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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] Please see Section 1.
(b) Did you describe the limitations of your work? [Yes] Please see the end of the

evaluation (Section 5).
(c) Did you discuss any potential negative societal impacts of your work? [Yes] The

work aims to provide positive societal impacts by optimizing social systems. We
discussed privacy as a future step in Section 6.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] Please see

Section 3.
(b) Did you include complete proofs of all theoretical results? [Yes] Please see Section 3.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] Please see Appendix Section A.6.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] Please see the plots in Section 5.
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] Please see Appendix Section A.6.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] Please see the
citations for all three publicly-available datasets in Section 4.

(b) Did you mention the license of the assets? [Yes] As stated in the Appendix, the
licenses for the individual assets were not given online.

(c) Did you include any new assets either in the supplemental material or as a URL?
[Yes] We provide our collected IoT dataset in the supplement and will make it
publicly-available online.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] Please see Appendix Section A.6.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [Yes] Yes, we stated in Appendix Section A.6 that
there no is no personally identifiable or private information.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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A Appendix

A.1 Time Horizon

Figure 4: Time horizon illustration.

Fig. 4 illustrates the time horizon of the problem we consider in Sec. 2.

A.2 Input-driven LQR with Transition Noise

Suppose at each time interval t, we add a noise vector wt ∈ Rn with mean zero and covariance Σww
to the dynamics:

xt+1 = Axt +But + Cst + wt, (14)

Then Eq. 4 becomes

xi+1 = Ai+1x0 + Miu + Nis + Piw (15)

where w := w0:H−1 and Pi =
[
Ai Ai−1 · · · I 0

]
∈ Rn×nH .

And hence Eq. 5 becomes

Jc(u;x0, s) = u>(R +

H−1∑
i=0

M>
i QMi︸ ︷︷ ︸

K

)u + 2[

H−1∑
i=0

M>
i Q(Ai+1x0 + Nis + Piw)︸ ︷︷ ︸

k(x0,s)

]>u+ (16)

H−1∑
i=0

(Ai+1x0 + Nis + Piw)>Q(Ai+1x0 + Nis + Piw)︸ ︷︷ ︸
independent of u

, (17)

that is,

Ew[Jc(u;x0, s)] = u>(R +

H−1∑
i=0

M>
i QMi︸ ︷︷ ︸

K

)u + 2[

H−1∑
i=0

M>
i Q(Ai+1x0 + Nis)︸ ︷︷ ︸

k(x0,s)

]>u+ (18)

H−1∑
i=0

(Ai+1x0 + Nis)
>Q(Ai+1x0 + Nis) + Ew[(Piw)>QPiw]︸ ︷︷ ︸

independent of u

. (19)

Notice that w only affects the constant term, which is independent of u. Therefore, the analysis after
Eq. 5 still holds.

A.3 Additional Explanations on the Proof of Proposition 1

Here, we provide some additional explanations on the proof of Proposition 1, which are not included
in the main paper due to space limits.
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Figure 5: Analytic results for linear control: (a) By only representing information salient to a
control task, our co-design method (orange) achieves the optimal control cost with 43% less data than
a standard MSE approach (“task-agnostic”, blue). Formal definitions of all benchmarks are in Sec.
5. (b-c) By weighting prediction error by λF > 0, we learn representations that are compressible,
have good predictive power, and lead to near-optimal control cost (e.g. λF = 1.0). (d) For the
same timeseries s, two different control tasks require various amounts of data shared, motivating our
task-centric representations.

1) Positive definite matrix. Ψ +λFI (λF > 0) is positive definite because, (Ψ +λFI)> = Ψ +λFI ,
and J tot. ≥ λF||̂s− s||22 > 0 for any ŝ 6= s.

2) Eigen-decomposition. The eigen-decomposition of Ψ + λFI is Y ΛY −1, where Y ∈ RpH×pH
and the columns of Y are the normalized eigen-vectors of Ψ+λFI , and Λ ∈ RpH×pH is the diagonal
matrix whose diagonal elements are the eigenvalues of Ψ + λFI . Since Ψ + λFI is symmetric, Y is
also orthogonal, i.e., Y −1 = Y >. So Y ΛY −1 = Y ΛY >.

3) Inverse matrix. The matrix Λ
1
2Y > is invertible because Ψ + λFI is positive definite and its

eigenvalues are all positive.

A.4 Details on the LQR Simulations

Here we provide further details on the two LQR simulations mentioned in Sec. 3.1. In both of the
simulations, vector timeseries s has log, negative exponential, sine, square, and saw-tooth functions
superimposed with a Gaussian random walk noise process.

A.4.1 Basic LQR Simulation (Fig. 5)

1) Dynamics:

xt+1 = xt + ut − Cst
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Figure 6: Linear control with MPC: We repeat our analysis of input-driven LQR, but solve the
problem in a receding horizon manner with forecasts for H < T as discussed in Section 3.1 and
Figure 5. (a) By only representing information salient to a control task, our co-design method (orange)
achieves the optimal control cost with 60% less data than a standard MSE approach (“task-agnostic”,
blue). Formal definitions of all benchmarks are in Sec. 5. (b-c) By weighting prediction error by
λF > 0, we learn representations that are compressible, have good predictive power, and lead to
near-optimal control cost (e.g. λF = 1.0). The forecasting error of the task-aware scheme (orange)
is much larger than the rest and thus not shown in the zoomed-in view. (d) For the same timeseries
s, two different control tasks require various amounts of data shared, motivating our task-centric
representations.

2) Cost function:

Jc =
1

1000
(

H∑
t=0

||xt||22 +

H−1∑
t=0

||ut||22)

3) Parameters: H = 20; n = m = p = 5; C = diag(1, 2, · · · , 5) for Fig. 5(a)-5(c) and Fig. 5(d)
top, and C = diag(1.5, 2, · · · , 3.5) for Fig. 5(d) bottom.

As per Proposition 1, we solve a simple low-rank approximation problem per bottleneck Z to obtain
the optimal encoder E, decoder D, and use Eqs. 9-10 to obtain the control and prediction costs.
Clearly, our co-design algorithm (orange) outperforms a task-agnostic approach (blue) that simply
optimizes for MSE.

A.4.2 LQR Simulation with MPC (Fig. 6)

1) Dynamics:
xt+1 = xt + ut − Cst

2) Cost function:

Jc =

T∑
t=0

||xt||22 +

T−1∑
t=0

||ut||22
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3) Parameters: T = 100, W = H = 15; n = m = p = 5; C = diag(1, 2, · · · , 5) for supplement
Fig. 6(a)-6(c) and Fig. 6(d) top, and C = diag(3, 3, · · · , 3) for Fig. 6(d) bottom.

A.5 IoT Data Collection
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Figure 7: Environmental sensor on the Google Edge TPU (left) and example stochastic timeseries
(right).

Fig. 7 shows the environmental sensor board (connected to an Edge TPU DNN accelerator) and an
example of collected stochastic timeseries for our IoT data.

A.6 Detailed Evaluation Settings

LSTM
Cell

LSTM
Cell

LSTM
Cell

𝑠𝑡−𝑊 +1 𝑠𝑡−𝑊 +2 ( )𝑠𝑡 𝑠 ̃ 𝑡

⋯

𝑠 ̃ 𝑡+1

LSTM
Cell

LSTM
Cell

𝑠 ̃ 𝑡+2 𝑠 ̃ 𝑡+𝐻−1

𝑠 ̃ 𝑡+1 𝑠 ̃ 𝑡+𝐻−2

⋯

Figure 8: LSTM timeseries network

We now provide further details on Sec. 5 by summarizing the settings of our evaluation.

A.6.1 Forecaster, Controller & Data Scaling

Basic Forecaster Settings. In all three scenarios, the encoder parameters θe are responsible for
both forecasting and compression. We first have a forecasting model that first provides a full-
dimensional forecast s̃t:t+H−1, and then adopts simple linear encoder E ∈ RZ×pH to yield φt. The
combination of the forecasting model’s parameters and encoder E constitute θe. Then, a linear
decoder D ∈ RpH×Zeventually produces decoded forecast ŝt:t+H−1. The model used to provide
full-dimensional forecast s̃t:t+H−1 varies case by case, as described subsequently.

Smart Factory Regulation with IoT Sensors. For forecasting, we adopt an LSTM timeseries
network, as shown in Fig. 8, with W +H − 2 cells and hidden size 64. The parameters associated
with the forecaster and controller are set as follows: T = 72, W = H = 15, n = m = p = 4;
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Figure 9: 2-hidden-layer feedforward network

umin = −0.95 × 1p, umax = 0.95 × 1p, γe = γs = γu = 1. Further, we scale st(i) to be within
[−1, 1],∀i.
Taxi Dispatch Based on Cell Demand Data. For forecasting, we adopt a 2-hidden-layer feedforward
network, as shown in Fig. 9, with hidden size 64 and ReLu activation. The parameters associated
with the forecaster and controller are set as follows: T = 32, W = H = 15, n = m = p = 4; no
constraint on ut, and γe = 1, γs = 100, γu = 1. Further, we scale st(i) to be within [0, 1],∀i.
Battery Storage Optimization. For forecasting, we adopt a 2-hidden-layer feedforward network,
as shown in Fig. 9, with hidden size 64 and ReLu activation. The parameters associated with the
forecaster and controller are set as follows: T = 122, W = H = 24, n = m = p = 8; no constraint
on ut, and γe = γs = γu = 1. Further, we scale st(i) to be within [0, 1],∀i.
We observed similar performance for feedforward networks and LSTMs since the crux of our problem
is to find a small set of task-relevant features for control.

A.6.2 Training

Table 1: Train/Test Timeseries, Training Epochs and Runtime.

DATASET TRAIN/TEST TRAINING RUNTIME
TIMESERIES EPOCHS

IOT 30/30 1000 < 96 HRS
CELL 17/17 1000 < 48 HRS
BATTERY 15/15 2000 < 1 HR

Our evaluation runs on a Linux machine with 4 NVIDIA GPUs installed (3 Geforce and 1 Titan). Our
code is based on Pytorch. We use the Adam optimizer and learning rate 10−3 for all the evaluations.
The number of train/test timeseries3, training epochs, and resulting runtime are summarized in Table
1. The IoT dataset is provided in our code release and it does not have any personally identifiable
or private information. The publicly-available electricity and cellular datasets did not have a stated
license online.

A.7 Further Analysis on the Evaluation Results

For better understanding of the differences between different schemes, we give further analysis on
our evaluation results in Sec. 5.

Why does co-design yield task-relevant forecasts? (Continued)

We further contrast the prediction errors made by task-agnostic and co-design approaches in the
heatmaps of Fig. 10. In each heatmap, the x-axis represents the future time horizon, while the y-axis

3With MPC, each timeseries corresponds to T samples, such as T = 72 for the IoT scenario.
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Figure 10: Forecasting error comparison: task-agnostic vs. weighted scheme. From left to right,
the columns correspond to smart factory regulation from IoT sensors, taxi dispatching with cell
demand, and battery storage optimization. The heatmaps show how co-design minimizes errors on
timeseries elements s(i) and forecast horizons that are salient for the control task when Z = 3.

represents forecasting errors across various dimensions of timeseries s, denoted by s(i). Clearly,
a weighted approach significantly reduces prediction error for near time-horizons, which is most
pronounced for the battery dataset.
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Figure 11: Forecast comparison: task-agnostic/weighted schemes vs. task-aware scheme. Ex-
ample forecasts for the battery charging scenario at t = 84 when Z = 9, for both our task-
agnostic/weighted schemes (left) and the task-aware scheme (right). Clearly, a fully task-aware
approach with λF = 0 yields poor predictions since it does not regularize for prediction errors. This
motivates our weighted co-design approach on the left.

The fully task-aware (λF = 0) scheme is good for control but poor for forecasting.

Fig. 11 compares the time-domain forecasts given by task-agnostic/weighted scheme and task-aware
scheme. Note that the timeseries starts at t = −W + 1 < 0 because s−W+1:0 is needed at t = 0.
While the task-agnostic and weighted scheme make reasonable forecasts, the task-aware scheme
focuses solely on improving the task-relevant control and imposes no penalties on the forecasting
error, leading to poor forecasts. This motivates our weighted approach which balances the control
cost and forecasting error.

Small Z (e.g., Z = 4) produces coarse forecasts, which are suitable for good control perfor-
mance.

Fig. 12, Fig. 13 and Fig. 14 present the time-domain forecasts with different bottleneck dimensions
Z for IoT, taxi scheduling, and battery charging scenarios, respectively. In general, for small Z (e.g.,
Z = 4), the task-agnostic scheme makes noisy forecasts which provides room for our weighted
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Figure 12: Example forecasts (IoT sensors). Example forecasts at t = 40 when Z = 4 (left) and
Z = 9 (right). Clearly, the predictions are more accurate and smooth when Z = 9. However, with a
smaller bottleneck of Z = 4 (left), we achieve near-optimal control performance since we capture
task-relevant features with a coarse forecast that captures high-level, but salient, trends.

scheme to improve the control cost by considering a task-relevant objective. For large Z (e.g., Z = 9)
both the task-agnostic and weighted scheme make smooth forecasts4.

The state evolution of our task-aware/weighted scheme is closer to the optimal trace.

Fig. 15 shows the example state evolution of x(2) for the three scenarios. Importantly, the black trace
corresponds to an unrealizable baseline with the lowest cost since it assumes perfect knowledge of s
for the future H steps. We can see that our task-aware and weighted scheme have state evolution
traces closer to the optimal trace than the competing task-agnostic scheme. This further explains why
task-aware and weighted schemes can yield a near-optimal cost for small Z while the task-agnostic
benchmark cannot.

4The trend is less prominent for the taxi scheduling scenario, because the cell demand itself is rapidly-
changing and highly-stochastic.
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Figure 13: Example forecasts (taxi scheduling). Example forecasts at of at t = 16 when Z = 4
(left) and Z = 9 (right). This scenario had the worst prediction errors since the cell data is highly
stochastic.
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Figure 14: Example forecasts (battery charging). Example forecasts at t = 84 when Z = 4 (left)
and Z = 9 (right). As before, the predictions are more accurate and smooth when Z = 9. However,
with a smaller bottleneck of Z = 4 (left), we achieve near-optimal control performance since we
capture task-relevant features with a coarse forecast that captures high-level, but salient, trends.
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Figure 15: Example evolution of x(2) when Z = 4, for IoT (top), taxi scheduling (middle) and
battery charging (bottom) scenarios, respectively. Clearly, our co-design approach has state evolutions
closer to the unrealizable optimal solution (black) which assumes perfect forecasts.
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