
A Topological Perspective on Causal Inference:
Supplement

In this supplement we give proofs of all the main results in the text.

A Structural Causal Models (§2)

A.1 Background on Relations and Orders

Definition A.1.1. Let C be a set. Then a subset R ⊂ C × C is called a binary relation on C. We
write cRc′ if (c, c′) ∈ R. The binary relation R is well-founded if every nonempty subset D ⊂ C has
a minimal element with respect to R, i.e., if for every nonempty D ⊂ C, there is some d ∈ D, such
that there is no d′ ∈ D such that d′Rd. The binary relation ≺ ⊂ C ×C is a (strict) total order if it is
irreflexive, transitive, and connected: either c ≺ c′ or c′ ≺ c for all c 6= c′ ∈ C.

Example 1. The edges of a dag form a well-founded binary relation on its nodes. If V = {Vn}n≥0,
then the binary relation→ defined by Vm → Vn iff either 0 < m < n or n = 0 < m is well-founded
but not extendible to an ω-like total order (see Fact 2) and not locally finite: V0 has infinitely many
predecessors V1, V2, . . .

A.2 Proofs

Proof of Proposition 1. We assume without loss that U(V ) = U for every V ∈ V. For each
u ∈ χU, well-founded induction along → shows unique existence of a mM(u) ∈ χV solving
fV
(
πPa(V )(m

M(u)),u
)

= πV (mM(u)) for each V . We claim the resulting function mM is
measurable. One has a clopen basis of cylinders, so it suffices to show each preimage (mM)−1(v) is
measurable. Recall that here v denotes the cylinder set π−1

V ({v}) ∈ B(χV), for v ∈ χV . Once again
this can be established inductively. Note that

(mM)−1(v) =
⋃

p∈χPa(V )

[
(mM)−1(p) ∩ πU

(
f−1
V ({v}) ∩ ({p} × χU)

)]
.

which is a finite union (by local finiteness) of measurable sets (by the inductive hypothesis) and
therefore measurable. Thus for anyM the pushforward pM = mM∗ (P ) is a measure on B(χV) and
gives the observational distribution (Definition 4).

Remark on Definition 6. To see that pMcf thus defined is a measure, note that pMcf = pMA and apply
Proposition 1, where the modelMA is defined in Definition A.2.1. This is similar in spirit to the
construction of “twinned networks” [2] or “single-world intervention graphs” [8].

Definition A.2.1. Given M as in Def. 3 and a collection of interventions A form the following
counterfactual model MA = 〈U, A × V, {f(α,V )}(α,V ), P 〉, over endogenous variables A × V.
The counterfactual model has the influence relation→′, defined as follows. Where α′, α ∈ A let
(α′, V ′) →′ (α, V ) iff α′ = α and V ′ → V . The exogenous space U and noise distribution P of
MA are the same as those ofM, the exogenous parents sets {U(V )}V are also identical, and the
functions are {f(α,V )}(α,V ) defined as follows. For any W := w ∈ A, V ∈ V, p ∈ χPa(V ), and
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u ∈ χU(V ) let

f(W:=w,V )

(
(W := w,p),u

)
=

{
πV (w), V ∈W

fV (p,u), V /∈W
.

B Proofs from §3

Remark on exact characterizations of S3, S2. Rich probabilistic languages interpreted over S3 and
S2 were axiomatized in [5]. This axiomatization, along with the atomless restriction, gives an
exact characterization for the hierarchy sets. Standard form, defined below, gives an alternative
characterization exhibiting each S≺3 as a particular atomless probability space (Corollary B.1.1). For
SX→Y

2 (or S2 in the two-variable case) we need the characterization for the proof of the hierarchy
separation result, so it is given explicitly as Lemma B.3.1 in the section below on 2VE-spaces.

B.1 Standard Form

Fix ≺. Note that the map $3 restricted to M≺ does not inject into S≺3 , as any trivial reparametriza-
tions of exogenous noise are distinguished in M≺. It is therefore useful to identify a “standard”
subclass Mstd

≺ on which $3 is injective with image S≺3 , and in which we lose no expressivity.
Notation. Let Pred(V ) = {V ′ : V ′ ≺ V } and denote a deterministic mechanism for V mapping
a valuation of its predecessors to a value as fV ∈ χPred(V ) → χV . Write an entire collection of
such mechanisms, one for each variable, as f = {fV }V . A set B ⊂ V is ancestrally closed if
B =

⋃
V ∈B Pred(V ). For any ancestrally closed B let ξ(B) =

{
(V,p) : V ∈ B,p ∈ χPred(V )

}
.

Note that F(B) =×(V,p)∈ξ(B)
χV encodes the set of all possible such collections of deterministic

mechanisms, and we write, e.g., f ∈ F(B). Abbreviate ξ(V), F(V) for the entire endogenous
variable set V as ξ, F respectively. We also use f to abbreviate the set⋂

V ∈B
p∈χPred(V )

π−1
(Pred(V ):=p,V )({f(p)}) ∈ B(χA×V) (B.1)

so we can write, e.g., pMcf (f) for the probability inM that the effective mechanisms f have been
selected (by exogenous factors) for the variables B.
Definition B.1.1. The SCMM = 〈U,V, {fV }V , P 〉 of Def. 3 is standard form over ≺, and we
writeM∈Mstd

≺ , if we have that → = ≺ for its influence relation, U = {U} for a single exogenous
variable U with χU = F, P ∈ P(F) for its exogenous noise space, and for every V , we have that
U(V ) = U = {U} and the mechanism fV takes p, ({fV }V ) 7→ fV (p) for each p ∈ χPred(V ) and
joint collection of deterministic functions {fV }V ∈ F = χU .

Each unit u in a standard form model amounts to a collection {fV }V of deterministic mechanisms,
and each variable is determined by a mechanism specified by the “selector” endogenous variable U .
Lemma B.1.1. LetM∈M≺. Then there existsMstd ∈Mstd

≺ such that $3(M) = $3(Mstd).

Proof. To giveMstd define a measure P ∈ P(F) as in Def. B.1.1 on a basis of cylinder sets by the
counterfactual inM
P
(
π−1

(V1,p1)({v1}) ∩ · · · ∩ π−1
(Vn,pn)({vn})

)
= pMcf

(
π−1

(Pred(V1):=p1,V1)({v1}) ∩ · · · ∩ π−1
(Pred(Vn):=pn,Vn)({vn})

)
. (B.2)

To show that $3(M) = $3(Mstd) it suffices to show that any two models agreeing on all counter-
factuals of the form (B.2) must agree on all counterfactuals in A. Suppose αi ∈ A, Vi ∈ V, vi ∈ χVi
for i = 1, . . . , n. Let B =

⋃
iPred(Vi) and given f = {fV }V , define fW:=w

V to be a constant
function mapping to πV (w) if V ∈W and fW:=w

V = fV otherwise. Write f � V = v if πV (v) = v
for that v ∈ χV such that fV

(
πPred(V )(v)

)
= πV (v) for all V . Finally, note that

n⋂
i=1

π−1
(αi,Vi)

({vi}) =
⊔

{fV }V∈B∈F(B)

{fαiV }V∈B�Vi=vi
for each i

{fV }V ∈B
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where each set in the finite disjoint union is of the form (B.1). Thus the measure of the left-hand side
can be written as a sum of measures of such sets, which use only counterfactuals of the form (B.2),
showing agreement of the measures (by Fact 1).

Corollary B.1.1. S≺3 bijects with the set of atomless measures in P(F), which we denote S≺std. We
write the map as $≺std : S≺3 → S≺std.

Where the order ≺ is clear, the above result permits us to abuse notation, using e.g. µ to denote either
an element of S≺3 or its associated point $≺std(µ) in S≺std. We will henceforth indulge in such abuse.

Proof of Fact 4. The follows easily from Lem. B.1.2 below, adapted from Suppes and Zanotti [9,
Thm. 1]. This shows that every atomless distribution is generated by some SCM; furthermore, it can
chosen so as to exhibit no causal effects whatsoever.

Definition B.1.2. Say that ν ∈ P
(
F(V)

)
is acausal if ν(π−1

(V,p)({v1}) ∩ π−1
(V,p′)({v2})

)
= 0 for

every (V,p), (V,p′) ∈ ξ and v1 6= v2 ∈ χV .

Lemma B.1.2. Let µ ∈ P(χV) be atomless. Then there is aM ∈Mstd
≺ (see Def. B.1.1) with an

acausal noise distribution such that µ = ($1 ◦$2 ◦$3)(M).

Proof. Consider ν ∈ P
(
F(V)

)
= P

(×(V,p)
χV
)

determined on a basis as follows:

ν
(
π−1

(V1,p1)({v1}) ∩ · · · ∩ π−1
(Vn,pn)({vn})

)
= µ

(
π−1
V1

({v1}) ∩ · · · ∩ π−1
Vn

({vn})
)
. This is clearly

acausal and atomless.

B.2 Proofs from §3.2

Proof of Prop. 2 (Collapse set C1 is empty). Let µ ∈ S1 and ν ∈ S≺std with ($1 ◦$2 ◦$−1
std)(ν) =

µ. By Lemma B.1.2 we may assume ν is acausal. Let X be the first, and Y the second variable
with respect to ≺. Note there are x∗, y∗ such that µ(π−1

X ({x∗}) ∩ π−1
Y ({y∗})) > 0; let x† 6= x∗,

y† 6= y∗. Consider ν′ defined as follows where z3 stands for any set of the form π−1
(V1,p1)({v1}) ∩

· · · ∩ π−1
(Vn,pn)({vn}) ⊂ F(V), for Vi ∈ V, pi ∈ χP(Vi), vi ∈ χVi , and z1 is the corresponding

π−1
V1

({v1}) ∩ · · · ∩ π−1
Vn

({vn}) ⊂ χV.

ν′
(
π−1

(X,())({x}) ∩ π
−1
(Y,(x∗))({y∗}) ∩ π

−1
(Y,(x†))

({y†}) ∩z3

)
=

µ
(
π−1
X ({x∗}) ∩ π−1

Y ({y∗}) ∩z1

)
, x = x∗, y∗ = y∗ 6= y†

0, x = x∗, y∗ = y† 6= y†
0, x = x∗, y∗ = y† = y∗

µ
(
π−1
X ({x∗}) ∩ π−1

Y ({y†}) ∩z1

)
, x = x∗, y∗ = y† = y†

µ
(
π−1
X ({x†}) ∩ π−1

Y ({y}) ∩z1

)
, x = x†

We claim that µ = µ′ where µ′ = ($1 ◦$2)(ν′); it suffices to show agreement on sets of the form
π−1
X ({x}) ∩ π−1

Y ({y}) ∩ z1. If x = x† then the last case above occurs; if x = x∗ and y = y†

then we are in the fourth case; if x = x∗ and y = y∗ then exclusively the first case applies. In all
cases the measures agree. Let (να)α = $2(ν) and (ν′α)α = $2(ν′) be the Level 2 projections of ν,
ν′ respectively. Note that νX:=x†(y

†) < ν′X:=x†(y
†). This shows that the standard-form measures

ν, ν′ project down to different points in S2 (in particular differing on the Y -marginal at the index
corresponding to the intervention X := x†) while projecting to the same point in S1. Thus µ /∈ C1

and since µ was arbitrary, C1 = ∅.

Example 2 (Collapse set C2 is nonempty). We present a µ ∈ S≺std for which $2(µ) ∈ C2. Let
Sn ⊂ V be the ancestrally closed (§B.1) set of the n least variables with respect to ≺ and X be
the first variable with respect to ≺; thus, e.g., S1 = {X}. Where f = {fV }V ∈Sn ∈ F(Sn), define
µ(f) = 0 if there is any V ∈ Sn \ {X}, p 6= (0, . . . , 0) ∈ χPred(V ) such that fV (p) = 0, and
otherwise define µ(f) = 1/2n. Note that this example is monotonic in the sense of [1, 7].

We claim µ′ = µ for any µ′ ∈ S≺std projecting to the same Level 2, i.e., such that $2(µ′) = $2(µ);
note that it suffices to consider only candidate counterexamples with order ≺ since $2(µ) /∈ S≺

′

2

3



for any ≺′ 6= ≺ . It suffices to show that µ(f) = µ′(f) for any n and f = {fV }V ∈Sn ; recall that in
the measures, f denotes a set of the form (B.1). Let (µα)α = $2(µ) ∈ S≺2 and (µ′α)α = $2(µ′),
with (µα)α = (µ′α)α. Since µ′Pred(V ):=p(π−1

V ({1})) = 1 for any V ∈ Sn \ {X}, p 6= (0, . . . , 0),
probability bounds show µ′(f) vanishes unless fV (p) = 1 for each such p, in which case

µ′(f) = µ′
( n⋂
i=1

π−1
(Vi,{V1,...,Vi−1}:=(0,...,0))({vi})

)
(B.3)

for some vi ∈ χVi , where we have labeled the elements of Sn as V1, . . . , Vn, with V1 ≺ · · · ≺ Vn.
We claim this is reducible—again using probabilistic reasoning alone—to a linear combination of
quantities fixed by (µ′α)α, the Level 2 projection of µ′, which is the same as the projection (µα)α of
µ. This can be seen by an induction on the number m = |M | where M = {i : vi = 1}: note (B.3)
becomes

µ′
( ⋂
i/∈M

π−1
(Vi,{V1,...,Vi−1}:=(0,...,0))({0})

)
−
∑

M ′(M
µ′
( ⋂
i/∈M ′

π−1
(Vi,{V1,...,Vi−1}:=(0,...,0))({0}) ∩

⋂
i∈M ′

π−1
(Vi,{V1,...,Vi−1}:=(0,...,0))({1})

)
and the inductive hypothesis implies each summand can be written in the sought form while the first
term becomes µ′

(⋂
i/∈M π−1

(Vi,())
({0})

)
= µ′()

(⋂
i/∈M π−1

V1
({0})

)
= µ()

(⋂
i/∈M π−1

V1
({0})

)
. Here ()

abbreviates the empty intervention ∅ := (). Thus any Level 3 quantity reduces to Level 2, on which
the two measures agree by hypothesis.

B.3 Remarks on §3.3

Lemma B.3.1. Let (µα)α ∈×α∈AX→Y2
P(χX,Y ). Then (µα)α ∈ SX→Y

2 iff

µX:=x(x) = 1 (B.4)

for every x ∈ χX and

µX:=x(y) ≥ µ()(x, y) (B.5)

for every x ∈ χX , y ∈ χY . Here x, y abbreviates the basic set π−1
X ({x}) ∩ π−1

Y ({y}).

Proof. It is easy to see that (B.4), (B.5) hold for any (µα)α. For the converse, consider the two-
variable model over endogenous Z = {X,Y } with X ≺ Y ; note that |F(Z)| = 8. A result of Tian
et al. [10] gives that this model is characterized exactly by (B.4), (B.5) so for any such (µα)α there
is a distribution on F(Z) such that this model induces (µα)α. It is straightforward to extend this
distribution to an atomless measure on F(V).

C Proofs from §4

Proof of Prop. 4. This amounts to the continuity of projections in product spaces and marginalizations
in weak convergence spaces. The latter follows easily from results in §3.1.3 of [4] or [3].

Proof of Thm. 2. We show how Theorem 3.2.1 of [4] can be applied to derive the result. Specifically,
let Ω =×α

χV. Let I be the usual clopen basis, and let W be the set of Borel measures µ ∈ P(Ω)
that factor as a product µ = ×αµα where each µα ∈ S1 and (µα)α ∈ S2. This choice of W
corresponds exactly to our notion of experimental verifiability.

It remains to check that a set is open in W iff the associated set is open in S2 (homeomorphism).
It suffices to show their convergence notions agree. Suppose (νn)n is a sequence, each νn ∈ W ,
converging to ν = ×αµα ∈W . We have for each n that νn = ×αµn,α such that (µn,α)α ∈ S2. By
Theorem 3.1.4 in [4], which is straightforwardly generalized to the infinite product, for each fixed
α we have (µn,α)n ⇒ µα. This is exactly pointwise convergence in the product space S2, and the
same argument in reverse works for the converse.
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D Proofs from §5

We will use the following result to categorize sets in the weak topology.
Lemma D.0.1. If X ⊂ ϑ is a basic clopen, the map pX : (S, τw)→ ([0, 1], τ) sending µ 7→ µ(X)
is continuous and open (in its image), where τ is as usual on [0, 1] ⊂ R.

Proof. Continuous: the preimage of the basic open (r1, r2) ∩ pX(S) where r1, r2 ∈ Q is {µ :
µ(X) > r1}∩{µ : µ(X) < r2} = {µ : µ(X) > r1}∩{µ : µ(ϑ\X) > 1−r2}, a finite intersection
of the subbasic sets (1) from §4. See also Kechris [6, Corollary 17.21].

Open: ifX = ∅ or ϑ, then pX(S) = {0} or {1} resp., both open in themselves. Else pX(S) = [0, 1];
we show any Z = pX

(⋂n
i=1{µ : µ(Xi) > ri}

)
is open. Consider a mutually disjoint, covering

D =
{⋂n

i=0 Yi : Y0 ∈ {X,ϑ \ X}, each Yi ∈ {Xi, ϑ \ Xi}
}

and space ∆ = {(µ(D))D∈D :

µ ∈ S} ⊂ R2n+1

. Just as in the Lemma, we have pS : ∆ → [0, 1], for each S ⊂ D taking
(µ(D))D 7→

∑
D∈S µ(D). Note Z = p{D:D∩X 6=∅}

(⋂n
i=1 p−1

{D:D∩Xi 6=∅}((ri, 1])
)

so it suffices to
show pS is continuous and open; this is straightforward.

Full proof of Lem. 1. We show a stronger result, namely that the complement of the good set is
nowhere dense. By rearrangement and laws of probability we find that the second inequality in (2) is
equivalent to

µx(y′) < µ()(x
′) + µ()(x, y

′)

1− µx(y) < µ()(x
′) + µ()(x)︸ ︷︷ ︸

1

−µ()(x, y)

µx(y) > µ()(x, y).

Lemma B.3.1 then entails the non-strict analogues of all four inequalities in (2), (3) are met for
any (µα)α ∈ SX→Y

2 , so we show that converting each to an equality yields a nowhere dense
set, whose finite union is also nowhere dense. Note that we have a continuous and surjective
observational projection π() : SX→Y

2 → P
(
χ{X,Y }

)
, and the first inequality in (3) is met iff

(µα)α ∈
(
px,y ◦ π()

)−1
({0}) where px,y is the map from Lemma D.0.1 and x, y denotes the set

π−1
X ({x}) ∩ π−1

Y ({y}) ⊂ χ{X,Y }. This is nowhere dense as it is the preimage of the nowhere dense
set {0} ⊂ [0, 1] under a map which is continuous by Lemma D.0.1. The second inequality of (3) is
wholly analogous after rearrangement.

As for (2), define a function d : SX→Y
2 → [0, 1] taking (µα)α 7→ µX:=x(y′) − µ()(x, y

′); this
function d is continuous by Lemma D.0.1 and the continuity of addition and projection. Note that
the first inequality of (2) holds iff d((µα)α) = 0. For any µ ∈ SX

3 such that ($X→Y
2 ◦$2)(µ) =

(µα)α, note that d((µα)α) = µ
(
x′, y′x

)
where x′, y′x abbreviates the basic set π−1

((),X)({x
′}) ∩

π−1
(X:=x,Y )({y

′}) ∈ B(χA×V). Thus d is surjective, so that d−1({0}) is nowhere dense since
{0} ⊂ [0, 1] is nowhere dense. The second inequality in (2) is again totally analogous.

Proof of Lem. 2. Abbreviate µ3 as µ, and without loss take µ ∈ S≺std. Note that (2), (3) entail

0 < µ(x′, y′x) < µ(x′), 0 < µ(x′, y′x′) < µ(x′).

and therefore

0 < µ
(
π−1

((),X)({x
′}) ∩ π−1

(x∗,Y )({1})
)
< µ

(
π−1

((),X)({x
′})
)

for each x∗ ∈ χX = {0, 1}. In turn this entails that there are some values y0, y1 ∈ {0, 1} such that
µ(Ω1) > 0, µ(Ω2) > 0 where the disjoint sets {Ωi}i are defined as

Ω1 = π−1
((),X)({x

′}) ∩ π−1
(X:=0,Y )({y0}) ∩ π−1

(X:=1,Y )({y1})

Ω2 = π−1
((),X)({x

′}) ∩ π−1
(X:=0,Y )({y

†
0}) ∩ π

−1
(X:=1,Y )({y

†
1})

where in the second line, y†0 = 1− y0 and y†1 = 1− y1. Note that for i = 1, 2 we have conditional
measures µi(Si) = µ(Si)

µ(Ωi)
for Si ∈ B(Ωi); further, Ωi is Polish, since each is clopen. This implies
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Ωi is a standard atomless (since µ is) probability space under µi. By Kechris [6, Thm. 17.41],
there are Borel isomorphisms fi : Ωi ↪→→ [0, 1] pushing µi forward to Lebesgue measure λ, i.e.,
µi(f

−1
i (B)) = λ(B) for B ∈ B([0, 1]). Thus g = f−1

2 ◦ f1 : Ω1 ↪→→ Ω2 is µi-preserving: for
X1 ∈ B(Ω1),

µ(g(X1)) =
µ(Ω2)

µ(Ω1)
µ(X1). (D.1)

Consider µ′ = $3(M′) for a newM′ ∈ M≺, given as follows. Its exogenous valuation space is
χU = Ω′ where we define the sample space Ω′ = F(V)× {T,H}; that is, a new exogenous variable
representing a coin flip is added to some representation of the choice of deterministic standard form
mechanisms. Fix constants ε1, ε2 ∈ (0, 1) with ε1 · µ(Ω1) = ε2 · µ(Ω2) and define its exogenous
noise distribution P by

P (X × {S}) =



(1− ε1) · µ(X), X ⊂ Ω1,S = T

ε1 · µ(X), X ⊂ Ω1,S = H

(1− ε2) · µ(X), X ⊂ Ω2,S = T

ε2 · µ(X), X ⊂ Ω2,S = H

µ(X), X ⊂ F(V) \ (Ω1 ∪ Ω2),S = T

0, X ⊂ F(V) \ (Ω1 ∪ Ω2),S = H

. (D.2)

Where f ∈ F(V) and V ∈ V write fV for the deterministic mechanism (of signature χPred(V ) →
χV ) for V in f. (Note that each f is just an indexed collection of such mechanisms fV .) The function
f ′V inM′ is defined at the initial variable X as f ′X(f,S) = fX for both values of S, and for V 6= X
is defined as follows, where p ∈ Pred(V ):

f ′V
(
p, (f,S)

)
=


(g(f))V (p), f ∈ Ω1,S = H, πX(p) = x

(g−1(f))V (p), f ∈ Ω2,S = H, πX(p) = x

fV (p), otherwise
. (D.3)

We claim that $2(µ′) = $2(µ). It suffices to show for any Z := z ∈ A and w ∈ χW, W finite, we
have

µ(θ) = µ′(θ), where θ =
⋂

W∈W

π−1
(Z:=z,W )({πW (w)}). (D.4)

Assume πZ(w) = πZ(z) for every Z ∈ Z ∩W, since both sides of (D.4) trivially vanish otherwise.
Where f ∈ F(V) write, e.g., f � θ if mMA(f) ∈ θ, whereM is a standard form model (Def. B.1.1);
for ω′ ∈ Ω′ write ω′ �′ θ if mM

′
A(ω′) ∈ θ. By the last two cases of (D.3) we have

µ′(θ) =
∑

S=T,H

P
(
{(f,S) ∈ Ω′ : (f,S) �′ θ}

)
= µ

(
{f ∈ F(V) \ (Ω1 ∪ Ω2) : f � θ}

)
+
∑

S=T,H
i=1,2

P
(
{(f,S) ∈ Ω′ : f ∈ Ωi, (f,S) �′ θ}

)
.

(D.5)

Applying the first four cases of (D.2) and the third case of (D.3), the second term of (D.5) becomes∑
i

[
εi · µ

(
{f ∈ Ωi : (f,H) �′ θ}

)
+ (1− εi) · µ

(
{f ∈ Ωi : f � θ}

)]
. (D.6)

Either X ∈ Z and πX(z) = x, or not. In the former case: defining Xi = {f ∈ Ωi : f � θ} for each
i = 1, 2, the first two cases of (D.3) yield that

{f ∈ Ω1 : (f,H) �′ θ} = {f ∈ Ω1 : g(f) � θ} = g−1(X2)

{f ∈ Ω2 : (f,H) �′ θ} = {f ∈ Ω2 : g−1(f) � θ} = g(X1). (D.7)

Applying (D.7) and (D.1), (D.6) becomes

ε1 ·
µ(Ω1)

µ(Ω2)
· µ
(
X2

)
+ (1− ε1) · µ

(
X1

)
+ ε2 ·

µ(Ω2)

µ(Ω1)
· µ
(
X1

)
+ (1− ε2) · µ

(
X2

)
= µ(X1) + µ(X2), (D.8)
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the final cancellation by choice of ε1, ε2. In the latter case: since mM(f) ∈ π−1
X ({x′}) for any

f ∈ Ω1 ∪ Ω2, the third case of (D.3) gives {f ∈ Ωi : (f,H) �′ θ} = Xi. Thus (D.6) becomes (D.8)
in either case. Putting in (D.8) as the second term in (D.5), we find µ(θ) = µ′(θ).

Now we claim µ(ζ) 6= µ′(ζ) for ζ = ζ0∩ζ1 where ζ1 = π−1
(X:=1,Y )({y1}) and ζ0 = π−1

(X:=0,Y )({y0}).
We have

µ′(ζ) =µ
(
{f ∈ Ω \ (Ω1 ∪ Ω2) : f � ζ}

)
+
∑
i=1,2

[
εi · µ

(
{f ∈ Ωi : (f,H) �′ ζ}

)
+ (1− εi) · µ

(
{f ∈ Ωi : f � ζ}

)]
. (D.9)

First suppose that x = 0. If f ∈ Ω1, then note that (f,H) �′ ζ0 iff g(f) � ζ0, but this is never so,
since g(f) ∈ Ω2. If f ∈ Ω2, then (f,H) �′ ζ1 iff f � ζ1, which is never so again by choice of Ω2. If
x = 1 then we find that (f,H) 6� ζ1 (if f ∈ Ω1) and (f,H) 6� ζ0 (if f ∈ Ω2). Thus (f,H) 6�′ ζ for
any f ∈ Ω1 ∪ Ω2 and (D.9) becomes

µ
(
{f ∈ Ω : f � ζ}

)
−
∑
i=1,2

εi · µ
(
{f ∈ Ωi : f � ζ}

)
= µ

(
{f ∈ Ω : f � ζ}

)
− ε1 · µ(Ω1) < µ(ζ).

It is straightforward to check (via casework on the values y0, y1) that µ and µ′ disagree also on the
PNS: µ(yx, y

′
x′) 6= µ′(yx, y

′
x′) as well as its converse. As for the probability of sufficiency (Definition

10), note that

P (yx | x′, y′) =
P (yx, x

′, y′x′) +

0︷ ︸︸ ︷
P (yx, y

′
x, x
′, x)

P (x′, y′)

and it is again easily seen (given the definition of the Ωi) that µ(yx, x
′, y′x′) 6= µ′(yx, x

′, y′x′) while
the two measures agree on the denominator; similar reasoning shows disagreement on the probability
of enablement, since

P (yx | y′) =
P (yx, y

′
x′ , x

′) +

0︷ ︸︸ ︷
P (yx, y

′
x, x)

P (y′)
.
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