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Abstract

Graph Convolutional Networks (GCNs) have attracted more and more attentions
in recent years. A typical GCN layer consists of a linear feature propagation
step and a nonlinear transformation step. Recent works show that a linear GCN
can achieve comparable performance to the original non-linear GCN while being
much more computationally efficient. In this paper, we dissect the feature prop-
agation steps of linear GCNs from a perspective of continuous graph diffusion,
and analyze why linear GCNs fail to benefit from more propagation steps. Fol-
lowing that, we propose Decoupled Graph Convolution (DGC) that decouples the
terminal time and the feature propagation steps, making it more flexible and capa-
ble of exploiting a very large number of feature propagation steps. Experiments
demonstrate that our proposed DGC improves linear GCNs by a large margin and
makes them competitive with many modern variants of non-linear GCNs. Code is
available at https://github.com/yifeiwang77/DGC.

1 Introduction

Recently, Graph Convolutional Networks (GCNs) have successfully extended the powerful repre-
sentation learning ability of modern Convolutional Neural Networks (CNNs) to the graph data [7].
A graph convolutional layer typically consists of two stages: linear feature propagation and non-
linear feature transformation. Simple Graph Convolution (SGC) [21] simplifies GCNs by removing
the nonlinearities between GCN layers and collapsing the resulting function into a single linear
transformation, which is followed by a single linear classification layer and then becomes a linear
GCN. SGC can achieve comparable performance to canonical GCNs while being much more com-
putationally efficient and using significantly fewer parameters. Thus, we mainly focus on linear
GCNs in this paper.

Although being comparable to canonical GCNs, SGC still suffers from a similar issue as non-linear
GCNs, that is, more (linear) feature propagation steps K will degrade the performance catastroph-
ically. This issue is widely characterized as the “over-smoothing” phenomenon. Namely, node
features become smoothed out and indistinguishable after too many feature propagation steps [10].

In this work, through a dissection of the diffusion process of linear GCNs, we characterize a funda-
mental limitation of SGC. Specifically, we point out that its feature propagation step amounts to a
very coarse finite difference with a fixed step size ∆t = 1, which results in a large numerical error.
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And because the step size is fixed, more feature propagation steps will inevitably lead to a large
terminal time T = K ·∆t→∞ that over-smooths the node features.

To address these issues, we propose Decoupled Graph Convolution (DGC) by decoupling the termi-
nal time T and propagation stepsK. In particular, we can flexibly choose a continuous terminal time
T for the optimal tradeoff between under-smoothing and over-smoothing, and then fix the terminal
time while adopting more propagation steps K. In this way, different from SGC that over-smooths
with more propagation steps, our proposed DGC can obtain a more fine-grained finite difference
approximation with more propagation steps, which contributes to the final performance both theo-
retically and empirically. Extensive experiments show that DGC (as a linear GCN) improves over
SGC significantly and obtains state-of-the-art results that are comparable to many modern non-linear
GCNs. Our main contributions are summarized as follows:

• We investigate SGC by dissecting its diffusion process from a continuous perspective, and
characterize why it cannot benefit from more propagation steps.

• We propose Decoupled Graph Convolution (DGC) that decouples the terminal time T and
the propagation steps K, which enables us to choose a continuous terminal time flexibly
while benefiting from more propagation steps from both theoretical and empirical aspects.

• Experiments show that DGC outperforms canonical GCNs significantly and obtains state-
of-the-art (SOTA) results among linear GCNs, which is even comparable to many competi-
tive non-linear GCNs. We think DGC can serve as a strong baseline for the future research.

2 Related Work

Graph convolutional networks (GCNs). To deal with non-Euclidean graph data, GCNs are pro-
posed for direct convolution operation over graph, and have drawn interests from various domains.
GCN is firstly introduced for a spectral perspective [26, 7], but soon it becomes popular as a general
message passing algorithm in the spatial domain. Many variants have been proposed to improve its
performance, such as GraphSAGE [5] with LSTM and GAT with attention mechanism [19].

Over-smoothing issue. GCNs face a fundamental problem compared to standard CNNs, i.e., the
over-smoothing problem. Li et al. [10] offer a theoretical characterization of over-smoothing based
on linear feature propagation. After that, many researchers have tried to incorporate effective mech-
anisms in CNNs to alleviate over-smoothing. DeepGCNs [9] shows that residual connection and di-
lated convolution can make GCNs go as deep as CNNs, although increased depth does not contribute
much. Methods like APPNP [8] and JKNet [25] avoid over-smoothing by aggregating multiscale
information from the first hidden layer. DropEdge [16] applies dropout to graph edges and find it
enables training GCNs with more layers. PairNorm [27] regularizes the feature distance to be close
to the input distance, which will not fail catastrophically but still decrease with more layers.

Continuous GCNs. Deep CNNs have been widely interpreted from a continuous perspective,
e.g., ResNet [6] as the Euler discretization of Neural ODEs [11, 3]. This viewpoint has recently
been borrowed to understand and improve GCNs. GCDE [15] directly extends GCNs to a Neural
ODE, while CGNN [22] devises a GCN variant inspired by a new continuous diffusion. Our method
is also inspired by the connection between discrete and continuous graph diffusion, but alternatively,
we focus on their numerical gap and characterize how it affects the final performance.

Linear GCNs. SGC [21] simplifies and separates the two stages of GCNs: feature propagation
and (non-linear) feature transformation. It finds that utilizing only a simple logistic regression after
feature propagation (removing the non-linearities), which makes it a linear GCN, can obtain com-
parable performance to canonical GCNs. In this paper, we further show that a properly designed
linear GCN (DGC) can be on-par with state-of-the-art non-linear GCNs while possessing many
desirable properties. For example, as a linear model, DGC requires much fewer parameters than
non-linear GCNs, which makes it very memory efficient, and meanwhile, its training is also much
faster (∼ 100×) than non-linear models as it could preprocess all features before training.

3 Dissecting Linear GCNs from Continuous Dynamics

In this section, we make a brief review of SGC [21] in the context of semi-supervised node classifi-
cation task, and further point out its fundamental limitations.
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3.1 Review of Simple Graph Convolution (SGC)

Define a graph as G = (V,A), where V = {v1, . . . , vn} denotes the vertex set of n nodes, and
A ∈ Rn×n is an adjacency matrix where aij denotes the edge weight between node vi and vj .
The degree matrix D = diag(d1, . . . , dn) of A is a diagonal matrix with its i-th diagonal entry
as di =

∑
j aij . Each node vi is represented by a d-dimensional feature vector xi ∈ Rd, and we

denote the feature matrix as X ∈ Rn×d = [x1, . . . ,xn]. Each node belongs to one out of C classes,
denoted by a one-hot vector yi ∈ {0, 1}C . In node classification problems, only a subset of nodes
Vl ⊂ V is labeled and we want to predict the labels of the rest nodes Vu = V\Vl.
SGC shows that we can obtain similar performance with a simplified GCN,

ŶSGC = softmax
(
SKXΘ

)
, (1)

which pre-processes the node features X with K linear propagation steps, and then applies a linear
classifier with parameter Θ. Specifically, at the step k, each feature xi is computed by aggregating
features in its local neighborhood, which can be done in parallel over the whole graph for K steps,

X(k) ← SX(k−1), where S = D̃−
1
2 ÃD̃−

1
2 =⇒ X(K) = SKX. (2)

Here Ã = A + I is the adjacency matrix augmented with the self-loop I, D̃ is the degree matrix of
Ã, and S denotes the symmetrically normalized adjacency matrix. This step exploits the local graph
structure to smooth out the noise in each node.

At last, SGC applies a multinomial logistic regression (a.k.a. softmax regression) with parameter Θ

to predict the node labels ŶSGC from the node features of the last propagation step X(K):

ŶSGC = softmax
(
X(K)Θ

)
. (3)

Because both the feature propagation (SKX) and classification (X(K)Θ) steps are linear, SGC is
essentially a linear version of GCN that only relies on linear features from the input.

3.2 Equivalence between SGC and Graph Heat Equation

Previous analysis of linear GCNs focuses on their asymptotic behavior as propagation stepsK →∞
(discrete), known as the over-smoothing phenomenon [10]. In this work, we instead provide a novel
non-asymptotic characterization of linear GCNs from the corresponding continuous dynamics, graph
heat equation [4]. A key insight is that we notice that the propagation of SGC can be seen equiva-
lently as a (coarse) numerical discretization of the graph diffusion equation, as we show below.

Graph Heat Equation (GHE) is a well-known generalization of the heat equation on graph data,
which is widely used to model graph dynamics with applications in spectral graph theory [4], time
series [12], combinational problems [13], etc. In general, GHE can be formulated as follows:{

dXt

dt = −LXt,

X0 = X,
(4)

where Xt (t ≥ 0) refers to the evolved input features at time t, and L refers to the graph Laplacian
matrix. Here, for the brevity of analysis, we take the symmetrically normalized graph Laplacian for
the augmented adjacency Ã and overload the notation as L = D̃−

1
2

(
D̃− Ã

)
D̃−

1
2 = I− S.

As GHE is a continuous dynamics, in practice we need to rely on numerical methods to solve it. We
find that SGC can be seen as a coarse finite difference of GHE. Specifically, we apply the forward
Euler method to Eq. (4) with an interval ∆t:

X̂t+∆t =X̂t −∆tLX̂t = X̂t −∆t(I− S)X̂t = [(1−∆t)I + ∆tS] X̂t. (5)

By involving the update rule for K forward steps, we will get the final features X̂T at the terminal
time T = K ·∆t:

X̂T = [S(∆t)]KX, where S(∆t) = (1−∆t)I + ∆tS. (6)
Comparing to Eq. (2), we can see that the Euler discretization of GHE becomes SGC when the step
size ∆t = 1. Specifically, the diffusion matrix S(∆t) reduces to the SGC diffusion matrix S and the
final node features, X̂T and X(K), become equivalent. Therefore, SGC with K propagation steps
is essentially a finite difference approximation to GHE with K forward steps (step size ∆t = 1 and
terminal time T = K).
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3.3 Revealing the Fundamental Limitations of SGC

Based on the above analysis, we theoretically characterize several fundamental limitations of SGC:
feature over-smoothing, large numerical errors and large learning risks. Proofs are in Appendix B.
Theorem 1 (Oversmoothing from a spectral view). Assume that the eigendecomposition of the
Laplacian matrix as L =

∑n
i=1 λiuiu

>
i , with eigenvalues λi and eigenvectors ui. Then, the heat

equation (Eq. (4)) admits a closed-form solution at time t, known as the heat kernel Ht = e−tL =∑n
i=1 e

−λituiu
>
i . As t → ∞, Ht asymptotically converges to a non-informative equilibrium as

t→∞, due to the non-trivial (i.e., positive) eigenvalues vanishing:

lim
t→∞

e−λit =

{
0, if λi > 0

1, if λi = 0
, i = 1, . . . , n. (7)

Remark 1. In SGC, T = K ·∆t = K. Thus, according to Theorem 1, a large number of propagation
steps K →∞ will inevitably lead to over-smoothed non-informative features.
Theorem 2 (Numerical errors). For the initial value problem in Eq. (4) with finite terminal time T ,
the numerical error of the forward Euler method in Eq. (5) with K steps can be upper bounded by∥∥∥e(K)

T

∥∥∥ ≤ T‖L‖‖X0‖
2K

(
eT‖L‖ − 1

)
. (8)

Remark 2. Since T = K in SGC, the upper bound reduces to c ·
(
eT‖L‖ − 1

)
(c is a constant). We

can see that the numerical error will increase exponentially with more propagation steps.
Theorem 3 (Learning risks). Consider a simple linear regression problem (X,Y) on graph, where
the observed input features X are generated by corrupting the ground truth features Xc with the
following inverse graph diffusion with time T ∗ :

dX̃t

dt
= LX̃t, where X̃0 = Xc and X̃T∗ = X. (9)

Denote the population risk with ground truth features as R(W) = E ‖Y −XcW‖2 and that of

Euler method applied input X (Eq. (5)) as R̂(W) = E
∥∥∥Y − [S(∆t)

]K
XW

∥∥∥2

. Supposing that

E‖Xc‖2 = M <∞, we have the following upper bound:

R̂(W) < R(W) + 2‖W‖2
(
E
∥∥∥e(K)

T̂

∥∥∥2

+M
∥∥∥eT?L

∥∥∥2

·
∥∥∥e−T?L − e−T̂L

∥∥∥2
)
. (10)

Remark 3. Following Theorem 3, we can see that the upper bound can be minimized by finding
an optimal terminal time such that T̂ = T ? and minimizing the numerical error

∥∥∥e(K)

T̂

∥∥∥. While
SGC fixes the step size ∆t = 1, thus T and K are coupled together, which makes it less flexible to
minimize the risk in Eq. (10).

4 The Proposed Decoupled Graph Convolution (DGC)

In this section, we introduce our proposed Decoupled Graph Convolution (DGC) and discuss how it
overcomes the above limitations of SGC.

4.1 Formulation

Based on the analysis in Section 3.3, we need to resolve the coupling between propagation steps K
and terminal time T caused by the fixed time interval ∆t = 1. Therefore, we regard the terminal
time T and the propagation steps K as two free hyperparameters in the numerical integration via a
flexible time interval. In this way, the two parameters can play different roles and cooperate together
to attain better results: 1) we can flexibly choose T to tradeoff between under-smoothing and over-
smoothing to find a sweet spot for each dataset; and 2) given an optimal terminal time T , we can
also flexibly increase the propagation steps K for better numerical precision with ∆t = T/K → 0.
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K=0 K=1 K=10 K=20 K=50
Acc=17.8Acc=57.9 Acc=82.0 Acc= 82.8 Acc=82.9

T=0 T=1 T=5.3 T=50 T=100

Acc=57.9 Acc=57.9 Acc=82.9 Acc=68.5 Acc=27.8

fixed T
(T=5.3)

fixed K
(K=50)

Figure 1: t-SNE input feature visualization and the corresponding test accuracy (%) under different
terminal time (T ) and different number of propagation steps (K). Experiments are conducted with
ours DGC-Euler model on the Cora dataset. Each point represents a node in the graph and its color
denotes the class of the node.

In practice, a moderate number of steps is sufficient to attain the best classification accuracy, hence
we can also choose a minimal K among the best for computation efficiency.

Formally, we propose our Decoupled Graph Convolution (DGC) as follows:

ŶDGC = softmax
(
X̂TΘ

)
, where X̂T = ode_int(X,∆t,K). (11)

Here ode_int(X,∆t,K) refers to the numerical integration of the graph heat equation that starts
from X and runs for K steps with step size ∆t . Here, we consider two numerical schemes: the
forward Euler method and the Runge-Kutta (RK) method.

DGC-Euler. As discussed previously, the forward Euler gives an update rule as in Eq. (5). With
terminal time T and step size ∆t = T/K, we can obtain X̂T after K propagation steps:

X̂T =
[
S(T/K)

]K
X, where S(T/K) = (1− T/K) · I + (T/K) · S. (12)

DGC-RK. Alternatively, we can apply higher-order finite difference methods to achieve better nu-
merical precision, at the cost of more function evaluations at intermediate points. One classical
method is the 4th-order Runge-Kutta (RK) method, which proceeds with

X̂t+∆t = X̂t +
1

6
∆t (R1 + 2R2 + 2R3 + R4)

∆
= S

(∆t)
RK X̂t, (13)

where

R1 = X̂k, R2 = X̂k −
1

2
∆tLR1, R3 = X̂k −

1

2
∆tLR2, R4 = X̂k −∆tLR3. (14)

Replacing the propagation matrix S(T/K) in DGC-Euler with the RK-matrix S
(T/K)
RK , we can get a

4th-order model, namely DGC-RK, whose numerical error can be reduced to O(1/K4) order.

Remark. In GCN [7], a self-loop I is heuristically introduced in the adjacency matrix Ã = A + I
to prevent numerical instability with more steps K. Here, we notice that the DGC-Euler diffusion
matrix S(∆t) = (1−∆t)I+∆tS naturally incorporates the self-loop I into the diffusion process as a
momentum term, where ∆t flexibly tradeoffs information from the self-loop and the neighborhood.
Therefore, in DGC, we can also remove the self-loop from Ã and increasing K is still numerically
stable with fixed T . We name the resulting model as DGC-sym with symmetrically normalized
adjacency matrix Ssym = D−

1
2 AD−

1
2 , which aligns with the canonical normalized graph Laplacian

Lsym = D−
1
2 (D−A) D−

1
2 = I − Ssym in the spectral graph theory [4]. Comparing the two

Laplacians from a spectral perspective, L = I − S has a smaller spectral range than Lsym [21].
According to Theorem 2, L will have a faster convergence rate of numerical error.
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Table 1: A comparison of propagation rules. Here X(k) ∈ X represents input features after k feature
propagation steps and X(0) = X; H(k) denotes the hidden features of non-linear GCNs at layer k;
W denotes the weight matrix; σ refers to a activation function; α, β are coefficients.

Method Type Propagation rule

GCN [7] Non-linear H(k) = σ
(
SH(k−1)W(k−1)

)
APPNP [8] Non-linear H(k) = (1− α)SH(k−1) + αH(0)

CGNN [22] Non-linear H(k) = (1− α)SH(k−1)W + H(0)

SGC [21] Linear X(k) = SX(k−1))
DGC-Euler (ours) Linear X(k) = (1− T/K) ·X(k−1) + (T/K) · SX(k−1)

4.2 Verifying the Benefits of DGC

Here we demonstrate the advantages of DGC both theoretically and empirically.

Theoretical benefits. Revisiting Section 3.3, DGC can easily alleviate the limitations of existing
linear GCNs shown in Remarks 1, 2, 3 by decoupling T and K.

• For Theorem 1, by choosing a fixed terminal time T with optimal tradeoff, increasing the
propagation steps K in DGC will not lead to over-smoothing as in SGC;

• For Theorem 2, with T is fixed, using more propagation steps (K →∞) in DGC will help
minimize the numerical error

∥∥∥e(K)
T

∥∥∥ with a smaller step size ∆t = T/K → 0;

• For Theorem 3, by combining a flexibly chosen optimal terminal time T ∗ and minimal
numerical error with a large number of steps K, we can get minimal learning risks.

Empirical evidence. To further provide an intuitive understanding of DGC, we visualize the propa-
gated input features of our proposed DGC-Euler on the Cora dataset in Figure 1. The first row shows
that there exists an optimal terminal time T ∗ for each dataset with the best feature separability (e.g.,
5.3 for Cora). Either a smaller T (under-smooth) or a larger T (over-smooth) will mix the features
up and make them more indistinguishable, which eventually leads to lower accuracy. From the sec-
ond row, we can see that, with fixed optimal T , too large step size ∆t (i.e., too small propagation
steps K) will lead to feature collapse, while gradually increasing the propagation steps K makes the
nodes of different classes more separable and improve the overall accuracy.

4.3 Discussions

To highlight the difference of DGC to previous methods, we summarize their propagation rules
in Table 1. For non-linear methods, GCN [7] uses the canonical propagation rule which has the
oversmoothing issue, while APPNP [8] and CGNN [22] address it by further aggregating the initial
hidden state H(0) repeatedly at each step. In particular, we emphasize that our DGC-Euler is differ-
ent from APPNP in terms of the following aspects: 1) DGC-Euler is a linear model and propagates
on the input features X(k−1), while APPNP is non-linear and propagates on non-linear embedding
H(k−1); 2) at each step, APPNP aggregates features from the initial step H(0), while DGC-Euler
aggregates features from the last step X(k−1); 3) APPNP aggregates a large amount (1 − α) of
the propagated features SH(k−1) while DGC-Euler only takes a small step ∆t (T/K) towards the
new features SX(k−1). For linear methods, SGC has several fundamental limitations as analyzed
in Section 3.3, while DGC addresses them by flexible and fine-grained numerical integration of the
propagation process.

Our dissection of linear GCNs also suggests a different understanding of the over-smoothing prob-
lem. As shown in Theorem 1, over-smoothing is an inevitable phenomenon of (canonical) GCNs,
while we can find a terminal time to achieve an optimal tradeoff between under-smoothing and over-
smoothing. However, we cannot expect more layers can bring more profit if the terminal time goes
to infinity, that is, the benefits of more layers can only be obtained under a proper terminal time.
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Table 2: Test accuracy (%) of semi-supervised node classification on citation networks.

Type Method Cora Citeseer Pubmed

Non-linear

GCN [7] 81.5 70.3 79.0
GAT [19] 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3
GraphSAGE [5] 82.2 71.4 75.8
JKNet [25] 81.1 69.8 78.1
APPNP [8] 83.3 71.8 80.1
GWWN [24] 82.8 71.7 79.1
GraphHeat [23] 83.7 72.5 80.5
CGNN [22] 84.2 ± 0.6 71.8 ± 0.7 76.8 ± 0.6
GCDE [15] 83.8 ± 0.5 72.5 ± 0.5 79.9 ± 0.3

Linear

Label Propagation [28] 45.3 68.0 63.0
DeepWalk [14] 70.7 ± 0.6 51.4 ± 0.5 76.8 ± 0.6
SGC [21] 81.0 ± 0.0 71.9 ± 0.1 78.9 ± 0.0
SGC-PairNorm [27] 81.1 70.6 78.2
SIGN-linear [17] 81.7 72.4 78.6
DGC (ours) 83.3 ± 0.0 73.3 ± 0.1 80.3 ± 0.1

5 Experiments

In this section, we conduct a comprehensive analysis on DGC and compare it against both linear
and non-linear GCN variants on a collection of benchmark datasets.

5.1 Performance on Semi-supervised Node Classification

Setup. For semi-supervised node classification, we use three standard citation networks, Cora,
Citeseer, and Pubmed [18] and adopt the standard data split as in [7, 19, 24, 23, 15]. Here, we
compare our DGC against several representative non-linear and linear methods that also adopts the
standard data split. For non-linear GCNs, we include 1) classical baselines like GCN [7], GAT [20],
GraphSAGE [5], APPNP [8] and JKNet [25]; 2) spectral methods using graph heat kernel [24, 23];
and 3) continuous GCNs [15, 22]. For linear methods, we present the results of Label Propagation
[28], DeepWalk [14], SGC (linear GCN) [21] as well as its regularized version SGC-PairNorm [27].
We also consider a linear version of SIGN [17], SIGN-linear, which extends SGC by aggregating
features from multiple propagation stages (K = 1, 2, . . . ). For DGC, we adopt the Euler scheme,
i.e., DGC-Euler (Eq. (12)) by default for simplicity. We report results averaged over 10 random
runs. Data statistics and training details are in Appendix A.

We compare DGC against both linear and non-linear baselines for the semi-supervised node classi-
fication task, and the results are shown in Table 2.

DGC v.s. linear methods. We can see that DGC shows significant improvement over previous
linear methods across three datasets. In particular, compared to SGC (previous SOTA methods),
DGC obtains 83.3 v.s. 81.0 on Cora, 73.3 v.s. 71.9 on Citeseer and 80.3 v.s. 78.9 on Pubmed. This
shows that in real-world datasets, a flexible and fine-grained integration by decoupling T and K
indeed helps improve the classification accuracy of SGC by a large margin. Besides, DGC also
outperforms the multiscale SGC, SIGN-linear, suggesting that multiscale techniques cannot fully
solve the limitations of SGC, while DGC can overcome these limitations by decoupling T and K.
As discussed in Appendix C, DGC still shows clear advantages over SIGN when controlling the
terminal time T while being more computationally efficient, which indicates that the advantage of
DGC is not only a real-valued T , but also the improved numerical precision by adopting a large K.

DGC v.s. non-linear models. Table 2 further shows that DGC, as a linear model, even outper-
forms many non-linear GCNs on semi-supervised tasks. First, DGC improves over classical GCNs
like GCN [7], GAT [19] and GraphSAGE [5] by a large margin. Also, DGC is comparable to, and
sometimes outperforms, many modern non-linear GCNs. For example, DGC shows a clear advan-
tage over multiscale methods like JKNet [25] and APPNP [8]. DGC is also comparable to spectral
methods based on graph heat kernel, e.g., GWWN [24], GraphHeat [23], while being much more
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Table 3: Test accuracy (%) of fully-supervised node classification on citation networks.

Type Method Cora Citeseer Pubmed

Non-linear
GCN [7] 85.8 73.6 88.1
GAT [19] 86.4 74.3 87.6
JK-MaxPool [25] 89.6 77.7 -
JK-Concat [25] 89.1 78.3 -
JK-LSTM [25] 85.8 74.7 -
APPNP [8] 90.2 79.8 86.3

Linear SGC [21] 85.8 78.1 83.3
DGC (ours) 88.2 ± 0.0 78.7 ± 0.0 89.4 ± 0.0

efficient as a simple linear model. Besides, compared to non-linear continuous models like GCDE
[15] and CGNN [22], DGC also achieves comparable accuracy only using a simple linear dynamic.

5.2 Performance on Fully-supervised Node Classification

Setup. For fully-supervised node classification, we also use the three citation networks, Cora, Cite-
seer and Pubmed, but instead randomly split the nodes in three citation networks into 60%, 20% and
20% for training, validation and testing, following the previous practice in [25]. Here, we include
the baselines that also have reported results in the fully supervised setting, such as GCN [7], GAT
[19] (reported baselines in [25]), and the three variants of JK-Net: JK-MaxPool, JK-Concat and
JK-LSTM [25]. Besides, we also reproduce the result of APPNP [8] for a fair comparison. Dataset
statistics and training details are described in Appendix.

Results. The results of the fully-supervised semi-classification task are basically consistent with
the semi-supervised setting. As a linear method, DGC not only improves the state-of-the-art linear
GCNs by a large margin, but also outperforms GCN [7], GAT [19] significantly. Besides, DGC is
also comparable to multiscale methods like JKNet [25] and APPNP [8], showing that a good linear
model like DGC is also competitive for fully-supervised tasks.

5.3 Performance on Large Scale Datasets

Table 4: Test accuracy (%) comparison with in-
ductive methods on on a large scale dataset, Red-
dit. Reported results are averaged over 10 runs.
OOM: out of memory.

Type Method Acc.

Non-linear

GCN [7] OOM
FastGCN [2] 93.7
GraphSAGE-GCN [5] 93.0
GraphSAGE-mean [5] 95.0
GraphSAGE-LSTM [5] 95.4
APPNP [8] 95.0

Linear
RandDGI [20] 93.3
SGC [21] 94.9
DGC (ours) 95.8

Setup. More rigorously, we also conduct the
comparison on a large-scale node classification
dataset, the Reddit networks [5]. Following
SGC [21], we adopt the inductive setting, where
we use the subgraph of training nodes as train-
ing data and use the whole graph for the valida-
tion/testing data. For a fair comparison, we use
the same training configurations as SGC [21]
and include its reported baselines, such as GCN
[7], FastGCN [2], three variants of GraphSAGE
[5], and RandDGI (DGI with randomly initial-
ized encoder) [20]. We also include APPNP [8]
for a comprehensive comparison.

Results. We can see DGC still achieves the
best accuracy among linear methods and im-
prove 0.9% accuracy over SGC. Meanwhile, it
is superior to the three variants of GraphSAGE
as well as APPNP. Thus, DGC is still the state-
of-the-art linear GCNs and competitive against
nonlinear GCNs on large scale datasets.
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Figure 2: Left: test accuracy (%) with increasing feature propagation steps on Cora. Middle: com-
parison of robustness under different noise scales σ on three citation networks. Right: a comparison
of relative total training time for 100 epochs on the Pubmed dataset.

Table 5: Comparison of explicit computation time of different training stages on the Pubmed dataset
with a single NVIDIA GeForce RTX 3090 GPU.

Type Method Preprocessing Time Training Time Total Time

Linear
SGC (K = 2) [21] 3.8 ms 61.5 ms 65.3 ms
DGC (K = 2) (ours) 3.8 ms 61.5 ms 65.3 ms
DGC (K = 100) (ours) 169.2 ms 55.8 ms 225.0 ms

Nonlinear GCN [7] 0 17.0 s 17.0 s

5.4 Empirical Understandings of DGC

Setup. Here we further provide a comprehensive analysis of DGC. First, we compare its over-
smoothing behavior and computation time against previous methods. Then we analyze several fac-
tors that affect the performance of DGC, including the Laplacian matrix L, the numerical schemes
and the terminal time T . Experiments are conducted on the semi-supervised learning tasks, and we
adopt DGC-Euler with the default hyperparameters unless specified.

Non-over-smoothing with increasing steps. In the left plot of Figure 2, we compare different
GCNs with increasing model depth (non-linear GCNs) or propagation steps (linear GCNs) from 2 to
1000. Baselines include SGC [21], GCN [7], and our DGC with three different terminal time T (1,
5.3, 10). First, we notice that SGC and GCN fail catastrophically when increasing the depth, which
is consistent with the previously observed over-smoothing phenomenon. Instead, all three DGC
variants can benefit from increased steps. Nevertheless, the final performance will degrade if the
terminal time is either too small (T = 1, under-smoothing) or too large (T = 10, over-smoothing).
DGC enables us to flexibly find the optimal terminal time (T = 5.3). Thus, we can obtain the
optimal accuracy with an optimal tradeoff between under-smoothing and over-smoothing.

Robustness to feature noise. In real-world applications, there are plenty of noise in the collected
node attributes, thus it is crucial for GCNs to be robust to input noise [1]. Therefore, we compare
the robustness of SGC and DGC against Gaussian noise added to the input features, where σ stands
for the standard deviation of the noise. Figure 2 (middle) shows that DGC is significantly more
robust than SGC across three citation networks, and the advantage is clearer on larger noise scales.
As discussed in Theorem 3, the diffusion process in DGC can be seen as a denoising procedure, and
consequently, DGC’s robustness to feature noise can be contributed to the optimal tradeoff between
over-smoothing and under-smoothing with a flexible choice of T and K. In comparison, SGC is not
as good as DGC because it cannot find such a sweet spot accurately.

Computation time. In practice, linear GCNs can accelerate training by pre-processing features with
all propagation steps and storing them for the later model training. Since pre-processing costs much
fewer time than training (<5% in SGC), linear GCNs could be much faster than non-linear ones. As
shown in Figure 2 (right), DGC is slightly slower (3×) than SGC, but DGC achieves much higher
accuracy. Even so, DGC is still much faster than non-linear GCNs (>100×). Indeed, as further
shown in Table 5, the computation overhead of DGC over SGC mainly lies in the preprocessing
stage, which is very small in SGC and only leads to around twice longer total time. Instead, GCN is
much slower as it involves propagation in each training loop, leading to much slower training.
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Figure 3: Algorithmic analysis of our proposed DGC. Left: test accuracy (%) of two kinds of
Laplacian, L = I − S (with self-loop) and Lsym = I − Ssym (without self-loop), with increasing
steps K and fixed time T on Cora. Middle: test accuracy (%) of two numerical schemes, Euler and
Runge-Kutta, with increasing steps K and fixed T under fixed terminal time on Cora. Right: test
accuracy (%) with varying terminal time T and fixed steps K on Cora.

Graph Laplacian. As shown in Figure 3 (left), in DGC, both the two Laplacians, L (with self-loop)
and Lsym (without self-loop), can consistently benefit from more propagation steps without leading
to numerical issues. Further comparing the two Laplacians, we can see that the augmented Laplacian
L obtains higher test accuracy than the canonical Laplacian Lsym and requires fewer propagation
steps K to obtain good results, which could also be understood from our analysis in Section 3.3.

Numerical scheme. By comparing different numerical schemes in Figure 3 (middle), we find that
the Runge-Kutta method demonstrates better accuracy than the Euler method with a small K. Nev-
ertheless, as K increases, the difference gradually vanishes. Thus, the Euler method is sufficient for
DGC to achieve good performance, and it is more desirable in terms of its simplicity and efficiency.

Table 6: Optimal terminal time T ∗ on the trans-
ductive task, Pubmed, and the inductive task, Red-
dit, with different Laplacians.

Dataset Laplacian T ∗ Acc

Pubmed I− S 6.0 80.3
I− Ssym 6.0 79.8

Reddit I− S 2.7 95.5
I− Ssym 2.6 95.8

Terminal time T . In Figure 3 (right), we com-
pare the test accuracy with different terminal
time T . We show that indeed, in real-world
datasets, there exists a sweet spot that achieves
the optimal tradeoff between under-smoothing
and over-smoothing. In Table 6, we list the best
terminal time that we find on two large graph
datasets, Pubmed and Reddit. We can see that
T is almost consistent across different Lapla-
cians on each dataset, which suggests that the
optimal terminal time T ∗ is an intrinsic prop-
erty of the dataset.

6 Conclusions

In this paper, we have proposed Decoupled Graph Convolution (DGC), which improves signifi-
cantly over previous linear GCNs through decoupling the terminal time and feature propagation
steps from a continuous perspective. Experiments show that our DGC is competitive with many
modern variants of non-linear GCNs while being much more computationally efficient with much
fewer parameters to learn.

Our findings suggest that, unfortunately, current GCN variants still have not shown significant ad-
vantages over a properly designed linear GCN. We believe that this would attract the attention of the
community to reconsider the actual representation ability of current nonlinear GCNs and propose
new alternatives that can truly benefit from nonlinear architectures.
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