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Abstract

Computer-Aided Design (CAD) applications are used in manufacturing to model
everything from coffee mugs to sports cars. These programs are complex and
require years of training and experience to master. A component of all CAD
models particularly difficult to make are the highly structured 2D sketches that lie
at the heart of every 3D construction. In this work, we propose a machine learning
model capable of automatically generating such sketches. Through this, we pave
the way for developing intelligent tools that would help engineers create better
designs with less effort. The core of our method is a combination of a general-
purpose language modeling technique alongside an off-the-shelf data serialization
protocol. Additionally, we explore several extensions allowing us to gain finer
control over the generation process. We show that our approach has enough
flexibility to accommodate the complexity of the domain and performs well for
both unconditional synthesis and image-to-sketch translation.

1 Introduction
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Figure 1: The anatomy of a CAD sketch.
Sketches are the main building block of ev-
ery 3D construction. A sketch consists of
entities (e.g., lines and arcs) and constraints
(e.g., tangent and mirror). The dotted curve
shows what happens if we drop some of the
constraints — the design idea is lost.

Computer-Aided Design (CAD) is used in the produc-
tion of most manufactured objects: from cars to robots
to stents to power plants. CAD has replaced pencil
drawings with precise computer sketches, enabling un-
paralleled precision, flexibility, and speed. Despite
these improvements the CAD engineer must still de-
velop, relate and annotate all the minutiae of their de-
signs with the same attention to detail as their drafting-
table forebears. CAD productivity might be improved
by the careful application of machine learning to auto-
mate predictable design tasks and free the engineer to
focus on the bigger picture. The flexibility and power
of deep learning is uniquely suited to the complexity of
design.

Sketches are at the heart of mechanical CAD. They are
the skeleton from which three dimensional forms are
made. A sketch consists of various geometric entities
(e.g., lines, arcs, splines and circles) related by specific
constraints such as tangency, perpendicularity and sym-
metry. Figure 1 illustrates how entities and constraints
work in tandem to create well-defined shapes. Geo-
metric entities lie on a single plane and together form
enclosed regions used by subsequent construction oper-
ations such as lofts and extrusions to generate complex
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Figure 2: Interpreter-guided generation of a sketch. At each point in time, a Transformer [33]
outputs a raw value which is fed into an interpreter that decides which field of a Protocol Buffers
message this value corresponds to. Once the field is populated the interpreter communicates ( ) its
decision back to the Transformer and transitions ( ) to the next state.

3D geometry. Well-chosen sketch constraints are essential to properly convey design intent [2] and
facilitate the sketch’s resilience to successive parameters modifications which is often understood as
a measure of the quality of a design document [8]. The dotted curve in Figure 1 shows what happens
when some of the constraints are dropped – the design idea is lost.

The complexities of sketch construction are analogous to those of natural language modeling. Select-
ing the next constraint or entity in a sketch is like the generation of the next word in a sentence. In both
contexts, the selection must function grammatically (form a consistent constraint system in the case
of the sketch) and work towards some cohesive meaning (preserve design intent). Luckily, machine
learning has proved highly successful in generating natural language — especially the Transformer
[33] trained on vast amounts of real-world data [26, 6]. It is therefore a promising choice for adapting
to the task of sketch generation. This work is our take at this adaptation.

We make the following contributions: (1) We devise a method for describing structured objects using
Protocol Buffers [32] and demonstrate its flexibility on the domain of natural CAD sketches. (2) We
propose several techniques for capturing distributions of objects represented as serialized Protocol
Buffers. Our approach draws inspiration from recent advances in language modeling while focusing
on eliminating data redundancy. (3) We collect a dataset of over 4.7M of carefully preprocessed
parametric CAD sketches and use this dataset to validate the proposed generative models. To our
knowledge, the experiments presented in this work significantly surpass the scale of those reported in
the literature both in terms of the amount of training data and the model capacity.

2 Related work

Datasets and generative models for CAD. Until recently there were very few parametric CAD
datasets large and varied enough to serve as training data for machine learning. This situation had
started to change with the release of the ABC dataset [16] containing a collection of 3D shapes from
the Onshape public repository [22]. Unfortunately, the main focus of [16] revolves around meshes
and, as a result, the dataset is difficult to use for sketch modeling.

Several works concurrent with ours deal with the symbolic representation of CAD constructions.
Seff et al. [31] center their attention on contributing a better dataset of 2D sketches but also provide
a proof-of-concept model predicting a selected subset of object attributes. Willis et al. [37] use the
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dataset from [31] to train a modification of [21] which demonstrates a boost in generation quality
but is designed to only work for sketch entities. The latter is addressed in our present work and in
a subsequent paper by Para et al. [24]. While [24] employ very similar ideas to ours they do not
support certain features of the CAD data and their proposed model is a more direct adaptation of [21]
and therefore cannot handle arbitrary orderings of entities and constraints. In Section 5, we show that
object ordering has a substantial impact on the performance.

Fusion 360 Gallery [36] attacks CAD data from a different angle. Here, the task is to recover a
sequence of extrusion operations that gives rise to a particular target 3D shape. Despite dealing with
3D, this setting is deliberately limited: sketches are assumed to be given and the proposed model only
decides on which sketch to extrude and to what extent. [38] considers a more general scenario where
extrusion profiles are not provided and need to be synthesized from scratch. Although both of these
works make initial steps towards full parametric CAD generation, they rely on significant simplifying
assumptions and therefore it is unclear how well they will scale to more real-world scenarios. Our
approach, on the other hand, is designed to be flexible and domain-agnostic and is only limited by the
data availability.

Vector image generation and inference. Synthesizing CAD sketches bears a lot of similarities
with predicting vector graphics. In this field, several recent works Carlier et al. [7] and Reddy
et al. [30] using different vector object representations to define generative models of vector images.
Egiazarian et al. [13] take a more traditional computer vision approach and propose a multi-stage
pipeline for vectorizing technical drawings. All of these methods use highly domain-dependent
architectures and, therefore, it would be a non-trivial task to adapt them for generation of complex
sketch objects. CAD community has also been concerned with a similar task of image to CAD
conversion [20, 34, 10, 11], largely focusing on heuristic object recognition while our work relies
more on learning the recognition from data.

Transformers for sequence modeling. In our work, we employ Transfomers [33] as a compu-
tational backbone for the proposed approach. Due to its scalability and excellent performance
[29, 9, 6, 27], this architecture has become the dominating approach in many sequence modeling
applications. Our method can be seen as generalization of PolyGen [21], a Transformer-based
generative model for 3D meshes. Similarly to [21], we use Pointer Networks [35] to relate items in
the synthesized sequence. Unlike PolyGen, however, our framework can handle non-homogeneous
structures of arbitrary complexity. Moreover, we simplify the architecture to use a single neural
network to generate the entire object of interest. All these improvements make our approach a good
fit for modeling CAD sketches and potentially other components of CAD constructions.

3 Data

Formally, a CAD sketch is defined by two collections of objects: entities and constraints. Each object
is generally represented as a set of attribute-value pairs where a value can be either primitive (e.g.,
integer or floating-point) or complex (e.g., an array or another object). Sketches that we use in this
work originate from the Onshape platform [22] which provides them in JSON format [25]. As the
first step in our processing pipeline we convert JSON messages into Protocol Buffers (PB) [32]. In
order to keep the pipeline as domain-agnostic and as widely applicable as possible, we aim to avoid
any significant changes to the data and largely retain the original structures of objects. The benefit of
converting into PB is twofold: the resulting data occupies less space because unnecessary information
is removed, but also, unlike JSON, PB provide a convenient way to define precise specifications for
structures of arbitrary complexity.

Listing 1a shows how we represent the line entity and the mirror constraint (see Appendix A for
an extensive list of supported objects). The line specification is straightforward: we first need to
decide whether our entity should be treated as a construction geometry2 and then provide pairs of
coordinates for the beginning and end of the segment. The MirrorConstraint is used to force an
arbitrary number of pairs of geometries (i.e., mirrored_pairs) to be symmetrical with respect to
some axis (i.e., mirror). Constraints rely on the Pointer data type to specify entities they act upon.
In practice, a pointer is simply an index in the table of all the eligible pointees (i.e., entities and their
parts).

2Construction geometries are rendered in dashed style in the figures.
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message LineEntity {
bool is_construction = 1;
message Vector { // 2D coordinate.

double x = 1;
double y = 2;

}
Vector start = 2; // Start point.
Vector end = 3; // End point.

}

message MirrorConstraint {
Pointer mirror = 1; // Axis of symmetry.
message Pair { // Mirrored objects.

Pointer first = 1;
Pointer second = 2;

}
repeated Pair mirrored_pairs = 2;

}

(a) Entities and constraints have similar structures. Pointers refer to entities that constraints are applied to.

message Entity {
oneof kind {

LineEntity line = 1;
// And other entity types.

}
}

message Constraint {
// Defined similarly to Entity.

}

message Object {
oneof kind {

Entity entity = 1;
Constraint constraint = 2;

}
}

message Sketch {
repeated Object objects = 1;

}

(b) A full sketch is defined as a sequence of objects each of which can be either an entity or a constraint.

Listing 1: Examples of object specifications. We represent objects using Protocol Buffers. Protocol
Buffers allow us to easily write specifications for structured objects of varying complexity.

Our ultimate goal is to build a machine learning model of sketch objects. To that end, we process the
data even further and represent these objects as sequences of tokens. This allows us to pose sketch
generation as language modeling (LM) and take advantage of the recent progress in this area [26, 6].
To achieve this, we pack first collections of entities and constraints into one Protocol Buffer message
(see Listing 1b) assuming some ordering of objects. We discuss different orderings in Section 5.

There are a few ways to obtaining a sequence of tokens from a sketch message. Arguably the most
intuitive one is to format messages as text. For a line entity connecting (0.0, 0.1) and (−0.5, 0.2) this
will result in:

{ is_construction: true, start { x: 0.0, y: 0.1 }, end { x: -0.5, y: 0.2 } }

Since this format contains both the structure and the content of the data, the resulting sequences end
up being prohibitively long. Additionally, the model would have to generate valid syntax, which
would take up some portion of the model’s capacity. To overcome these challenges, we work with
two flavours of serialized PB messages.

The first one is a sequences of bytes obtained by calling the SerializeToString() method of
a message. Such sequences are much shorter since the structure is handled by an external parser
automatically generated from the data specification. The parser’s task is to interpret the incoming
stream of unstructured bytes and populate the fields of PB messages. However, like the text format,
not every sequence of bytes results in a valid PB message.

Going one step further, we can utilize the structure of the sketch format more directly, and build a
custom interpreter, that takes as input a sequence of tokens each representing a valid choice at various
decision steps [4] in the sketch creation process. We designed this interpreter in such a way that
all sequences of tokens in this format lead to valid PB messages. More specifically, we represent a
message as a sequence of triplets (di, ci, fi) where i is an index of the token. The majority of tokens
describe basic fields of the sketch objects with each token representing exactly one field. The first two
positions in each triplet are allocated for a discrete value and a continuous value respectively. Since
each field in a message is either discrete or continuous only one of two positions is active at a time
(the other one is set to a default zero value). The third component is a boolean flag signifying the end
of a repeated field3 which contains a list of elements of the same type. An example sequence for a
sketch containing a line and a point placed at one of its ends is shown in Table 1 (Triplet column).

3For additional details on how we handle more complex constructions of the PB language see Appendix A.
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Triplet Field

1. (0, 0.0, False) objects.kind 

L
ine

2. (0, 0.0, False) entity.kind
3. (1, 0.0, False) line.is_constr
4. (0,0.0, False) line.start.x
5. (0,0.1, False) line.start.y
6. (0,−0.5, False) line.end.x
7. (0,0.2, False) line.end.y

Triplet Field

8. (0, 0.0, False) objects.kind


Point

9. (1, 0.0, False) entity.kind
10. (0, 0.0, False) point.is_const
11. (0,0.0, False) point.x
12. (0,0.1, False) point.y
13. (0, 0.0,True) objects.kind

Table 1: A triplet representation of a simple sketch. The sketch contains and a line and a point.
Within each triplet in the left column, the active component (the value that is actually used) is
highlighted in bold. The right column shows which field of the object the triplet is associated with.

Given a sequence of such triplets, it is possible to infer which exact field each token corresponds to.
Indeed, the very first token (d1, c1, f1) is always associated with objects.kind since it is the first
choice that needs to be made to create a Sketch message (see Listing 1b). The second field depends
on the concrete value of d1. If d1 = 0 then the first object is an entity which means that the second
token corresponds to entity.kind . The rest of the sequence is associated in a similar fashion.
Field identifiers along with their locations within an object form the context of the tokens. We use
this contextual information as an additional input for our machine learning models since it makes it
easier to interpret the meaning of the triplet values and to be aware of the overall structure of the data.

4 Model

In order to estimate the distribution pdata of 2D sketches in a dataset D, we decompose the joint
distribution over the sequence of tokens [19] t = (t1, . . . , tN ) in an autoregressive fashion, repre-
senting each conditional with a neural network parameterized by θ and pose the estimation of pdata
as maximization of the log-likelihood of D, i.e.,

p(t; θ) =

N∏
i=1

p(ti | t<i ; θ) ,
∑
t∈D

log p(t; θ)→ max
θ
, (1)

where N is the length of the sequence and t<i denotes all the tokens preceding ti.

More concretely, we employ the Transformer decoder architecture [33] that takes an embedding of
the token ei−1 = embed i(ti−1) ∈ RD and maps it into another vector hi of the same dimensionality.
The latter is decoded into parameters of p(ti | t<i) by a learned mapping disti(·).4

Byte representation When dealing with the bytes of a PB message, each token is simply a discrete
value in the range {0, . . . , 255} ∪ {EOS} and therefore p(ti | t<i ; θ) can be modeled as a categorical
distribution similar to how it’s done in typical LM approaches [5]. In this setting, for each time step i
of the sequence we have

embed i(ti−1) = V [ti−1] + e
pos
i , (2)

where [·] denotes the lookup operation and e
pos
i is a position embedding for position i. Both V and

e
pos
i are learned. Moreover, ∀i disti is the same linear projection into R257 (256 values and EOS)

and the output is treated as logits of the distribution.

Triplet representation In case of the triplet representation, we follow a slightly more involved
procedure. As outlined in Section 3, tokens can be either discrete or continuous. Additionally,
different discrete tokens may have different ranges of values. For example, there are only two possible
values for the object.kind token – either to an entity or a constraint. On the other hand, the range
of the entity.kind token has cardinality of 4 since we support 4 different types of sketch entities.
This means that we can’t naively describe each conditional in Equation 1 using the same template
distribution like we did for the bytes. We circumvent this by introducing the notion of token groups.

A token group G is a collection of related token types that can be handled in a similar fashion.
Specifically, we use the same embedding function and the same projection for every t such that

4Note that we use subscript i for embed and dist since they can be different for different time steps.
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(a) Unconditional byte model. (b) Unconditional triplet model.

(c) Image-conditional triplet model. (d) Solved samples. (e) Data.

Figure 3: Synthesized sketches and data. (a)–(c) show samples from various proposed models (we
use Nucleus Sampling with top-p = 0.9). In (c), the output is rendered in a slightly thicker style. (d)
demonstrates samples from the unconditional model after applying predicted constraints (the output
is in blue). (e) shows examples from the dataset.

type(t) ∈ G. For instance, we might want to group all the tokens associated with coordinates. In the
example from Table 1, tokens with indices 4–7 and 11–12 will all end up in the same G5. Naturally,
we use the same functional form for the output distribution p(ti | t<i ; θ) within each group.

We embed ti−1 that belongs to the group G as (note the difference with Equation 2):

K[field(ti−1)] + V G [ti−1] + eobj
n + erel

m , (3)

where field(t) returns the field of t (e.g., objects.kind or line.start.x ) and K is a collec-
tion of learnable embeddings for every possible field type. Unlike in Equation 2, instead of using
global position embedding e

pos
i we describe the location with the index n of the current object as

well as the relative position m of ti−1 within an object.

We handle the “end” tokens (i.e., fi = True) similarly to EOS in Section 4 — the output projection
produces an additional logit used to compute the probability of ending the repetition. Since fi is
only expected to be True at particular points in the sequence (i.e., right after tokens forming a whole
element of the list) we mask out the extra logit everywhere else. This ensures that the “end” token
can’t be predicted prematurely and also eliminates its unnecessary contribution to the optimized
objective.

One significant difference between the byte setting and the triplet setting is how we process pointer
fields. In the former, pointers do not get any special treatment and are generated just like any other
integer field. We rely on the model’s capability to make sense of the entity part index and relate it to
the corresponding locations in the sequence via attention weights. This seems to be a viable strategy
since Transformers have demonstrated an impressive referencing capacity in recent works [6].

Since the triplet representation provides us with direct access to the semantics of tokens it’s possible
to relate pointers to their pointees more explicitly by using Pointer Networks [35]. The approach we

5For the full list of token groups used in the model see Appendix B.
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are taking here is similar to [21]. In order to compute p(ti | t<i ; θ), we first project the output of
the Transformer hi into the final pointer vector pi = Wptr hi. The conditional is then obtained as
follows:

p(ti points to tik | t<i ; θ) = softmaxk(p
T
i Hi) , Hi = [hi1, . . . ,hik, . . . ,hiM ] , (4)

where softmaxk is the k-th element of the softmax vector and ri = {ti1, . . . , tiM} is the set of
tokens that ti can point to. Naturally, ri only contains tokens from t<i. This is different from [35, 21]
where ri ≡ r is external to the predicted sequence and remains immutable throughout the generation
process.

In Onshape, constraints can be applied not only to whole entities but also to their subparts (e.g., the
center of a circle or the end points of a line segment). To handle this, we introduce special referrable
tokens decoupling pointees from the object attribute tokens. Referrables are injected after each entity
and have the same identifier within each entity type. In order to let the model distinguish between
different subparts, we adjust Equation 3 to use a learnable embedding of a part index instead of
V G [ti−1]. As referrable tokens do not need to be predicted the respective terms are removed from
Equation 1. For the same reason, in Equation 4, hik corresponds to the time step where tik is the
output and not the input. This allows us to avoid having unused Transformer outputs.

Finally, we need to specify how we embed pointers as inputs to the Transformer network. Following
[35, 21] we could reuse hj for tokens that point to tj . Unfortunately, this creates output-to-input
connections which are extremely detrimental to the efficiency of the Transformer architecture —
different time steps can no longer be processed in parallel during training. Instead, we opt for a
simpler solution and employ the standard embedding scheme for discrete tokens (Equation 3).

Sampling from the model Sampling from the byte model is identical to sampling from any typical
Transformer-based LM. The triplet model, on the other hand, requires slightly more bespoke handling.
Figure 2 illustrates the procedure. We start by embedding and feeding a special BOS token into the
Transformer. The Transformer then outputs a collection of triplets, one for each possible token group.
In order to determine which concrete token needs to be emitted, we employ an interpreter (a state
machine) automatically generated from the data specification. Knowing the current state allows us
to choose the right token group and associate the active component of the triplet with a field in the
synthesized object. Once the appropriate field is populated the interpreter transitions to the next state
and produces an output token which is then fed back into the model. The process stops when the
state machine receives the “end” triplet for the outermost repeated field (i.e., object.kind ).

Conditional generation In addition to the unconditional model described above, we explore a
variant that allows us to translate bitmaps into sketches. Here, we simply let the main Transformer
cross-attend to the features extracted from the input image by a ViT network [12]. The specific setup
is detailed in Appendix C.

5 Experiments
Model Sequence Average bits per

object sketch

Uniform unord. bytes 112.23 3683.56

unord. triplets 25.34 847.52

Text interleaved 4.622 139.687

Byte concatenated 4.381 132.621

interleaved 4.252 127.495

Triplet concatenated 4.218 127.913

interleaved 4.103 123.213

Cond. interleaved 1.570 53.730

Table 2: Test likelihoods of various models. The
object column is computed as the average number
of bits per object in a sketch averaged across test
examples. The sketch column is similar except we
do not divide by the number of objects.

We validate our proposed approaches on the
data that we obtained from the repository of
documents publicly available on the Onshape
platform [22]. Following the standard evalua-
tion methodology for autoregressive generative
models [23, 21] we use log-likelihood as our
primary quantitative metric. Additionally, we
provide a variety of random and selected model
samples for qualitative assessment (Figure 3).

Dataset Unlike the majority of the existing
works dealing with CAD sketch generation
[31, 37, 24] we do not rely on SketchGraphs
[31]. Instead, we collect the largest to date
dataset of engineering sketches addressing the
main disadvantage of [31], severe data duplica-
tion. The acquisition and the filtering procedures
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Figure 4: Distribution of various sketch statistics for samples drawn from our unconditional
models. The top-p parameter for Nucleus Sampling is shown in parentheses.

are detailed in Appendix D. For our experiments we split the dataset randomly into 3 parts: 4,656,607
examples for the training set and 50,000 sketches for each the validation and the test set.6

Unconditional generation. In this series of experiments, the goal is to determine how well our
models capture the distribution of sketches in the dataset. We use the same network architecture
for both the byte and the triplet settings.7 We compare two orderings of objects: in the first one
(concatenated), constraints go after the last entity while in the second (interleaved), a constraint
object is injected immediately after the entities it operates on. In both cases, the relative orderings
within both the sequence of entities and the sequence of constraints are taken directly from the
original JSON messages.

Table 2 shows test log-likelihoods obtained by different models. Unsurprisingly, our proposed
methods (rows 4–7) significantly outperform the weak baselines (rows 1–2). The difference between
the two uniform settings is due to the fact that the byte description of a PB message is usually
longer than the triplet one: 239 vs. 456 tokens on average with the maximum length of 959 vs. 1987.
Additionally, the tokens in the triplet representation tend to have smaller range of values (i.e., < 257).

These differences between representations may partially explain why triplet models demonstrate
better performance on the hold-out test set. It’s also worth emphasizing that the byte model does not
receive any explicit information about the parsing state. This seem to make learning more challenging
and as a result compared to the triplet model it takes roughly 3 times more network updates to reach
the highest data likelihood on the validation.

Another important factor affecting the performance of the models is the choice of the object ordering.
As it is evident from Table 2, the interleaved ordering consistently leads to better results. One
explanation for this is that at any point in time, the model has more explicit information about the
relations between the sketch entities produced so far.

In the row 3 of Table 2, we also provide the test log-likelihood for a conventional language modeling
baseline trained on the text representation of PB messages (see Section 3). Here, we employ the
SentencePiece tokenizer [17] with fairly aggressive settings (8000 words in the vocabulary; splitting
at whitespaces switched off) to be able to keep the sequences within the budget of 1024 tokens. As
can be seen from the table, the resulting Transformer model (of exactly the same architecture as other
entries) despite being better than the uniform baselines is still substantially worse than the proposed
methods.

In addition to measuring likelihoods, we sampled 10,000 sketches from the best performing byte
and triplet models and computed distributions of various high-level statistics (Figure 4 and Figure 6
in the appendix). We repeated this procedure both with and without using Nucleus Sampling (NS)
[15]. Both models follow the data distribution closely when we use samples from the unmodified
model output. In this setting, however, a significant fraction of sketches is either malformed (e.g.,
the generated PB message cannot be parsed) or unsolvable: 36% for the byte model and 14% for
the triplet model. NS with top-p = 0.9 skews the sample distribution and seems to have a more
pronounced negative effect on the byte model. The upside is that the resulting sketches become
“cleaner”: the percentage of invalid samples goes down to 25% and 6% for the byte and the triplet
settings respectively.

6The dataset is available at https://bit.ly/3m9QHPd.
7Please refer to Appendix E for details.

8

https://bit.ly/3m9QHPd


Coincident

Length

Horizontal

Parallel

Perpendicular

Vertical

Mirror

Diameter

Coincident
Diameter
Tangent
Equal
Vertical
Length
Parallel
Midpoint
Horizontal
Perpendicular
Distance
Mirror

Coincident

Horizontal

Perpendicular

Vertical

Parallel

Figure 5: Entities and constraints sampled from the unconditional (top) and the conditional (bottom)
triplet models. The first column of nodes represents different entities (all parts are folded into a single
node). The order of nodes (top to bottom) follows the generation order. The second column represents
different constraints also ordered by their index in the sequence. Finally, the third column is reserved
for constraint types, from the most to the least frequent.

Figures 3a and 3b show renders of random samples from several proposed models. Overall, generated
sketches look plausible and exhibit a lot of desired properties: closedness of regions, regularity,
symmetry, a non-trivial amount of fine detail. We observe that the byte model produces slightly less
complex samples with fewer open arcs but this could be a side effect of a particular top-p value. We
also note that the model does not always synthesize sensible sketches — just like any other typical
autoregressive model trained with teacher forcing it suffers from not being able to recover from
mistakes made early on in the sequence [28]. This can potentially be addressed by fine-tuning using,
for example, reinforcement learning.

We show a more detailed sample from the triplet model in Figure 5. While not perfect, the inferred
constraints are reasonable most of the time. The model does a good job at connecting entities using
Coincident constraints but also successfully detects more complex relations spanning more than
two primitives (e.g., Mirror). Having access to constraints gives us opportunity to correct mistakes
in entity prediction by applying an external sketch solver (see Figure 3d). Although this aspect of
sketching was not the main focus of this work, we believe that a tighter integration between the model
and the CAD software will lead to a significant boost in generation quality.

Conditional generation. As discussed in Section 4, we also trained an image-conditional model
using the same regime as for the unconditional one. As expected, it achieves a significantly better fit
(the last row of Table 2) but at the same time retains a non-trivial amount of uncertainty. The latter is
arising, in particular, from the fact that different permutations of entities result in the same rendered
image. Image-conditional samples can be found in Figure 3c. The model was able to nearly perfectly
reconstruct simpler sketches and mostly made mistakes in the presence of a large number of fine
details. Additionally, we compared our system against the nearest neighbour baseline in terms of
visual reconstruction error as measured by Chamfer distance. We found that the proposed method
reduces the error by ≈ 80% (see Appendix H). In order to test the out-of-distribution performance,
we supply the model with several custom-made drawings. Surprisingly, after minor post-processing
to account for the short sequence bias the system manages to produce reasonable reconstructions (see
the bottom example in Figure 5). We detail this experiment in Appendix I.
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6 Discussion

In this work, we have demonstrated how a combination of a general-purpose language modeling
technique alongside an off-the-shelf data serialization protocol can be used to effectively solve
generation of complex structured objects. We showcased the proposed system on the domain of
2D CAD drawings and developed models that can synthesize geometric primitives and relations
between them both unconditionally as well as using a bitmap as a reference. These are only initial
proof-of-concept experiments and we are hoping to see more applications taking advantage of the
flexibility of the developed interface: conditioning on various sketch properties, inferring constraints
given entities and automatically completing drawings, to name a few.

Although we focused our attention on a particular dataset we argue that the approach described
in this paper is largely domain-agnostic. In order to adapt the system to a new kind of data, the
algorithm designer only needs to provide an appropriate Protocol Buffer specification and if the
PB language is too restrictive one can always replace it with a more powerful interpreter. As a
straightforward direction for future work, we can consider extending the method to handle 3D. In
Onshape, 3D operations bear a lot of similarities with sketch constraints — just like constraints, they
can be represented as nested messages containing references to the geometries existing in the scene.
Thus, most of the ideas from the present work can be taken verbatim to this new setting.

We hope that this work will serve as a stepping stone for further advances in the field of automated
CAD but also inspire new ideas and approaches to generative modeling of arbitrary structured data.
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