
Dynamic Grained Encoder for Vision Transformers

A Limitation and Future Work

0

0.2

0.4

0.6

0.8

1

1.2

1.4

256 512 768 1024 1280 1536 1792 2048

Ti
m

e 
on

 G
PU

 (s
)

Resolution

DeiT-S

DeiT-S+DGE

(a) Runtime on a GPU (γ = 0.5)

0

2

4

6

8

10

12

256 384 512 640 768 896 1024

Ti
m

e 
on

 C
PU

 (s
)

Resolution

DeiT-S

DeiT-S+DGE

(b) Runtime on a CPU (γ = 0.5)

Figure 6: The comparison of inference time on a Nvidia Tesla V100 GPU or a Intel Xeon Gold 6130
CPU. The budget for DGE is set to 0.5. "Resolution" refers to the side length of input images.

As shown in Fig. 6(a), one limitation of our work is that the acceleration ratio on GPUs (based on
native PyTorch implementation) is not good when the input image size is small. We suspect that
this is due to the additional modules of DGE resulting in more scheduling processes, and scheduling
processes lead to static time consumption. Nevertheless, our work demonstrates the superiority of
efficiency on large-size input images, which is crucial for many downstream tasks and practical
scenes. As illustrated in Fig. 6(b), our method also has a significant speed gain on CPUs even for
small input images, making it applicable to mobile devices. We look forward to reducing the static
time consumption of DGE through device-specific optimizations in future work.

B Additional Experiments

B.1 Quantitative Analysis on Dynamic Grained Router

We follow the weakly supervised segmentation [64] to show how well the dense query region captures
the foreground region. The metric in [64] is used to measure the gating scores in each DGE layer.
Specifically, we set the candidate granularities Φ to {1, 2}, so that the finer-grained gating scores are
taken as a soft-segmentation of the image. We adopt the evaluation protocol in [64] to report the
quantitative segmentation results. As shown in Tab. 5 and Tab. 6, our gating scores have significant
superiority even over the weakly supervised method, i.e., GradCAM. These results demonstrate that
the DGE could guide the transformer to focus on the foreground regions, which is consistent with the
visualization.

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



Table 6: The quantitative analysis on PVT-S with DGE (γ = 0.5).
Metric Random Layer 1 Layer 6 Layer 11 Layer 16
Accuracy 50.0 55.4 49.1 67.8 65.5
mAP 50.0 68.0 45.2 71.3 79.4
mIoU 31.9 34.5 32.5 50.2 46.6

Table 5: The quantitative analysis on DeiT-S with DGE (γ = 0.5).
Metric Random GradCAM [64] Layer 1 Layer 4 Layer 8
Accuracy 50.0 64.4 55.4 56.3 67.6
mAP 50.0 71.6 63.5 60.7 78.8
mIoU 31.9 40.8 36.4 37.7 48.2

B.2 Runtime Analysis on GPUs

The efficiency of our DGE modules on GPUs mainly relies on the throughput of sparse matrix
multiplication, which is dependent on hardware architecture and code optimization. To demonstrate
the potential of our method for parallel devices, we implement an optimized CUDA kernel with
multiple streams for batched sparse matrix multiplication. With this kernel, we report the runtime
comparison of different backbones for multiple downstream tasks on a Tesla V100 GPU. The results
are reported in Tab. 7 and Tab. 8, where the latency indicates the runtime of backbone.

Table 7: Runtime comparison of MaskRCNN (1x) framework on COCO val set (γ = 0.5).
Backbone APb APm FLOPs Latency (CPU) Latency (GPU)
PVT-S 40.4 37.8 251G 0.88s 33ms
PVT-S+DGE 40.1 37.5 185G 0.44s 26ms

DPVT-S 44.0 40.3 186G 1.09s 50ms
DPVT-S+DGE 43.8 40.0 147G 0.72s 34ms

PVT-M 42.0 39.0 339G 1.26s 73ms
PVT-M+DGE 41.7 38.3 228G 0.62s 40ms

DPVT-M 46.4 42.0 236G 1.80s 75ms
DPVT-M+DGE 45.8 41.4 169G 1.24s 50ms

Table 8: Runtime comparison of Semantic-FPN framework on ADE20K val set (γ = 0.5).
Backbone mIoU FLOPs Latency (CPU) Latency (GPU)
PVT-S 41.8 226G 1.35s 65ms
PVT-S+DGE 41.7 155G 0.72s 42ms

DPVT-S 44.4 157G 1.47s 55ms
DPVT-S+DGE 44.4 121G 0.86s 32ms

PVT-M 44.0 316G 1.91s 100ms
PVT-M+DGE 43.9 202G 1.10s 64ms

DPVT-M 46.8 209G 1.99s 110ms
DPVT-M+DGE 46.1 148G 1.26s 50ms

B.3 Implementation Details for Complexity Computation

We report the FLOPs following the conventional protocol of dynamic networks [32]. Specifically,
we split the entire network into static and dynamic parts. The complexity of the static part, i.e., the
modules without dynamic mechanism including the gating networks in DGE, is computed in the
standard way [1,3,19]. For the complexity of the dynamic part, i.e., the dynamic modules in DGE,
we accumulate the complexity associate with each enabled query according to the gating indices.

2



C Visualization

We provide the visualization of predicted results for object detection and instance segmentation on
COCO val set, which is shown in Fig. 7. The visualization for semantic segmentation on ADE-20K
val set is illustrated in Fig. 8. With similar computational complexity, our approach has advantages in
terms of modeling context and structure preservation.

(a) ResNet-50 (b) PVT-S (c) DPVT-M+DGE

Figure 7: The visualization of different backbones for object detection and instance segmentation
on COCO val set. All the models are based on the Mask-RCNN framework and have similar
computational complexity.

3



(a) PVT-S (b) DPVT-S (c) DPVT-M+DGE

Figure 8: The visualization of different backbones for semantic segmentation on ADE-20K val
set. All the models are based on the Semantic-FPN framework and have similar computational
complexity.

4


	Limitation and Future Work
	Additional Experiments
	Quantitative Analysis on Dynamic Grained Router
	Runtime Analysis on GPUs
	Implementation Details for Complexity Computation

	Visualization

