two interacting people have a more similar attention score
distribution. Darker pose color represents the further in future.

visualization of the attention score in the first layer of the decoder in Fig. 5. On the left we show the
history motion of three persons in the scene. On the right, we show different person’s query and how
the attention score looks like in the decoder. We separately normalize the scores for keys and values
from the local-range encoder and the global-range encoder. Since we use a single frame xk to query,
the query q is only a vector, so is the attention score. We concatenate the attention score vectors from
each head together and draw them as a matrix. Each row represents a head for a person and each
column represents different persons at different time steps. Keys and values are from [e1, ..., ek] and
[f11 , ..., f

1
k , ..., f

3
1 , ..., f

3
k ] respectively.

Fig. 5 shows that different query person could automatically weight different people at different time.
Furthermore, we found that people in different interaction groups in a scene will have more similar
attention score distributions when querying the outputs from the global-range encoder. This shows
that our method has the ability to automatically divide the persons into different interaction groups in
the decoder without any label of this. On the other hand, querying the outputs from the local-range
encoder usually have a relatively fine-grained results. Specifically, the color changes more frequently.
When querying outputs from the global range encoder, the color is relatively consistent in one head.
This is consistent with our statements about the dense sampling and sparse sampling of the two
encoders in Sec. 3.2.

5 Conclusion

In this paper, we propose a novel framework to predict multi-person trajectory motion. We design a
Multi-Range Transformers architecture, which encodes both individual motion and social interaction
and then outputs a natural long-term motion with a correspond pose as the query in the decoder.
Compared with previous methods, our model can predict more accurate and natural multi-person 3D
motion.

Broader Impact. The original intention of our research is to protect people’s safety in surveillance
systems, and collision avoidance for robotics and autonomous vehicles. However, we remain
concerned about the invasion of people’s privacy through the human motion and behavior. Since we
do not use the image of a person as any input, it will not be easy to obtain the identity information
of a specific person and we are pleased to see this. But we are still concerned about whether it is
possible to identify a person based solely on the person’s skeletons and motions.
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