Appendices

A Proofs

The propositions throughout the paper are stated in the specific context of the label-free alignment of
the sets H(1) and H (2. However, they are more general. Here, we restate them in a broader context
with more details. We remark that the numbering of the statements corresponds to the numbering in
the paper. We add several lemmas (numbered separately) that are used in the proofs.

We remark that part of our theoretical analysis holds for any well-defined Riemannian manifold.
Specifically, propositions [51 [6]and [8] However, propositions [O)and[10]are specific for the
Lorentz model in hyperbolic space. Concretely, Prop. 2| provides a compact closed-form expression
for the Riemannian translation, recasting it as a standard mean alignment in a linear vector space
but with appropriate (nonstandard) scales. Prop. [7]and [9]are based on the mapping from the tangent
space to the manifold and then to a Euclidean space under the particular constraint of Lorentzian
orthogonality, and therefore, they are specific to the Lorentz model. Lastly, Prop. 10, which shows
that if the discrepancy between the two sets is derived by translation, scaling and rotation, then our
method can perfectly align the sets, is based on the rotation component (Prop. [7), and therefore, also
specific to the Lorentz model.

A.1 Riemannian translation

Proposition 1. Let x be the Riemannian mean of a set X = {z; € L4}, given by x = m(X) =
n
argmin » did (z,x;), and let y € L. The map T,y shifts the mean of the set X from x to y, i.e.,
zeld =1
it satisfies
Y =m({Tamy(@i)}iy)- (17)

Proof.

m({Tomy(@:)}oy) = argmin Y d7a(z, Doy (@)

d
zeld 4
n

= arg Hbin Z d2a(z, Exp,, (PTx .y (Log,(x:))))
zclL

=Y,

i=1

due to the fact that PT preserves the metric tensor. O
Lemma 1. Given any two points x,y € L%, the function f : LY x L? — R defined by

f(@,y) = —a(1) + (-2 Hy + 1)y(1) (18)
is strictly positive, where H = [—~1,07;0, I;].

x

Proof. We break the proof into two cases: (i) y(1) > Tl) and (i) 1 < y(1) < % We remark that
the first entry of 2 € L. in the upper sheet of the hyperboloid model is lower bounded by 1. Showing

that the function f is strictly positive is straight-forward in case y(1) > %, because = " Hy is
upper bounded by —1:

flz,y) =—z(1) + (—2wTHy + Dy(1) > —=(1) + (—2$THy + 1)? > 0.

Incase 1 < y(1) < @ by expanding the expressions, we have
f(m,y) = —2(1) + (-2z " Hy + 1)y(1)
= —z(1) +22(1)y*(1) - 2y(1) Y 2(i)y(i) + y(1).

i>2
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Using the Cauchy-Schwarz inequality gives

fla,y) > —a(1) + 22Dy (1) +y(1) —29(1) | > 22(0) > v2(0)

i>2 i>2

Since (—m(l) +2z(1)y%(1) + y(l))2 > 4y?(1)(22(1)—1)(y?(1)—1) and —x(1) +2x(1)y?(1)+
y(1) > 0, we have

fa,y) > —2(1) + 22()y*(1) + y(1) - 29(1) (Va2(1D) - 1V2(1) — 1) > 0.

O
Lemma 2. Given any three points x,y, z € L%, the function f : LY x L¢ x L? — R defined by
flx,y,z) =« Hz — (-2 "Hy+ 1)y Hz (19)

is strictly positive, where H = [-1,07;0, I ;).

Proof. Let L(x,y, z) = f(x,y,2) + \g(z), where g(z) = zT Hz + 1. Solving

OL(x,y, z) _oT
0z
yields
z" = 2)\( x+ (- QwTHy+1)y).

Based on LemmalIand z(1) > 0Vz € L4 we have A > 0. Moreover, demanding g(z*) = 0
implies that A = 4/ @ Therefore, by denoting « = —a | Hy, we can show that:

1
fla,y,2") = 55 (@ = 20+ y) H(-z + 20+ 1)y)
1
1+4 da+1—40> -2
2)\( + Oé + 4o + a a)
1
242
2)\( + 2a) > 0.

O

Proposition 2. Let x be the Riemannian mean of a set X = {x;}",, and let y € L% The map
I'z—y can be recast as:

forall x; € X, where

r+y y— (2a+1)x
0< dladya) =~ (T Ve L0 <ol = (YT )
L L

and 0 < oo = —(x,Y) ¢

Proof. We first derive the compact closed-form expression of the map I';_,,, and then, show that the
functions 5 and -y are positive.

i. The map I';,_,,, can be explicitly expressed by using the definition of the Exponential map
and the Logarithmic map

Exp, (I'z—y (Log, (%))

= Exp, <Logw(aci) + %(w + y))
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Log, (w;) + #H%(mL (3 1 y)

||Loga (i),

= cosh (| |L0gm($i)}|£)y + sinh (| |L0gz(mi)f|£)

Since the Lorentzian norm of vectors on the tangent space can be written as ||Log_,(x;)||z =
cosh™ ! (—(z, x;) ), we have
Expy (I'z—y (Log, (2:)))

VC@miP 1(,

cosh™ (—(x, z;) ) <Logw(acl) "

(Y, xi)r — a<w;mi>£(
a+1

@)y + )

a+1

=— (T, z)cy +x; + (T, ) cx + x+y)

=z; — B(xily, ©)x + 7 (xi|y, x)y.

ii. We can show that §(x;|y, ) > 0 by

1
5(w7,‘y7$) = - <Zj—>’!{7mi>£ = _m(<w7wl>ﬁ + <y7wi>£)'

Since o > 0 and the Lorentzian inner product for any two points in L¢ is smaller than or
equal to —1, we obtain 5(x;|y, ) > 0.

iii. The function (x;|y, ) is positive due to Lemma l]and[2]

Proposition 3. Let x,y € L% The map 'y _.y preserves distances (i.e., it is an isometry):
d]Ld (Zl,Zg) = d]]_.d (Fw%y(zl)7rw~>y(z2))a (21)

for any two points z,, zy € L%

Proof. Showing that the map I';,._,, is an isometry is equivalent to showing that the Lorentzian inner
product is preserved due to dpa(z1, z2) = cosh ™' (—(z1, z2) ). By Prop. [2 we have

(Tamy(z1), Fm—>y(z2)>£

(y — a:c,z1>g(

:<Ty+Zl—TIB,T/y+ZQ—T/$>£+< w+y),7’y+zz—7'w> +

a+1 r
Ty+21*TCC <yiamaz2>ﬁ(m+y) + <yiawazl>£(m+y) <yiamaz2>£(m+y)
’ a+1 - a+1 ’ a+1 -
Denoting « = —(x,y)p, T = —{@,21) 2, T = —{@,20) 2, £ = —(y,21)c, and & = —(y, 22) 1,

we obtain

<Pw%y (z1), Fm%y(z2)>£
=(z1,20)p —TE+T T =7 + 77" = 277" + 2077+

—tar ., =€ +ar (=€ + an)(=€ +ar')
e e R
=(21,22)c-

Proposition 4. Let x,y € L% The map I'y—.y preserves geodesic velocities:
Fz%y (’U()) = vy, (22)

where LY > vy = Exp,_,(¢/(0)) = yand L? > vy = Exp, (¢'(1)) are the counterparts of the
geodesic velocities of the geodesic path 1(t) connecting x and y in L%
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Proof. Firstly, we can explicitly write
' (t) = cosh™*(a) sinh(cosh ™! (@)t)x + cosh(cosh™*(a)t) Log, (y),
where & = —(x, y) . Then, for t = 0,
¥’ (0) = cosh™* (a) sinh(cosh™*(a)0)x + cosh(cosh ™ (@)0) Log, (y) = Log, (v).

From the above equation and the definition of the parallel transport operator and the Logarithmic
map, we have

<y7 Logm (y)>£ (

PT,y(¢'(0)) = Log,(y) + o+l y+x)
cosh™ (a) cosh™(a) a? — 1
= —ax) + +x).
g Wt = vt )
Re-organizing the above equation gives
cosh Yo ) ~ cosh™ Yo )
PTo oy (4/(0)) =
o V1Y Va1
cosh™(a), , cosh™ (a)
= —— _ 1 e —— —_
a2_1(a Jx + « m(y ax)
h_l
=B @2 1ot o Log, )
a?—1
= cosh™"(a) sinh(cosh ™" (a))z + aLog,,(y)
=¢'(1).

Combining the above expressions gives

Ly (v0) = Tamsy (Expg (¢(0))) = Exp,, (PTa—y (1'(0))) = Exp,, (1/'(1)).
O
Proposition 5. Consider two subsets A, B C X C L and their translations A = Famy(A), B=

Tpoy(B) C X C L where x is the Riemannian mean of the set X and y = m(X). Let

a; = m(A), by = m(B),ay = m(A), and by = m(B) be the Riemannian means of the subsets.
Then,
Fa:%y o Pblﬁal = I‘bz*}ag o ]-—\a:%y (23)

Proof. Let z be a point in the set B. Based on Prop. [2] we have

Fb2—>a2 o Fa:—>y( ) = ac—>y( ) ( wﬁy(z)‘a% b2) by + (Fwﬁy(z)|a'2a b2) as
By Prop.g we get that as = 'y, y(a1) and by = I'y_,, (b1 ). Combining it with Prop. E, we have
B (Tomy(z)laz, bs) = (z|a1, bl) and v (Tg—y(2)|az, b2) = v(z]a1, by). Therefore, we obtain
by sa, 0 Fm%y( z) = m%y( z) — B(z|ay, b1)bz + y(z]ai, by)as.
By Prop. |I, we have that ag = I,y (a1) and by = I';_,,,(b1). Using the closed-form expression
of the RT (Prop. [2), we get
sz*)aQ © Fmﬁy(z)
=Tesy(z) — B(zlai, br) (b1 — B(bily, z)x + v(bi|y, )y) +
V(zla1, b1) (a1 — Blaily, z)x + v(a1ly, x)y) .
Using the closed-form expression (Prop. [2) again gives 'y, (2) = z — B(z|y, )z + 7(z|y, )y.
In addition, because the functions 3 and -y, defined in Prop. Qfare linear functions and homogeneous
functions of degree 1, we have
Lo, as 0 Tamsy(2) = 2 — B(2]a1, b1)br +v(z|a1, bi)ay
= B(z — B(z|a1, b1)by +7(z|ar, bi)a|y, x) @
+7(z = B(zla, b1)by +y(zla1,bi)ai|y, z)y
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Now, Prop. |2 also entails that Ty, 4, (2) = 2 — 8(z|a1, b1)b1 + v(2|a1, b1 )a;. Plugging it into
the derivation concludes the proof:
by say 0 Tasy(2) = Tasy (2 — B(2]ai, b1)by +y(2z|a, br)ay)
=Tlesyolb—a, (Z)
O

We remark that considering the transport along the geodesic path is important. For example, an
alternative approach could be to first center one set to the origin, and then re-center it to the mean of
the other set. In Euclidean spaces, these two options are equivalent, however, they are significantly
different when Riemannian geometry is considered, as we demonstrate next.

Consider the same setting as in Prop. Ethat includes two subsets A, B C L? and their translations
A =Tgy(A),B=T4y(B) C L% Let a; = m(A),b; = m(B),as = m(A), and by = m(B)
be the Riemannian means of the subsets, and recall the origin point 1o € L. Replacing the transport
along the geodesic path from @ to y with a transport from « to the origin p (along the geodesic
path) and then from p to y does not necessarily admit the commuting property of Proposition [5:
(TCaspmo ©Tpo—sy) ©Torsar # Tbysas © (Taspg © Tpg—y). We remark that only when g is on
the geodesic path 1 (t) from « to y for any ¢ € R, the commuting property holds.

A.2 Riemannian scaling

Lemma3. Let x,y € L% and v = Log,(y) € ToLe. Let ¢, be the geodesic path from x to y with
the initial velocity v. Then, for any t > 0

dia (@, ¢o(t)) =t dpa(z,y). 24)

Proof. By the definition of the geodesic distance, we have

dia (2, ¢u(t)) = cosh™ (—(@, du(t)) )
= cosh™ <— <:E, cosh(||v||ct)z + sinh(|v|£t)||v|ﬁ>ﬁ) .

Using (@, v), = 0 (due to the Lorentzian orthogonality) and (@, ) = —1 (by the definition of the
hyperboloid manifold space) yields

dia (2, ¢ (t)) = cosh™* (— (=, cosh(cosh™ ! (—(x, y)dt)m%)
= cosh™ ! (cosh(cosh ™! (—(x, y) £)t))
— tcosh™!(—(z, y)e)
=t dp(z,vy).

O

Proposition 6. Let = and y be the Riemannian means of the sets X = {x;} ", and Y = {yz}f\[:y1

respectively, and let dx and dy be their Riemannian dispersions. Then, we have

r({05 (i) 1) = d, (25)
where s = ,/Z—;‘.

Proof. Let ¢; be the geodesic path from y to y; such that ¢;(0) = y and ¢;(1) = y;. Then, by
Lemma 3| we obtain

r({T5 (ys Zd (v, ¢i(s

zldxzd yyz

=dyx.
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The following Lemma 4 does not appear in the paper, but it provides additional insight to the
Riemannian scaling. See Appendix[E for related comparisons with HPA and Euclidean Procrustes
analysis on the tangent space.

Lemma 4. Let x and dyx be the Riemannian mean and dispersion of a set X = {x;} =, The

Riemannian scaling Y%, is equivalent to the modulation on the tangent space T,IL¢ with the same
scaling factor. That is,

Log, (¢i(s)) = s Log, (i), (26)
where ¢; is the geodesic path from x to x; such that ¢;(0) =  and ¢;(1) = x;.

Proof. Let k = —(x,x;)c and K = —(x, ¢;(s)) . By the definition of the Logarithmic map, we
have
cosh™ (% ) Log_ (x; ~
Log,(¢i(s)) = 7()((703}1“‘Logm(wi)||£8)w+51nh(||Logw(q;i)||£s) 2 (®:) Rz).

|ILog,(z:)][z

VKr? -1
Since ||Log,, (x;)||z = cosh™'(k), and & = cosh(s cosh™!(k)) by Lemma we have

B scosh™! (k) . “1y oy Logg (i)
Log, (¢:(s)) = sinh(cosh™*(cosh(s cosh™*(k)))) (smh(s cosh™" () cosh™ (k) ) .

Re-organizing the above equation, we get

Log, (¢i(s)) = sinksl((f:i)ls_h_(}fzm)) <sinh(5 cosh‘%n))%)

= s Log(x;).

A.3 Riemannian wrapped rotation

Proposition 7. Given a point © € 1L.¢ and a rotation matrix U € Q(d), the wrapped rotation ©Y is
bijective and its inverse is given by

©Y)t=ev". 27)

Proof. Let z be a point in L¢. We have

(0F)7' (0 (=) = 6] (87 (2))
= Exp,, (P (U (Pa(Log, (Exp, (P; ' (U T (P (Log, (2)))))))))
= Exp, (P ' (U(Pe(Py (U T (Pa(Logy(2)))))))-
Now, since the mapping function P is bijective, we have
(02) 7167 (2)) = Exp, (P (U (U (Px(Log,(2))))))
= Bxp, (P; ' (P (Log,(2)))
= Exp, (Log,(2))

= ZzZ.

A.4 Analysis

Proposition 8. Let x,y € L% be any two points on the manifold, and let s € R be a scaling factor.
The Riemannian translation and the Riemannian scaling commute w.r.t. x and y:

Y5 0Ty = Loy 0 T3 (28)
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Proof. Let z € L%, and denote 2z’ = I'z—y(2). In addition, let ¢, be the geodesic path from x to z
such that ¢, (0) = x and ¢, (1) = z. We have

Ty 0 Tasy(2) = Bxpy (s Log, (2'))
= Exp, (5 PTgy(Log,(2))).

Since Lemma4 implies that the Riemannian scaling (with the same scaling factor) is equivalent to
modulation on the tangent spaces, and the parallel transport operator is a homogeneous function of
degree 1, we get

TZ o Fm_>y (Z) = EXpy (PTm—>y (5 LOgm(Z)))
— Exp, (PTa sy (Log, (¢4 (5))))
=Tgyo T‘;(z).
[

Proposition 9. Let x € L9 be a point, s € RT be a scaling factor, and U € Q(d) be a rotation
matrix. The Riemannian scaling Y%, and the wrapped rotation ©Y commute:

T 00Y =0V o 15, (29)

Proof. Let z € L%, Because the mapping function P and its inverse are homogeneous functions of
degree 1, i.e., sP;(y) = Pz(sy) and sP, 1 (y) = P, '(sy), we have

T5(0F (2)) = Expy (s Pz (U (Pa(Log,(2)))))
= Exp, (P, (s U (Pa(Log,(2)))))
= Exp, (P, (U (s P(Log,(2)))))
= Exp, (P, (U (P(s Log,(2)))))-

Noting that the scaling factor does not change the matrix consisting of left singular vectors results in

T5(07 (2)) = 7 (T3 (2)).
O

Proposition 10. Let .y € L¢ be any two hyperbolic vectors on the manifold, s € RT be a scaling
factor, and U € Q(d) be a rotation matrix. Letn) : .Y — L% be a map, given by n = 65 oYy 0l% 5y

For any point z € L%, if 2 = n(2), then there exists a rotation matrix U’ € Q(d) such that

2= (0U 0T} 0Ty 0)(2). (30)

Proof. Because the parallel transport operator, the mapping function P and its inverse are homoge-
neous functions of degree 1, we have

(O 0T 0Ty 0)(2

)
= Expy (Py  (U') T (Pa (- Logg (Expy (PTy—sa (P (U T (Py(PTamsy (s Log, (2))))))))))
= Exp,, (P (U') " (Pa (Logg (Expy (PTy 0 (P (U T (Py (PTamy (Log, (2))))))))))

( (

(

w | =

Py H(U") T (Pa(PTya(Py (U T (Py(PTamy (Log, (2)))))))))

= Exp,, (PTy sz (PTo sy (Log, (2 ))))

= Exp

xT
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B Illustrations

Logarithmic map Parallel transport Exponential map

(h(z) ).  The function

%

Figure B.1: Ilustration of the Riemannian translation Fﬁ(z)_mm

[PE) (hl@)) consists of three Riemannian operations in IL%: (left) the Logarithmic map ap-

—aM
plied to hl(?) at 5(2), (middle) parallel transport applied to Logﬁm (h(2)) from 7%(2)}Ld to TE(”Ld

along the geodesic path from E(z) to E(l), and (right) the Exponential map projecting the transported
point PTy) ) (Logﬁ(m (hEQ))) back to the manifold L% at E(l).

Riemannian scaling

, 5=(1)
6i(0)="h
\¢ #i(1) =0

=
bi(s)'=hy?

Figure B.2: Illustration of the Riemannian scaling T%O). The function T%(l) scales the translated

point 552) along the geodesic path ¢;(t) between ¢;(0) = " and 0i(1) = iNLZ(-Q).

C More details on the experimental study

C.1 Datasets

The datasets we consider are described below. They are all publicly available and completely
anonymized (without any personally identifiable content).

1. Breast cancer gene expression data. Two public breast cancer (BC) gene expression
datasets are considered: METABRI [18]] and TCG [26]. Prior to pre-processing, the data
entries (samples and/or features) with nan values are removed since dealing with missing
data is not in the scope of this work. Then, following common practice, the genes with
the largest variance in both datasets are selected. Here, we present the results based on
200 genes. We report that repeating the experiments with different number of genes does
not significantly affect the results. Note that, in contrast to [37], the choice of genes is
done in an unsupervised manner. Finally, we apply a standard pre-processing using z-score
normalization to the data samples.

*https://www.cbioportal .org/study/summary?id=brca_metabric
*https://www.cbioportal.org/study/summary?id=brca_tcga_pub
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Algorithm 2 Hyperbolic OT-DA with weighted Fréchet mean (HOT-F)
Input: Source set H(*) = {hgs)}f-v:sl and target set 1) = {hgt)}fi‘l
Output: Transported set % = {h;}*,

1: compute p, = Nisle and p; = N%th

2: compute the optimal transport cost matrix M, where M (i, j) = dﬁd (hl(-s) , h§-t))
3: compute the transport plan R using Sinkhorn optimal transport [9] by

, 1
gégm, M) — 59(R), (31)

where Q = {R € RNs*Nt|R1 = ¢, and R"1 = ¢;}, ¢, and ¢, are the discrete densities, and
g(R) => R(i,j)log(R(i, 7)) is the entropic regularization

i,j
4: foralli € {1,2,3,..., Ny} do
5. compute the weighted Fréchet mean
Ny
h, = argmin Z R(i,j)dﬂ%d (x, h;t)) (32)
zeld

6: end for

2. Lung cancer gene expression data. Three lung adenocarcinoma (cancer) dataset [21]]
are unitized, consisting of 2553 genes that were reported as reliable features for discovering
three lung adenocarcinoma subtypes. Similarly to the BC datasets, a standard pre-processing
of z-score normalization is applied.

3. CyTOF data. We consider eight batches of measurements: two patients, two conditions
(before and after treatment), and two different days. Each batch consists of 1800 — 5000
cells. We use already denoised data available in this linkprovided by the authors of [48]].

C.2 Competing methods

1. HOT-F. We follow the algorithm proposed in [54] for the manifold of symmetric and
positive-definite matrices and adapt it to Lorentz model ¢ as follows. We solve the optimal
transport (OT) problem with ground distances that equal the geodesic distances based on
the Riemannian geometry of L%. In addition, we use the weighted Fréchet mean in the
hyperbolic space to translate the resulting transport map to a discrete point-to-point map.
We present the entire HOT-F algorithm in Algorithm 2]

2. HOT-L & HOT-ME. HOT-L and HOT-ME stand for two variants of hyperbolic optimal
transport (with W-linear map and with mapping estimation), which were presented in [22].
Both algorithms solve an OT problem in the Poincaré ball [41]. Therefore here, we first
transform the hyperbolic vectors {zx; € L%} in the Lorentz model into the Poincaré model
[42] using the function K : L¢ — B given by

[x:(2),2:(3),...,z:(d+1)]T

where B = {q € R?| ||q|| < 1}. Then, HOT-L and HOT-ME are applied to the transformed
Poincaré samples.

K(z;) =

C.3 Implementation details

Our code generating the experimental results as well as the simulated ones is included in the
supplemental material. All the experiments were performed on NVIDIA RTX 1080 Ti GPU. A fixed
random seed (9512) was used in all the experiments in Sectiond]and Appendix [D.

*https://ascopubs.org/doi/suppl/10.1200/JC0.2005.05.1748
https://github.com/ushaham/BatchEffectRemoval
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Hyperbolic Lorentz representation. For the hyperbolic embedding of the bioinformatics datasets,
we used the code in this linkﬁ from [42], where the manifold is set to be lorentz with learning
rate 1073, epoch 1000, train threads 2, and batch size 20. The computation of the Fréchet mean is
implemented according to the efficient algorithm proposed in [33]].

More details on HPA. As stated in Section EL the Riemannian translation, the Riemannian scaling,
and the wrapped rotation are functions whose domain and range are in L%, and all three functions
comprise the Logarithmic map and the Exponential map, projecting the sample from the manifold to
the tangent space and back, respectively. When applying the three operations (translation, scaling,
and rotation) in cascade, we obtain two subsequent Exponential map and Logarithmic map, which
cancel out. Therefore, based on the properties in Section [3/and Appendix [A] we can consider the
function ), : L? — L9, given by

0(h") = Expg(PL (U (PR(PTy i/ 1/d™ (Loggen (b)) = p®)) + p®)),

where U = UM (U®))T, which consists of only one Logarithmic mapping and one Exponential
mapping.

More details on the competing methods. POT library [12] is used in the implementation of HOT-
F. In the experiments, the weight ¥ of the entropic regularization in Eq. is set to 1. For the
implementation of HOT-L and HOT-ME, we use the code in this lin provided by the author of [22]
(learning the OT map in the Poincaré model). We run the algorithms using the default parameters
except the number of hidden unit used in HOT-ME, which is set to 500.

Remarks on the extension to multiple sets.

* In the Riemannian translation, the reason we propose to align all the datasets to the middle
point h (the center of mass of the Riemannian means of the sets) is twofold. First, it
circumvents the choice of a reference set. Our empirical study show that the choice of the
particular reference set can dramatically affect the alignment results, for example, in cases
where the chosen reference set is positioned near the boundary of the manifold. Second, PT
accumulates distortion along the transport path. By parallel transporting all the sets to a
middle point, we guarantee that the total transport distance is minimized.

* In the Riemannian wrapped rotation, the choice of the reference set may be improved by
choosing the set with the smallest sum of rotations w.r.t. the other sets. In addition, the point
to which we align all the means need to be far from the boundary to minimize distortions

caused by the hyperbolic metric. Indeed, h lies in the convex hull of the means {E(k) K

and therefore, is naturally away from the boundary.

More details on the evaluation metrics. We use the following metrics to assess the alignment
quality in the hyperbolic space.

1. Discrepancy. Fully described in the paper in Section |4}

2. k-NN. To test the adequacy of the representation of the data in hyperbolic space, we test the
k-NN classification obtained based on each batch separately. We term this classification as S-
Baseline, and it is performed using a leave-one-sample-out cross-validation. The evaluation
of the alignment quality using k-NN classification is performed with a leave-one-batch-out
cross-validation.

3. MMD. Given two sets Z1) = {2 € L9} and 2® = {2 € L4}™,, the MMD in
hyperbolic space is computed based on the geodesic distance as follows:

MMD? (21, 2(2))
1 1 2
— E Z k(Zi,Zj) + W Z k(Zi,Zj) — % Z k(zi’zj)

z;,z; €Z() z;,2;€Z(2) z,€ZM) 2,€2(2)

https://github.com/facebookresearch/poincare-embeddings
"https://github.com/ahoyosid/hyperbolic_alignment
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Figure D.1: Runtime of aligning the synthetic data from Sec. {.1l

Table 3: The k-NN AUC-ROC for ablation studies.

Dataset Baseline HPA RT RS RWR RT+RS RT+RWR RS+RWR
BC 0.5254 +0.0091  0.7410 £ 0.0354  0.6001 £ 0.0658  0.5013 & 0.0032  0.5184 4 0.0027  0.6143 +0.0633  0.7111 +0.0219  0.5338 + 0.0132
LC 0.5521 +0.0991  0.8316 £ 0.0904  0.5318 £ 0.0370  0.5435 4 0.0138  0.4578 +0.0382  0.5123 £0.0042  0.7729 4 0.0913  0.5398 + 0.0821

PIBT  0.6646 +0.1556 0.9401 4 0.0068 0.9020 £ 0.0086 0.7028 +0.0993  0.6897 +0.0049  0.8842 £ 0.0053 0.9127 4+ 0.0032  0.5498 + 0.0931
PIAT  0.7656 +0.1564 0.9329 4 0.0011  0.8270 £0.0880 0.7358 +0.0873  0.7732+0.1392 0.8347 £0.0763  0.8923 4 0.0286  0.7322 + 0.0121
P2BT  0.6971 +£0.1335 0.9329 £ 0.0186 0.8830 £0.0142 0.6210 £ 0.0152 0.0723 +0.0313  0.8741 £0.0194 0.9228 +0.0029 0.7013 +0.0182
P2AT  0.5688 +0.0688 0.8453 & 0.0798 0.7190 £0.0439 0.5248 +0.0086  0.5390 + 0.0402  0.7851 £ 0.0227 0.8223 +0.0138  0.5739 + 0.0812

where the kernel k is defined by

€

d2 iy <]
k(zi, z;) = exp ( M)

Following common practice, we set € = 10 X p, where p is the median of the pairwise
distances. We note that such a choice yields a positive definite kernel k.

D Additional experimental results

D.1 Runtime analysis of simulations

To complement the accuracy results presented in Fig. 2} we present in Fig. [D.T|the runtime of HPA
and the other methods. We remark that PAH is the fastest, but its performance is comparable to the
performance of using RT alone, and it is inferior to the results of HPA. In addition, HOT-L is faster
than HPA, because there exists a closed-form solution for the Gaussian transport [22]. Nonetheless,
as presented in Section[3] all the tested OT-based methods are outperformed by HPA.

D.2 k-NN AUC-ROC for different values of & in batch correction tasks

The k-NN results reported in Table|1| were obtained by using a different value of & for each method
(the value that yields the best result was chosen). To complete the picture, Fig. [D.2]presents the k-NN
performance of all the methods as a function of k. Same as before, the classification is performed
using a leave-one-batch-out cross-validation. We remark that the performance of the P2 AT alignment
task drops dramatically with k because the number of PMA/ionomycin stimulated PBMCs and the
number of non-stimulated PBMCs are imbalanced.

D.3 Ablation study

In Table [3]and Table [, we present ablation study results, where we compare the performance of
HPA to the performance obtained by each of the three components (Riemannian translation (RT),
Riemannian scaling (RS), and Riemannian wrapped rotation (RWR)), and their combinations. First,
we see that each component has a contribution and the combination of all three components yields
the best classification results. We also see that the Riemannian translation arguably plays the most
important role among the three components. In addition, we see that the RT is critical, since applying
the scaling and/or the rotation without the RT results in poor performance.
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Figure D.2: k-NN AUC-ROC for various k values.

Table 4: The MMD values for ablation studies.

Dataset Baseline HPA RT RS RWR RT+RS RT+RWR RS+RWR
BC 0.2089 £ 0.0027  0.0013 4 0.0004  0.0072 £ 0.0011  0.1930 4 0.0018  0.2231 £ 0.0098  0.0066 £ 0.0008  0.0022 & 0.0008  0.1820 = 0.0031

ST&UM  0.1072 £ 0.0051  0.0162 4 0.0048  0.0250 £ 0.0049  0.1003 4 0.0043  0.1189 £ 0.0076  0.0231 £ 0.0023  0.0018 & 0.0019  0.1311 £ 0.0097
ST&D-F  0.3213+0.0152  0.0122+0.0042  0.0150 + 0.0106  0.3358 + 0.0231  0.3281 +0.0185  0.0142 +0.0087  0.0124 +0.0030  0.3092 + 0.0073
UM&D-M  0.0790 £ 0.0071  0.0168 +0.0090  0.0168 £ 0.0032  0.0813 4 0.0063  0.0890 £ 0.0082  0.0172 £ 0.0083  0.0165 & 0.0059  0.0831 £ 0.0011

P1 BT 0.0638 £ 0.0024  0.0012 4 0.0002  0.0020 £ 0.0002  0.0688 4 0.0049  0.0898 £ 0.0039  0.0018 £ 0.0007  0.0013 & 0.0003  0.0644 + 0.0031
P1 AT 0.0598 &£ 0.0014  0.0006 # 0.0001  0.0015 £ 0.0001  0.0605 4 0.0051  0.0923 £ 0.0030  0.0014 £ 0.0001  0.0008 & 0.0002  0.0543 = 0.0022
P2 BT 0.0424 £ 0.0021  0.0012 4+ 0.0001  0.0015 £ 0.0001  0.0404 4 0.0066  0.0591 £ 0.0012  0.0014 £ 0.0004  0.0013 & 0.0001  0.0561 = 0.0096

P2 AT 0.0758 £ 0.0053  0.0011 £ 0.0002  0.0013 £ 0.0002  0.0733 4 0.0041  0.0744 £ 0.0079  0.0013 £0.0003  0.0011 £0.002  0.0731 £ 0.0055

D.4 Alternative implementation of rotation

The tangent space is define by T,L¢ := {v € R4 |(z,v), = 0}, wherex € LY, (z,v), = = Hv
is the Lorentzian inner product, and H € R(4+1)x(@+1) jg the hyperbolic metric tensor, defined by
H=[-1,0T;0,1,.

This tangent space ToL¢ C R?*! is isometric to the Euclidean vector space R?, but it is not a
Euclidean vector space with the standard inner product due to the Lorentzian orthogonality constraint.
Therefore, implementing the hyperbolic rotation as in [51] or by applying SVD to the tangent
space directly (without applying first the isometry) is not appropriate, because the resulting rotated
points might violate the orthogonality constraint, and as a result, might not be in 7,LL%. That is, if
" Hv = 0, then " H(Rpv) and " H(Vv) might not equal 0, where R, € R(¢+1)x(d+1) jg
the rotation map in [51]] and V' € Q(d + 1) is the standard rotation matrix in R¢*1. Both rotations
also do not preserve the Riemannian mean h, in case the mean does not coincide with the origin in
Le.
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Table 5: The k-NN AUC-ROC for different rotation strategies.

Dataset Baseline RT+RS HPA Iso(K)

BC 0.5254 +0.0091 0.6143 +0.0633 0.7410 4+ 0.0354  0.7033 £+ 0.0210
LC 0.5521 +0.0991 0.5123 +0.0042 0.8316 £0.0904  0.7558 + 0.0833
PI BT 0.6646 £ 0.1556 0.8842 + 0.0053  0.9401 +0.0068  0.9533 £ 0.0041
P1 AT 0.7656 £0.1564 0.8347 £0.0763  0.9329 £ 0.0011 0.9333 £ 0.0012
P2BT 0.6971 £0.1335 0.8741 £0.0194 0.9329 4+ 0.0186  0.8914 4+ 0.0103
P2 AT  0.5688 £0.0688 0.7851 +0.0227 0.8453 4-0.0798  0.8103 £ 0.0141

One possibility to implement the Riemannian rotation is to find the isometric mapping from the tangent
space to the Euclidean vector space. Concretely, there exists an invertible map K : TpL¢ — R¢ such
that for any two points z1, 2o € TIL¢, we get an isometry: (21, z2) 2 = (K(21), K(z2)), where (-, -)
is the standard dot product. We can construct such an isometry K by finding an orthonormal basis
{v1,v9,v3,...,v4} (orthogonal with respect to the Lorentzian inner product) for any v € T,L?,
where v; = . Then, for any point z € T,ILY, the isometry K is defined by

v
vz

and its inverse map is given by

where ¢ € R?. Proving that such a map K is an isometry is straight-forward: for any two points

21,29 € TLL%, consider their expansions z; = Zle a;v; and z9 = Zf':l Biv; , where o; =
d

(21,vi)c and B; = (z2,vi) ¢ - Then, (21, 22)c = > ;i aiffi = (K(z1),K(22)).

However, the implementation of the rotation described above is involved, because the explicit
construction of the isometric map X requires finding an orthonormal basis w.r.t. the Lorentzian
inner product. Specifically, our implementation was based on the Gram—Schmidt process, which is
numerically unstable.

As a remedy, we propose an alternative simpler implementation of the rotation based on the wrapped
operations. We use the so-called mapping P that is a map between the tangent space and the Euclidean
vector space R?. Then, we apply SVD in the Euclidean space, and use the inverse projection map
P~ to transfer back to the tangent space. Please note that no information is lost when we apply P
(and P~1) due to the Lorentzian orthogonality.

We empirically compared the results of the two implementations of the rotation component: con-
structing and using the isometry, and using the wrapped operations, combining both with the same
Riemannian translation and Riemannian scaling. The results on the bioinformatics datasets are
presented in Table E and Table E, where the rotation using isometric mapping is denoted by Iso(K).
We see that the obtained results are comparable, with a slight advantage to the Riemannian wrapped
rotation implementation (specifically, when the data have multiple labels and multiple batches). Since
the Riemannian wrapped rotation (RWR) is simpler and computationally more efficient and stable,
we choose RWR as the preferable implementation of rotation.
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Table 6: The MMD value for rotation strategies.

Dataset Baseline RT+RS HPA Iso(KC)

BC 0.2089 £ 0.0027  0.0066 &+ 0.0008 0.0013 £ 0.0004  0.0019 + 0.0004
ST&UM  0.1072 +£0.0051 0.0231 £0.0023 0.0162 +0.0048 0.0173 £ 0.0032
ST&D-F  0.3213 £ 0.0152 0.0142 £0.0087 0.0122 £0.0042 0.0111 4+ 0.0011

UM&D-M  0.0790 +£0.0071  0.0172 + 0.0083 0.0168 £ 0.0090 0.0183 4 0.0043
P1 BT 0.0638 £+ 0.0024  0.0018 £ 0.0007 0.0012 4+ 0.0002 0.0012 + 0.0003
P1 AT 0.0598 £0.0014 0.0014 £+ 0.0001  0.0006 + 0.0001  0.0008 £ 0.0001
P2 BT 0.0424 £ 0.0021  0.0014 £0.0004 0.0012 4+ 0.0001  0.0014 % 0.0002
P2 AT 0.0758 £0.0053  0.0013 &+ 0.0003 0.0011 £ 0.0002 0.0012 £ 0.0002

Before alignment After HPA

= N W

Figure D.3: The visualizations of HPA applied to the digit datasets, where x and () represent MNIST
and USPS, respectively. The colors serve as the digit labels.

D.5 Out-of-sample extension

Table 7: Out-of-sample-extension (OOSE) in the CyTOF alignment task.

Seen set  Unseen set HPA OOSE performance
P1 BT P2 BT 0.9329 £ 0.0186  0.8416 £ 0.0421
P2 BT P1 BT 0.9401 +0.0068  0.8327 £ 0.0219
P1 AT P2 AT 0.8453 £0.0798  0.7102 £+ 0.0814
P2 AT P1 AT 0.9329 +0.0011  0.6958 £ 0.0922

Here, we demonstrate the out-of-sample extension capabilities of HPA as follows. Recall that the
CyTOF alignment task consists of 8 = 2 x 2 x 2 batches of data collected from two patients under
two different conditions (BT/AT) and at two different days (batches). First, using HPA, we build the
batch correction map ( : L¢ — L4, consisting of the Riemannian mean, scaling, and rotation, for
removing the batch effects between the two days of one patient. Then, we apply the same map (, as
is, for removing the batch effects between two days of the unseen data from the other patient.

Table |7 shows the obtained k-NN classification using the best choice of & (denoted OOSE perfor-
mance). As a baseline, we also include the results from Table |I without out-of-sample-extension
(denoted HPA). We remark that the relatively poor results obtained for the AT condition (compared to
the results obtained for the BT condition) could be due to the imbalance presence of the stimulated
PBMCs in P2 AT.
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D.6 Aligning digit datasets

Table 8: The k-NN AUC-ROC and MMD in the digits alignment task.

S-Baseline Baseline HPA RT HOT-F HOT-L HOT-ME
k-NN  0.9705 4 0.0076  0.3143 £0.0704  0.8655 &+ 0.0020  0.4086 + 0.0555 0.3716 +0.1277 0.3234 £ 0.0201  0.1143 £ 0.0167
MMD - 0.4785 £+ 0.0012  0.0007 +0.0001  0.0053 & 0.0007  0.0012 + 0.0004  0.0008 £ 0.0001  0.0013 + 0.0003

One of the standard benchmarks for datasets alignment is the alignment of digit datasets, specifically,
MNIST [31]] and USPS [23]]. Here, we wish to use this task in order to demonstrate the effectiveness
of our HPA even in cases where the hierarchical structure is not inherent in the data (namely, the
images of the digits in this case). We remark that we do not aim to achieve or beat the state-of-the-art
performance in this task, because the representation in hyperbolic space might not be the most suitable
for these particular data.

The resolution of the images in MNIST is 28 x 28, whereas the resolution in USPS is 16 x 16.
Therefore, prior to applying HPA, we first resize each image in MNIST to the smaller size of the
images in USPS. Then, the images are reshaped into column-stacks in R256 and in turn, are embedded
in LY. Once we obtain the hyperbolic representations of the images, we apply HPA and the other
competing alignment methods in the purely unsupervised (label-free) manner. Because the runtime
of the competing methods (e.g., HOT-F) is increasing fast with the number of samples (images), we
consider only a subset of 7000 images.

Fig. depicts a visualization of the embedding of the two digit datasets before and after the
alignment using HPA. Same as before, for visualization purposes, we project the data from L3 to
the 3D Poincaré ball. We see that before the alignment, the data are primarily divided according to
dataset. In contrast, after HPA alignment, the data is organized according to digits. Table[§|presents
the k-NN digit classification and the MMD. The MMD values are obtained by selecting ten random
subsets of size 3500 from each of the datasets, which is the half size of the minimal dataset, same
as in the other experiments. Same as in Section 4, the dimension of the hyperbolic space d is set
to the dimension yielding the best digit classification applied to each dataset separately (without
alignment). We observe that our HPA obtains an accurate unsupervised (label-free) alignment despite
the probable use of sub-optimal representation.

E Classical PA and comparing HPA with other PA schemes

E.1 Background on Procrustes analysis

Classical Procrustes analysis consists of a sequence of three geometric transformations: translation,
scaling and rotation, and it is usually applied in a Euclidean space [[L7]. In the context of data
alignment, consider two (or more) sets of points, say W = {w; € R}, and W' = {w) € R},
where the goal is to find a global map f : R? — R? transforming the points from W’ to W.
The application of Procrustes analysis to this problem translates to finding a map of the form

f(w') = $V T (w] — w),) + wy,, where b € R is the scaling factor, w,, = = > " w; and
w), = 5 3" | w! are the mean vectors of the sets W and W', respectively, and V' € O(d) is an

orthogonal matrix [[18]]. If there is a known correspondence between the points, then the scaling b and
the rotation matrix V' could be the solution of an optimization problem minimizing some loss, e.g.,
the /5 distance between w; and f(w”’). Otherwise, common practice is to set b and V' so that the first
moments of the sets are aligned, using, for example, singular value decomposition (SVD).

E.2 Comparison with PAH [51]

In Section .| we present an empirical comparison to PAH. The comparison is done only in
simulations, because PAH requires sample correspondence, and the tested datasets do not have
sample correspondence. Both PAH [51]] and our HPA are conceptually based on Procrustes analysis.
However the problem setting and the approach are different. Specifically, our HPA makes use of the
Riemannian geometry of hyperbolic spaces. We outline below a comparison on a technical level and
emphasize the advantage of our method.
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1. Translation: PAH proposed to translate the centroids of the two sets to the origin in L%,
which is denoted by pg. In contrast, we proposed a Riemannian translation of the sets using
parallel transport along the unique geodesic path connecting the Fréchet mean of one set
to the Fréchet mean of the other set (or from the Fréchet mean of the set to the Fréchet
mean of the Fréchet means when multiple sets are aligned). The translations of PAH and
HPA are both isometries. However, the translation of our HPA also preserves the geodesic
velocities. We also remark that translations cause rotations and distortions. Our translation
using PT (derived from the Levi-Civita connection which is torsion-free) introduces the
“minimal distortion” in the Riemannian sense. In addition, the result in Prop. E (which is
an important property for alignment, allowing for a convenient multi-level alignments) is
a direct consequence of the specific translation we propose and does not necessarily hold
when the sets are translated to the origin as in PAH.

2. Scaling: PAH assumes that the hyperbolic sets are isometric and it does not address the
scaling problem at all. In our HPA, the proposed Riemannian scaling is based on the
geodesic path between each point and the Riemannian mean of the set. This way we can
align the Riemannian second moment (defined as the dispersion) by taking into account the
change of the Riemannian metric as we travel along the geodesic path on the manifold.

3. Rotation: PAH suggested a hyperbolic rotation map that requires one-to-one correspon-
dence. We do not make this assumption, and our Riemannian wrapped rotation component
(and the other components) can operate in a broader context. Such an assumption signif-
icantly limits the scope of PAH. Indeed, the batch correction applications we considered
(nor the standard MNIST and USPS alignment we presented in the appendix) do not have
one-to-one correspondence, and therefore, PAH cannot be tested on these applications. In
addition, we note that the hyperbolic rotation map in PAH does not preserve the Riemannian
mean if the mean does not coincide with the origin. In PAH, it does not raise a problem
since the mean alignment is implemented by translating the sets to the origin. However, in
general, and specifically when using the Riemannian translation of our HPA, such a rotation
could cancel the mean alignment.

E.3 Euclidean Procrustes analysis on the tangent space

An alternative implementation of the alignment could be to first project the data on the (linear) tangent
space, and then, apply standard Euclidean Procrustes analysis directly in the tangent space, that is,
mean vector subtraction, vector scaling, and vector rotation using SVD in a Euclidean tangent vector
space. Below, we compare this procedure to our HPA.

1. Translation: Unlike the Riemannian translation we propose, this tangent Euclidean trans-
lation (i) does not align the Riemannian means of the sets, (ii) does not preserve geodesic
distances (i.e., it is not isometric w.r.t. the Riemannian distance), (iii) does not preserve
the local geometry (in the sense we define in the paper by preserving geodesic velocities),
and (iv) is not derived from the Levi-Civita connection, and therefore, it does not admit
Prop. [5} which is an important property for alignment, allowing for a convenient multi-level
alignment.

2. Scaling: The proposed Riemannian scaling on the manifold is equivalent to the modulation
on the tangent space with the same scaling factor (See Lemmafd]in Appendix [A).

3. Rotation: Applying SVD to the tangent space directly is not appropriate, because the
resulting rotated points might violate the Lorentzian orthogonality constraint, and therefore,
might not be in the same tangent space.

Another possible way to implement the alignment is to first project the points on the tangent space,
then, to isometrically map them to a Euclidean space (the existence of such an isometric map between
the tangent space 7,LL¢ C R*! and a Euclidean vector space R is guaranteed by definition), and
finally, to apply Euclidean Procrustes analysis in the isometric Euclidean space. On the one hand, the
use of the isometric mapping allows us to apply the Euclidean Procrustes analysis without conforming
to the Lorentzian orthogonality constraint. On the other hand, as we detail below, it introduces its
own challenges.

1. Translation: Each tangent space has its own Lorentzian orthonormal basis, and the
Lorentzian orthonormal bases of different tangent spaces do not necessarily span the same
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space. Therefore, similarly to the translation in the tangent space, this translation in the
Euclidean isometric space does not admit items (i)-(iv) above.

. Scaling: This scaling is equivalent to the proposed Riemannian scaling w.r.t. the Riemannian
mean.

. Rotation: Unlike applying SVD (for the purpose of rotation) directly in the tangent space,
this rotation is a valid alternative. However, compared to the proposed Riemannian wrapped
rotation, this alternative is computationally less efficient and stable, and it obtains slightly
worse empirical results. See Appendix [D.4]for more details and an empirical comparison.
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