A Topological Perspective on Causal Inference: Supplement

In this supplement we give proofs of all the main results in the text.

A Structural Causal Models (§2)

A. 1 Background on Relations and Orders

Definition A.1.1. Let C be a set. Then a subset $R \subset C \times C$ is called a binary relation on C. We write $c R c^{\prime}$ if $\left(c, c^{\prime}\right) \in R$. The binary relation R is well-founded if every nonempty subset $D \subset C$ has a minimal element with respect to R, i.e., if for every nonempty $D \subset C$, there is some $d \in D$, such that there is no $d^{\prime} \in D$ such that $d^{\prime} R d$. The binary relation $\prec \subset C \times C$ is a (strict) total order if it is irreflexive, transitive, and connected: either $c \prec c^{\prime}$ or $c^{\prime} \prec c$ for all $c \neq c^{\prime} \in C$.
Example 1. The edges of a dag form a well-founded binary relation on its nodes. If $\mathbf{V}=\left\{V_{n}\right\}_{n \geq 0}$, then the binary relation \rightarrow defined by $V_{m} \rightarrow V_{n}$ iff either $0<m<n$ or $n=0<m$ is well-founded but not extendible to an ω-like total order (see Fact 2) and not locally finite: V_{0} has infinitely many predecessors V_{1}, V_{2}, \ldots

A. 2 Proofs

Proof of Proposition 1. We assume without loss that $\mathbf{U}(V)=\mathbf{U}$ for every $V \in \mathbf{V}$. For each $\mathbf{u} \in \chi_{\mathbf{U}}$, well-founded induction along \rightarrow shows unique existence of a $m^{\mathcal{M}}(\mathbf{u}) \in \chi_{\mathbf{V}}$ solving $f_{V}\left(\pi_{\mathrm{Pa}(V)}\left(m^{\mathcal{M}}(\mathbf{u})\right), \mathbf{u}\right)=\pi_{V}\left(m^{\mathcal{M}}(\mathbf{u})\right)$ for each V. We claim the resulting function $m^{\mathcal{M}}$ is measurable. One has a clopen basis of cylinders, so it suffices to show each preimage $\left(m^{\mathcal{M}}\right)^{-1}(v)$ is measurable. Recall that here v denotes the cylinder set $\pi_{V}^{-1}(\{v\}) \in \mathcal{B}\left(\chi_{\mathbf{v}}\right)$, for $v \in \chi_{V}$. Once again this can be established inductively. Note that

$$
\left(m^{\mathcal{M}}\right)^{-1}(v)=\bigcup_{\mathbf{p} \in \chi_{\mathbf{P a}(V)}}\left[\left(m^{\mathcal{M}}\right)^{-1}(\mathbf{p}) \cap \pi_{\mathbf{U}}\left(f_{V}^{-1}(\{v\}) \cap\left(\{\mathbf{p}\} \times \chi_{\mathbf{U}}\right)\right)\right] .
$$

which is a finite union (by local finiteness) of measurable sets (by the inductive hypothesis) and therefore measurable. Thus for any \mathcal{M} the pushforward $p^{\mathcal{M}}=m_{*}^{\mathcal{M}}(P)$ is a measure on $\mathcal{B}\left(\chi_{\mathbf{v}}\right)$ and gives the observational distribution (Definition 4).

Remark on Definition 6. To see that $p_{\mathrm{cf}}^{\mathcal{M}}$ thus defined is a measure, note that $p_{\mathrm{cf}}^{\mathcal{M}}=p^{\mathcal{M}_{A}}$ and apply Proposition 1, where the model \mathcal{M}_{A} is defined in Definition A.2.1. This is similar in spirit to the construction of "twinned networks" [2] or "single-world intervention graphs" [8].

Definition A.2.1. Given \mathcal{M} as in Def. 3 and a collection of interventions A form the following counterfactual model $\mathcal{M}_{A}=\left\langle\mathbf{U}, A \times \overline{\mathbf{V}},\left\{f_{(\alpha, V)}\right\}_{(\alpha, V)}, P\right\rangle$, over endogenous variables $A \times \mathbf{V}$. The counterfactual model has the influence relation \rightarrow^{\prime}, defined as follows. Where $\alpha^{\prime}, \alpha \in A$ let $\left(\alpha^{\prime}, V^{\prime}\right) \rightarrow^{\prime}(\alpha, V)$ iff $\alpha^{\prime}=\alpha$ and $V^{\prime} \rightarrow V$. The exogenous space \mathbf{U} and noise distribution P of \mathcal{M}_{A} are the same as those of \mathcal{M}, the exogenous parents sets $\{\mathbf{U}(V)\}_{V}$ are also identical, and the functions are $\left\{f_{(\alpha, V)}\right\}_{(\alpha, V)}$ defined as follows. For any $\mathbf{W}:=\mathbf{w} \in A, V \in \mathbf{V}, \mathbf{p} \in \chi_{\mathbf{P a}(V)}$, and
$\mathbf{u} \in \chi_{\mathbf{U}(V)}$ let

$$
f_{(\mathbf{W}:=\mathbf{w}, V)}((\mathbf{W}:=\mathbf{w}, \mathbf{p}), \mathbf{u})= \begin{cases}\pi_{V}(\mathbf{w}), & V \in \mathbf{W} \\ f_{V}(\mathbf{p}, \mathbf{u}), & V \notin \mathbf{W}\end{cases}
$$

B Proofs from $\$ 3$

Remark on exact characterizations of $\mathfrak{S}_{3}, \mathfrak{S}_{2}$. Rich probabilistic languages interpreted over \mathfrak{S}_{3} and \mathfrak{S}_{2} were axiomatized in [5]. This axiomatization, along with the atomless restriction, gives an exact characterization for the hierarchy sets. Standard form, defined below, gives an alternative characterization exhibiting each \mathfrak{S}_{3}^{\prec} as a particular atomless probability space (Corollary B.1.1). For $\mathfrak{S}_{2}^{X \rightarrow Y}$ (or \mathfrak{S}_{2} in the two-variable case) we need the characterization for the proof of the hierarchy separation result, so it is given explicitly as Lemma B.3.1 in the section below on 2VE-spaces.

B. 1 Standard Form

Fix \prec. Note that the map ϖ_{3} restricted to \mathfrak{M}_{\prec} does not inject into \mathfrak{S}_{3}^{\prec}, as any trivial reparametrizations of exogenous noise are distinguished in \mathfrak{M}_{\prec}. It is therefore useful to identify a "standard" subclass $\mathfrak{M}_{\prec}^{\text {std }}$ on which ϖ_{3} is injective with image \mathfrak{S}_{3}^{\prec}, and in which we lose no expressivity.
Notation. Let Pred $(V)=\left\{V^{\prime}: V^{\prime} \prec V\right\}$ and denote a deterministic mechanism for V mapping a valuation of its predecessors to a value as $\mathrm{f}_{V} \in \chi_{\operatorname{Pred}(V)} \rightarrow \chi_{V}$. Write an entire collection of such mechanisms, one for each variable, as $\mathbf{f}=\left\{\mathrm{f}_{V}\right\}_{V}$. A set $\mathbf{B} \subset \mathbf{V}$ is ancestrally closed if $\mathbf{B}=\bigcup_{V \in \mathbf{B}} \operatorname{Pred}(V)$. For any ancestrally closed \mathbf{B} let $\xi(\mathbf{B})=\left\{(V, \mathbf{p}): V \in \mathbf{B}, \mathbf{p} \in \chi_{\operatorname{Pred}(V)}\right\}$. Note that $\mathbf{F}(\mathbf{B})=\chi_{(V, \mathbf{p}) \in \xi(\mathbf{B})} \chi_{V}$ encodes the set of all possible such collections of deterministic mechanisms, and we write, e.g., $f \in F(\mathbf{B})$. Abbreviate $\xi(\mathbf{V}), F(\mathbf{V})$ for the entire endogenous variable set \mathbf{V} as ξ, F respectively. We also use f to abbreviate the set

$$
\begin{equation*}
\bigcap_{\substack{V \in \mathbf{B} \\ \mathbf{p} \in \chi_{\mathbf{P r e d}(V)}}} \pi_{(\operatorname{Pred}(V):=\mathbf{p}, V)}^{-1}(\{\mathbf{f}(\mathbf{p})\}) \in \mathcal{B}\left(\chi_{A \times \mathbf{V}}\right) \tag{B.1}
\end{equation*}
$$

so we can write, e.g., $p_{\mathrm{cf}}^{\mathcal{M}}(\mathrm{f})$ for the probability in \mathcal{M} that the effective mechanisms f have been selected (by exogenous factors) for the variables \mathbf{B}.
Definition B.1.1. The $\operatorname{SCM} \mathcal{M}=\left\langle\mathbf{U}, \mathbf{V},\left\{f_{V}\right\}_{V}, P\right\rangle$ of Def. 3 is standard form over \prec, and we write $\mathcal{M} \in \mathfrak{M}^{\text {std }}$, if we have that $\rightarrow=\prec$ for its influence relation, $\mathbf{U}=\{U\}$ for a single exogenous variable U with $\chi_{U}=\mathrm{F}, P \in \mathfrak{P}(\mathrm{~F})$ for its exogenous noise space, and for every V, we have that $\mathbf{U}(V)=\mathbf{U}=\{U\}$ and the mechanism f_{V} takes $\mathbf{p},\left(\left\{f_{V}\right\}_{V}\right) \mapsto \mathbf{f}_{V}(\mathbf{p})$ for each $\mathbf{p} \in \chi_{\operatorname{Pred}(V)}$ and joint collection of deterministic functions $\left\{\mathrm{f}_{V}\right\}_{V} \in \mathrm{~F}=\chi_{U}$.

Each unit \mathbf{u} in a standard form model amounts to a collection $\left\{\mathrm{f}_{V}\right\}_{V}$ of deterministic mechanisms, and each variable is determined by a mechanism specified by the "selector" endogenous variable U.
Lemma B.1.1. Let $\mathcal{M} \in \mathfrak{M}_{\prec}$. Then there exists $\mathcal{M}^{\text {std }} \in \mathfrak{M}_{\prec}^{\text {std }}$ such that $\varpi_{3}(\mathcal{M})=\varpi_{3}\left(\mathcal{M}^{\text {std }}\right)$.
Proof. To give $\mathcal{M}^{\text {std }}$ define a measure $P \in \mathfrak{P}(\mathrm{~F})$ as in Def. B.1.1 on a basis of cylinder sets by the counterfactual in \mathcal{M}

$$
\begin{align*}
P\left(\pi_{\left(V_{1}, \mathbf{p}_{1}\right)}^{-1}\left(\left\{v_{1}\right\}\right) \cap\right. & \left.\cdots \cap \pi_{\left(V_{n}, \mathbf{p}_{n}\right)}^{-1}\left(\left\{v_{n}\right\}\right)\right) \\
& =p_{\mathrm{cf}}^{\mathcal{M}}\left(\pi_{\left(\operatorname{Pred}\left(V_{1}\right):=\mathbf{p}_{1}, V_{1}\right)}^{-1}\left(\left\{v_{1}\right\}\right) \cap \cdots \cap \pi_{\left(\operatorname{Pred}\left(V_{n}\right):=\mathbf{p}_{n}, V_{n}\right)}^{-1}\left(\left\{v_{n}\right\}\right)\right) . \tag{B.2}
\end{align*}
$$

To show that $\varpi_{3}(\mathcal{M})=\varpi_{3}\left(\mathcal{M}^{\text {std }}\right)$ it suffices to show that any two models agreeing on all counterfactuals of the form (B.2) must agree on all counterfactuals in A. Suppose $\alpha_{i} \in A, V_{i} \in \mathbf{V}, v_{i} \in \chi_{V_{i}}$ for $i=1, \ldots, n$. Let $\mathbf{B}=\bigcup_{i} \operatorname{Pred}\left(V_{i}\right)$ and given $\mathbf{f}=\left\{\mathbf{f}_{V}\right\}_{V}$, define $\mathrm{f}_{V}^{\mathbf{W}}:=\mathbf{w}$ to be a constant function mapping to $\pi_{V}(\mathbf{w})$ if $V \in \mathbf{W}$ and $\mathbf{f}_{V}^{\mathbf{W}:=\mathbf{w}}=\mathbf{f}_{V}$ otherwise. Write $\mathrm{f} \vDash V=v$ if $\pi_{V}(\mathbf{v})=v$ for that $\mathbf{v} \in \chi_{\mathbf{v}}$ such that $\mathrm{f}_{V}\left(\pi_{\operatorname{Pred}(V)}(\mathbf{v})\right)=\pi_{V}(\mathbf{v})$ for all V. Finally, note that

$$
\bigcap_{i=1}^{n} \pi_{\left(\alpha_{i}, V_{i}\right)}^{-1}\left(\left\{v_{i}\right\}\right)=\bigsqcup_{\substack{\left\{\mathbf{f}_{V}\right\}_{V \in \mathbf{B}} \in \mathbf{F}(\mathbf{B}) \\\left\{\mathbf{f}_{V}^{\alpha_{V}}\right\}_{V \in \mathbf{B}} \neq V_{i}=v_{i} \\ \text { for each } i}}\left\{\mathrm{f}_{V}\right\}_{V \in \mathbf{B}}
$$

where each set in the finite disjoint union is of the form B.1). Thus the measure of the left-hand side can be written as a sum of measures of such sets, which use only counterfactuals of the form (B.2), showing agreement of the measures (by Fact 1).

Corollary B.1.1. \mathfrak{S}_{3}^{\prec} bijects with the set of atomless measures in $\mathfrak{P}(F)$, which we denote $\mathfrak{S}_{\text {std }}^{\prec}$. We write the map as $\varpi_{\text {std }}^{\prec}: \mathfrak{S}_{3}^{\prec} \rightarrow \mathfrak{S}_{\text {std }}^{\prec}$.

Where the order \prec is clear, the above result permits us to abuse notation, using e.g. μ to denote either an element of \mathfrak{S}_{3}^{\prec} or its associated point $\varpi_{\text {std }}^{\prec}(\mu)$ in $\mathfrak{S}_{\text {std }}^{\prec}$. We will henceforth indulge in such abuse.

Proof of Fact 4 The follows easily from Lem. B.1.2 below, adapted from Suppes and Zanotti 9 , Thm. 1]. This shows that every atomless distribution is generated by some SCM; furthermore, it can chosen so as to exhibit no causal effects whatsoever.

Definition B.1.2. Say that $\nu \in \mathfrak{P}(\mathbf{F}(\mathbf{V}))$ is acausal if $\nu\left(\pi_{(V, \mathbf{p})}^{-1}\left(\left\{v_{1}\right\}\right) \cap \pi_{\left(V, \mathbf{p}^{\prime}\right)}^{-1}\left(\left\{v_{2}\right\}\right)\right)=0$ for every $(V, \mathbf{p}),\left(V, \mathbf{p}^{\prime}\right) \in \xi$ and $v_{1} \neq v_{2} \in \chi_{V}$.
Lemma B.1.2. Let $\mu \in \mathfrak{P}\left(\chi_{\mathbf{V}}\right)$ be atomless. Then there is a $\mathcal{M} \in \mathfrak{M}_{\prec}^{\text {std }}$ (see Def. B.1.1) with an acausal noise distribution such that $\mu=\left(\varpi_{1} \circ \varpi_{2} \circ \varpi_{3}\right)(\mathcal{M})$.

Proof. Consider $\nu \in \mathfrak{P}(\mathrm{F}(\mathbf{V}))=\mathfrak{P}\left(X_{(V, \mathbf{p})} \chi_{V}\right)$ determined on a basis as follows: $\nu\left(\pi_{\left(V_{1}, \mathbf{p}_{1}\right)}^{-1}\left(\left\{v_{1}\right\}\right) \cap \cdots \cap \pi_{\left(V_{n}, \mathbf{p}_{n}\right)}^{-1}\left(\left\{v_{n}\right\}\right)\right)=\mu\left(\pi_{V_{1}}^{-1}\left(\left\{v_{1}\right\}\right) \cap \cdots \cap \pi_{V_{n}}^{-1}\left(\left\{v_{n}\right\}\right)\right)$. This is clearly acausal and atomless.

B. 2 Proofs from §3.2

Proof of Prop. 2 (Collapse set \mathfrak{C}_{1} is empty). Let $\mu \in \mathfrak{S}_{1}$ and $\nu \in \mathfrak{S}_{\text {std }}^{\prec}$ with $\left(\varpi_{1} \circ \varpi_{2} \circ \varpi_{\text {std }}^{-1}\right)(\nu)=$ μ. By Lemma B.1.2 we may assume ν is acausal. Let X be the first, and Y the second variable with respect to \prec. Note there are x^{*}, y^{*} such that $\mu\left(\pi_{X}^{-1}\left(\left\{x^{*}\right\}\right) \cap \pi_{Y}^{-1}\left(\left\{y^{*}\right\}\right)\right)>0$; let $x^{\dagger} \neq x^{*}$, $y^{\dagger} \neq y^{*}$. Consider ν^{\prime} defined as follows where \digamma_{3} stands for any set of the form $\pi_{\left(V_{1}, \mathbf{p}_{1}\right)}^{-1}\left(\left\{v_{1}\right\}\right) \cap$ $\cdots \cap \pi_{\left(V_{n}, \mathbf{p}_{n}\right)}^{-1}\left(\left\{v_{n}\right\}\right) \subset \mathrm{F}(\mathbf{V})$, for $V_{i} \in \mathbf{V}, \mathbf{p}_{i} \in \chi_{\mathbf{P}\left(V_{i}\right)}, v_{i} \in \chi_{V_{i}}$, and \digamma_{1} is the corresponding $\pi_{V_{1}}^{-1}\left(\left\{v_{1}\right\}\right) \cap \cdots \cap \pi_{V_{n}}^{-1}\left(\left\{v_{n}\right\}\right) \subset \chi_{\mathbf{v}}$.

$$
\begin{aligned}
& \nu^{\prime}\left(\pi_{(X,())}^{-1}(\{x\}) \cap \pi_{\left(Y,\left(x^{*}\right)\right)}^{-1}\left(\left\{y_{*}\right\}\right) \cap \pi_{\left(Y,\left(x^{\dagger}\right)\right)}^{-1}\left(\left\{y_{\dagger}\right\}\right) \cap \digamma_{3}\right)= \\
& \qquad \begin{cases}\mu\left(\pi_{X}^{-1}\left(\left\{x^{*}\right\}\right) \cap \pi_{Y}^{-1}\left(\left\{y^{*}\right\}\right) \cap \digamma_{1}\right), & x=x^{*}, y_{*}=y^{*} \neq y_{\dagger} \\
0, & x=x^{*}, y_{*}=y^{\dagger} \neq y_{\dagger} \\
0, & x=x^{*}, y_{*}=y_{\dagger}=y^{*} \\
\mu\left(\pi_{X}^{-1}\left(\left\{x^{*}\right\}\right) \cap \pi_{Y}^{-1}\left(\left\{y^{\dagger}\right\}\right) \cap \digamma_{1}\right), & x=x^{*}, y_{*}=y_{\dagger}=y^{\dagger} \\
\mu\left(\pi_{X}^{-1}\left(\left\{x^{\dagger}\right\}\right) \cap \pi_{Y}^{-1}(\{y\}) \cap \digamma_{1}\right), & x=x^{\dagger}\end{cases}
\end{aligned}
$$

We claim that $\mu=\mu^{\prime}$ where $\mu^{\prime}=\left(\varpi_{1} \circ \varpi_{2}\right)\left(\nu^{\prime}\right)$; it suffices to show agreement on sets of the form $\pi_{X}^{-1}(\{x\}) \cap \pi_{Y}^{-1}(\{y\}) \cap \digamma_{1}$. If $x=x^{\dagger}$ then the last case above occurs; if $x=x^{*}$ and $y=y^{\dagger}$ then we are in the fourth case; if $x=x^{*}$ and $y=y^{*}$ then exclusively the first case applies. In all cases the measures agree. Let $\left(\nu_{\alpha}\right)_{\alpha}=\varpi_{2}(\nu)$ and $\left(\nu_{\alpha}^{\prime}\right)_{\alpha}=\varpi_{2}\left(\nu^{\prime}\right)$ be the Level 2 projections of ν, ν^{\prime} respectively. Note that $\nu_{X:=x^{\dagger}}\left(y^{\dagger}\right)<\nu_{X:=x^{\dagger}}^{\prime}\left(y^{\dagger}\right)$. This shows that the standard-form measures ν, ν^{\prime} project down to different points in \mathfrak{S}_{2} (in particular differing on the Y-marginal at the index corresponding to the intervention $X:=x^{\dagger}$) while projecting to the same point in \mathfrak{S}_{1}. Thus $\mu \notin \mathfrak{C}_{1}$ and since μ was arbitrary, $\mathfrak{C}_{1}=\varnothing$.

Example 2 (Collapse set \mathfrak{C}_{2} is nonempty). We present a $\mu \in \mathfrak{S}_{\text {std }}^{\prec}$ for which $\varpi_{2}(\mu) \in \mathfrak{C}_{2}$. Let $\mathbf{S}_{n} \subset \mathbf{V}$ be the ancestrally closed ($\$ \bar{B} .1$) set of the n least variables with respect to \prec and X be the first variable with respect to \prec; thus, e.g., $\mathbf{S}_{1}=\{X\}$. Where $f=\left\{\mathrm{f}_{V}\right\}_{V \in \mathbf{S}_{n}} \in \mathrm{~F}\left(\mathbf{S}_{n}\right)$, define $\mu(\mathrm{f})=0$ if there is any $V \in \mathbf{S}_{n} \backslash\{X\}, \mathbf{p} \neq(0, \ldots, 0) \in \chi_{\text {Pred }(V)}$ such that $\mathrm{f}_{V}(\mathbf{p})=0$, and otherwise define $\mu(\mathbf{f})=1 / 2^{n}$. Note that this example is monotonic in the sense of [1, 7].
We claim $\mu^{\prime}=\mu$ for any $\mu^{\prime} \in \mathfrak{S}_{\text {std }}^{\prec}$ projecting to the same Level 2, i.e., such that $\varpi_{2}\left(\mu^{\prime}\right)=\varpi_{2}(\mu)$; note that it suffices to consider only candidate counterexamples with order \prec since $\varpi_{2}(\mu) \notin \mathfrak{S}_{2}^{\prec^{\prime}}$
for any $\prec^{\prime} \neq \prec$. It suffices to show that $\mu(\mathbf{f})=\mu^{\prime}(\mathbf{f})$ for any n and $\mathrm{f}=\left\{\mathrm{f}_{V}\right\}_{V \in \mathbf{S}_{n}}$; recall that in the measures, \mathbf{f} denotes a set of the form (B.1). Let $\left(\mu_{\alpha}\right)_{\alpha}=\varpi_{2}(\mu) \in \mathfrak{S}_{2}^{\alpha}$ and $\left(\mu_{\alpha}^{\prime}\right)_{\alpha}=\varpi_{2}\left(\mu^{\prime}\right)$, with $\left(\mu_{\alpha}\right)_{\alpha}=\left(\mu_{\alpha}^{\prime}\right)_{\alpha}$. Since $\mu_{\operatorname{Pred}(V):=\mathbf{p}}^{\prime}\left(\pi_{V}^{-1}(\{1\})\right)=1$ for any $V \in \mathbf{S}_{n} \backslash\{X\}, \mathbf{p} \neq(0, \ldots, 0)$, probability bounds show $\mu^{\prime}(\mathbf{f})$ vanishes unless $\mathrm{f}_{V}(\mathbf{p})=1$ for each such \mathbf{p}, in which case

$$
\begin{equation*}
\mu^{\prime}(\mathrm{f})=\mu^{\prime}\left(\bigcap_{i=1}^{n} \pi_{\left(V_{i},\left\{V_{1}, \ldots, V_{i-1}\right\}:=(0, \ldots, 0)\right)}^{-1}\left(\left\{v_{i}\right\}\right)\right) \tag{B.3}
\end{equation*}
$$

for some $v_{i} \in \chi_{V_{i}}$, where we have labeled the elements of \mathbf{S}_{n} as V_{1}, \ldots, V_{n}, with $V_{1} \prec \cdots \prec V_{n}$. We claim this is reducible-again using probabilistic reasoning alone-to a linear combination of quantities fixed by $\left(\mu_{\alpha}^{\prime}\right)_{\alpha}$, the Level 2 projection of μ^{\prime}, which is the same as the projection $\left(\mu_{\alpha}\right)_{\alpha}$ of μ. This can be seen by an induction on the number $m=|M|$ where $M=\left\{i: v_{i}=1\right\}$: note B.3) becomes

$$
\begin{aligned}
\mu^{\prime} & \left(\bigcap_{i \notin M} \pi_{\left(V_{i},\left\{V_{1}, \ldots, V_{i-1}\right\}:=(0, \ldots, 0)\right)}^{-1}(\{0\})\right) \\
& -\sum_{M^{\prime} \subsetneq M} \mu^{\prime}\left(\bigcap_{i \notin M^{\prime}} \pi_{\left(V_{i},\left\{V_{1}, \ldots, V_{i-1}\right\}:=(0, \ldots, 0)\right)}^{-1}(\{0\}) \cap \bigcap_{i \in M^{\prime}} \pi_{\left(V_{i},\left\{V_{1}, \ldots, V_{i-1}\right\}:=(0, \ldots, 0)\right)}^{-1}(\{1\})\right)
\end{aligned}
$$

and the inductive hypothesis implies each summand can be written in the sought form while the first term becomes $\mu^{\prime}\left(\bigcap_{i \notin M} \pi_{\left(V_{i},()\right)}^{-1}(\{0\})\right)=\mu_{()}^{\prime}\left(\bigcap_{i \notin M} \pi_{V_{1}}^{-1}(\{0\})\right)=\mu_{()}\left(\bigcap_{i \notin M} \pi_{V_{1}}^{-1}(\{0\})\right)$. Here () abbreviates the empty intervention $\varnothing:=()$. Thus any Level 3 quantity reduces to Level 2, on which the two measures agree by hypothesis.

B. 3 Remarks on §3.3

Lemma B.3.1. Let $\left(\mu_{\alpha}\right)_{\alpha} \in X_{\alpha \in A_{2}^{X \rightarrow Y}} \mathfrak{P}\left(\chi_{X, Y}\right)$. Then $\left(\mu_{\alpha}\right)_{\alpha} \in \mathfrak{S}_{2}^{X \rightarrow Y}$ iff

$$
\begin{equation*}
\mu_{X:=x}(x)=1 \tag{B.4}
\end{equation*}
$$

for every $x \in \chi_{X}$ and

$$
\begin{equation*}
\mu_{X:=x}(y) \geq \mu_{()}(x, y) \tag{B.5}
\end{equation*}
$$

for every $x \in \chi_{X}, y \in \chi_{Y}$. Here x, y abbreviates the basic set $\pi_{X}^{-1}(\{x\}) \cap \pi_{Y}^{-1}(\{y\})$.
Proof. It is easy to see that (B.4), B.5) hold for any $\left(\mu_{\alpha}\right)_{\alpha}$. For the converse, consider the twovariable model over endogenous $\mathbf{Z}=\{X, Y\}$ with $X \prec Y$; note that $|\mathrm{F}(\mathbf{Z})|=8$. A result of Tian et al. [10] gives that this model is characterized exactly by (B.4], (B.5) so for any such $\left(\mu_{\alpha}\right)_{\alpha}$ there is a distribution on $\mathrm{F}(\mathbf{Z})$ such that this model induces $\left(\mu_{\alpha}\right)_{\alpha}$. It is straightforward to extend this distribution to an atomless measure on $\mathrm{F}(\mathbf{V})$.

C Proofs from $\$ 4$

Proof of Prop. 4 This amounts to the continuity of projections in product spaces and marginalizations in weak convergence spaces. The latter follows easily from results in §3.1.3 of [4] or [3].

Proof of Thm. 2] We show how Theorem 3.2.1 of [4] can be applied to derive the result. Specifically, let $\Omega=X_{\alpha} \chi \mathbf{v}$. Let \mathcal{I} be the usual clopen basis, and let W be the set of Borel measures $\mu \in \mathfrak{P}(\Omega)$ that factor as a product $\mu=\times_{\alpha} \mu_{\alpha}$ where each $\mu_{\alpha} \in \mathfrak{S}_{1}$ and $\left(\mu_{\alpha}\right)_{\alpha} \in \mathfrak{S}_{2}$. This choice of W corresponds exactly to our notion of experimental verifiability.
It remains to check that a set is open in W iff the associated set is open in \mathfrak{S}_{2} (homeomorphism). It suffices to show their convergence notions agree. Suppose $\left(\nu_{n}\right)_{n}$ is a sequence, each $\nu_{n} \in W$, converging to $\nu=\times_{\alpha} \mu_{\alpha} \in W$. We have for each n that $\nu_{n}=\times_{\alpha} \mu_{n, \alpha}$ such that $\left(\mu_{n, \alpha}\right)_{\alpha} \in \mathfrak{S}_{2}$. By Theorem 3.1.4 in [4], which is straightforwardly generalized to the infinite product, for each fixed α we have $\left(\mu_{n, \alpha}\right)_{n} \Rightarrow \mu_{\alpha}$. This is exactly pointwise convergence in the product space \mathfrak{S}_{2}, and the same argument in reverse works for the converse.

D Proofs from $\$ 5$

We will use the following result to categorize sets in the weak topology.
Lemma D.0.1. If $X \subset \vartheta$ is a basic clopen, the map $p_{X}:\left(\mathfrak{S}, \tau^{\mathrm{w}}\right) \rightarrow([0,1], \tau)$ sending $\mu \mapsto \mu(X)$ is continuous and open (in its image), where τ is as usual on $[0,1] \subset \mathbb{R}$.

Proof. Continuous: the preimage of the basic open $\left(r_{1}, r_{2}\right) \cap p_{X}(\mathfrak{S})$ where $r_{1}, r_{2} \in \mathbb{Q}$ is $\{\mu$: $\left.\mu(X)>r_{1}\right\} \cap\left\{\mu: \mu(X)<r_{2}\right\}=\left\{\mu: \mu(X)>r_{1}\right\} \cap\left\{\mu: \mu(\vartheta \backslash X)>1-r_{2}\right\}$, a finite intersection of the subbasic sets (1) from \$4. See also Kechris [6, Corollary 17.21].
Open: if $X=\varnothing$ or ϑ, then $p_{X}(\mathfrak{S})=\{0\}$ or $\{1\}$ resp., both open in themselves. Else $p_{X}(\mathfrak{S})=[0,1]$; we show any $Z=p_{X}\left(\bigcap_{i=1}^{n}\left\{\mu: \mu\left(X_{i}\right)>r_{i}\right\}\right)$ is open. Consider a mutually disjoint, covering $\mathcal{D}=\left\{\bigcap_{i=0}^{n} Y_{i}: Y_{0} \in\{X, \vartheta \backslash X\}\right.$, each $\left.Y_{i} \in\left\{X_{i}, \vartheta \backslash X_{i}\right\}\right\}$ and space $\Delta=\left\{(\mu(D))_{D \in \mathcal{D}}:\right.$ $\mu \in \mathfrak{S}\} \subset \mathbb{R}^{2^{n+1}}$. Just as in the Lemma, we have $\mathrm{p}_{S}: \Delta \rightarrow[0,1]$, for each $S \subset \mathcal{D}$ taking $(\mu(D))_{D} \mapsto \sum_{D \in S} \mu(D)$. Note $Z=\mathrm{p}_{\{D: D \cap X \neq \varnothing\}}\left(\bigcap_{i=1}^{n} \mathrm{p}_{\left\{D: D \cap X_{i} \neq \varnothing\right\}}^{-1}\left(\left(r_{i}, 1\right]\right)\right)$ so it suffices to show p_{S} is continuous and open; this is straightforward.

Full proof of Lem. 1 . We show a stronger result, namely that the complement of the good set is nowhere dense. By rearrangement and laws of probability we find that the second inequality in (2) is equivalent to

$$
\begin{aligned}
\mu_{x}\left(y^{\prime}\right) & <\mu_{()}\left(x^{\prime}\right)+\mu_{()}\left(x, y^{\prime}\right) \\
1-\mu_{x}(y) & <\underbrace{\mu_{()}\left(x^{\prime}\right)+\mu_{()}(x)}_{1}-\mu_{()}(x, y) \\
\mu_{x}(y) & >\mu_{()}(x, y)
\end{aligned}
$$

Lemma B.3.1 then entails the non-strict analogues of all four inequalities in (2), (3) are met for any $\left(\mu_{\alpha}\right)_{\alpha} \in \mathfrak{S}_{2}^{X \rightarrow Y}$, so we show that converting each to an equality yields a nowhere dense set, whose finite union is also nowhere dense. Note that we have a continuous and surjective observational projection $\pi_{()}: \mathfrak{S}_{2}^{X \rightarrow Y} \rightarrow \mathfrak{P}\left(\chi_{\{X, Y\}}\right)$, and the first inequality in (3) is met iff $\left(\mu_{\alpha}\right)_{\alpha} \in\left(p_{x, y} \circ \pi_{()}\right)^{-1}(\{0\})$ where $p_{x, y}$ is the map from Lemma D.0.1 and x, y denotes the set $\pi_{X}^{-1}(\{x\}) \cap \pi_{Y}^{-1}(\{y\}) \subset \chi_{\{X, Y\}}$. This is nowhere dense as it is the preimage of the nowhere dense set $\{0\} \subset[0,1]$ under a map which is continuous by Lemma D.0.1. The second inequality of (3) is wholly analogous after rearrangement.
As for (2], define a function $d: \mathfrak{S}_{2}^{X \rightarrow Y} \rightarrow[0,1]$ taking $\left(\mu_{\alpha}\right)_{\alpha} \mapsto \mu_{X:=x}\left(y^{\prime}\right)-\mu_{()}\left(x, y^{\prime}\right)$; this function d is continuous by Lemma D.0.1 and the continuity of addition and projection. Note that the first inequality of (2) holds iff $d\left(\left(\mu_{\alpha}\right)_{\alpha}\right)=0$. For any $\mu \in \mathfrak{S}_{3}^{X}$ such that $\left(\varpi_{2}^{X \rightarrow Y} \circ \varpi_{2}\right)(\mu)=$ $\left(\mu_{\alpha}\right)_{\alpha}$, note that $d\left(\left(\mu_{\alpha}\right)_{\alpha}\right)=\mu\left(x^{\prime}, y_{x}^{\prime}\right)$ where $x^{\prime}, y_{x}^{\prime}$ abbreviates the basic set $\pi_{((), X)}^{-1}\left(\left\{x^{\prime}\right\}\right) \cap$ $\pi_{(X:=x, Y)}^{-1}\left(\left\{y^{\prime}\right\}\right) \in \mathcal{B}\left(\chi_{A \times \mathbf{V}}\right)$. Thus d is surjective, so that $d^{-1}(\{0\})$ is nowhere dense since $\{0\} \subset[0,1]$ is nowhere dense. The second inequality in (2) is again totally analogous.

Proof of Lem. 2 Abbreviate μ_{3} as μ, and without loss take $\mu \in \mathfrak{S}_{\text {std }}^{\prec}$. Note that (2), (3) entail

$$
0<\mu\left(x^{\prime}, y_{x}^{\prime}\right)<\mu\left(x^{\prime}\right), \quad 0<\mu\left(x^{\prime}, y_{x^{\prime}}^{\prime}\right)<\mu\left(x^{\prime}\right)
$$

and therefore

$$
0<\mu\left(\pi_{((), X)}^{-1}\left(\left\{x^{\prime}\right\}\right) \cap \pi_{\left(x^{*}, Y\right)}^{-1}(\{1\})\right)<\mu\left(\pi_{((), X)}^{-1}\left(\left\{x^{\prime}\right\}\right)\right)
$$

for each $x^{*} \in \chi_{X}=\{0,1\}$. In turn this entails that there are some values $y_{0}, y_{1} \in\{0,1\}$ such that $\mu\left(\Omega_{1}\right)>0, \mu\left(\Omega_{2}\right)>0$ where the disjoint sets $\left\{\Omega_{i}\right\}_{i}$ are defined as

$$
\begin{aligned}
& \Omega_{1}=\pi_{((), X)}^{-1}\left(\left\{x^{\prime}\right\}\right) \cap \pi_{(X:=0, Y)}^{-1}\left(\left\{y_{0}\right\}\right) \cap \pi_{(X:=1, Y)}^{-1}\left(\left\{y_{1}\right\}\right) \\
& \Omega_{2}=\pi_{((), X)}^{-1}\left(\left\{x^{\prime}\right\}\right) \cap \pi_{(X:=0, Y)}^{-1}\left(\left\{y_{0}^{\dagger}\right\}\right) \cap \pi_{(X:=1, Y)}^{-1}\left(\left\{y_{1}^{\dagger}\right\}\right)
\end{aligned}
$$

where in the second line, $y_{0}^{\dagger}=1-y_{0}$ and $y_{1}^{\dagger}=1-y_{1}$. Note that for $i=1,2$ we have conditional measures $\mu_{i}\left(S_{i}\right)=\frac{\mu\left(S_{i}\right)}{\mu\left(\Omega_{i}\right)}$ for $S_{i} \in \mathcal{B}\left(\Omega_{i}\right)$; further, Ω_{i} is Polish, since each is clopen. This implies
Ω_{i} is a standard atomless (since μ is) probability space under μ_{i}. By Kechris [6, Thm. 17.41], there are Borel isomorphisms $f_{i}: \Omega_{i} \hookrightarrow[0,1]$ pushing μ_{i} forward to Lebesgue measure λ, i.e., $\mu_{i}\left(f_{i}^{-1}(B)\right)=\lambda(B)$ for $B \in \mathcal{B}([0,1])$. Thus $g=f_{2}^{-1} \circ f_{1}: \Omega_{1} \hookrightarrow \Omega_{2}$ is μ_{i}-preserving: for $X_{1} \in \mathcal{B}\left(\Omega_{1}\right)$,

$$
\begin{equation*}
\mu\left(g\left(X_{1}\right)\right)=\frac{\mu\left(\Omega_{2}\right)}{\mu\left(\Omega_{1}\right)} \mu\left(X_{1}\right) . \tag{D.1}
\end{equation*}
$$

Consider $\mu^{\prime}=\varpi_{3}\left(\mathcal{M}^{\prime}\right)$ for a new $\mathcal{M}^{\prime} \in \mathfrak{M}_{\prec}$, given as follows. Its exogenous valuation space is $\chi_{\mathbf{U}}=\Omega^{\prime}$ where we define the sample space $\Omega^{\prime}=\mathrm{F}(\mathbf{V}) \times\{\mathrm{T}, \mathrm{H}\}$; that is, a new exogenous variable representing a coin flip is added to some representation of the choice of deterministic standard form mechanisms. Fix constants $\varepsilon_{1}, \varepsilon_{2} \in(0,1)$ with $\varepsilon_{1} \cdot \mu\left(\Omega_{1}\right)=\varepsilon_{2} \cdot \mu\left(\Omega_{2}\right)$ and define its exogenous noise distribution P by

$$
P(X \times\{\mathrm{S}\})=\left\{\begin{array}{ll}
\left(1-\varepsilon_{1}\right) \cdot \mu(X), & X \subset \Omega_{1}, \mathrm{~S}=\mathrm{T} \tag{D.2}\\
\varepsilon_{1} \cdot \mu(X), & X \subset \Omega_{1}, \mathrm{~S}=\mathrm{H} \\
\left(1-\varepsilon_{2}\right) \cdot \mu(X), & X \subset \Omega_{2}, \mathrm{~S}=\mathrm{T} \\
\varepsilon_{2} \cdot \mu(X), & X \subset \Omega_{2}, \mathrm{~S}=\mathrm{H} \\
\mu(X), & X \subset \mathrm{~F}(\mathbf{V}) \backslash\left(\Omega_{1} \cup \Omega_{2}\right), \mathrm{S}=\mathrm{T} \\
0, & X \subset \mathrm{~F}(\mathbf{V}) \backslash\left(\Omega_{1} \cup \Omega_{2}\right), \mathrm{S}=\mathrm{H}
\end{array} .\right.
$$

Where $\mathrm{f} \in \mathrm{F}(\mathbf{V})$ and $V \in \mathbf{V}$ write f_{V} for the deterministic mechanism (of signature $\chi_{\text {Pred }(V)} \rightarrow$ χ_{V}) for V in f . (Note that each f is just an indexed collection of such mechanisms f_{V}.) The function f_{V}^{\prime} in \mathcal{M}^{\prime} is defined at the initial variable X as $f_{X}^{\prime}(\mathrm{f}, \mathrm{S})=\mathrm{f}_{X}$ for both values of S , and for $V \neq X$ is defined as follows, where $\mathbf{p} \in \operatorname{Pred}(V)$:

$$
f_{V}^{\prime}(\mathbf{p},(\mathbf{f}, \mathrm{S}))= \begin{cases}(g(\mathbf{f}))_{V}(\mathbf{p}), & \mathrm{f} \in \Omega_{1}, \mathrm{~S}=\mathrm{H}, \pi_{X}(\mathbf{p})=x \tag{D.3}\\ \left(g^{-1}(\mathbf{f})\right)_{V}(\mathbf{p}), & \mathrm{f} \in \Omega_{2}, \mathrm{~S}=\mathrm{H}, \pi_{X}(\mathbf{p})=x \\ \mathrm{f}_{V}(\mathbf{p}), & \text { otherwise }\end{cases}
$$

We claim that $\varpi_{2}\left(\mu^{\prime}\right)=\varpi_{2}(\mu)$. It suffices to show for any $\mathbf{Z}:=\mathbf{z} \in A$ and $\mathbf{w} \in \chi_{\mathbf{w}}$, \mathbf{W} finite, we have

$$
\begin{equation*}
\mu(\theta)=\mu^{\prime}(\theta), \text { where } \theta=\bigcap_{W \in \mathbf{W}} \pi_{(\mathbf{z}:=\mathbf{z}, W)}^{-1}\left(\left\{\pi_{W}(\mathbf{w})\right\}\right) \tag{D.4}
\end{equation*}
$$

Assume $\pi_{Z}(\mathbf{w})=\pi_{Z}(\mathbf{z})$ for every $Z \in \mathbf{Z} \cap \mathbf{W}$, since both sides of (D.4) trivially vanish otherwise. Where $\mathrm{f} \in \mathrm{F}(\mathbf{V})$ write, e.g., $\mathrm{f} \vDash \theta$ if $m^{\mathcal{M}_{A}}(\mathrm{f}) \in \theta$, where \mathcal{M} is a standard form model (Def.B.1.1); for $\omega^{\prime} \in \Omega^{\prime}$ write $\omega^{\prime} \vDash^{\prime} \theta$ if $m^{\mathcal{M}_{A}^{\prime}}\left(\omega^{\prime}\right) \in \theta$. By the last two cases of (D.3) we have

$$
\begin{align*}
\mu^{\prime}(\theta) & =\sum_{\mathrm{S}=\mathrm{T}, \mathrm{H}} P\left(\left\{(\mathrm{f}, \mathrm{~S}) \in \Omega^{\prime}:(\mathrm{f}, \mathrm{~S}) \vDash^{\prime} \theta\right\}\right) \\
& =\mu\left(\left\{\mathrm{f} \in \mathrm{~F}(\mathbf{V}) \backslash\left(\Omega_{1} \cup \Omega_{2}\right): \mathrm{f} \vDash \theta\right\}\right)+\sum_{\substack{\mathrm{S}=\mathrm{T}, \mathrm{H} \\
i=1,2}} P\left(\left\{(\mathrm{f}, \mathrm{~S}) \in \Omega^{\prime}: \mathrm{f} \in \Omega_{i},(\mathrm{f}, \mathrm{~S}) \vDash^{\prime} \theta\right\}\right) . \tag{D.5}
\end{align*}
$$

Applying the first four cases of (D.2) and the third case of (D.3), the second term of (D.5) becomes

$$
\begin{equation*}
\sum_{i}\left[\varepsilon_{i} \cdot \mu\left(\left\{\mathrm{f} \in \Omega_{i}:(\mathrm{f}, \mathrm{H}) \vDash^{\prime} \theta\right\}\right)+\left(1-\varepsilon_{i}\right) \cdot \mu\left(\left\{\mathrm{f} \in \Omega_{i}: \mathrm{f} \vDash \theta\right\}\right)\right] . \tag{D.6}
\end{equation*}
$$

Either $X \in \mathbf{Z}$ and $\pi_{X}(\mathbf{z})=x$, or not. In the former case: defining $X_{i}=\left\{\mathrm{f} \in \Omega_{i}: \mathrm{f} \vDash \theta\right\}$ for each $i=1,2$, the first two cases of (D.3) yield that

$$
\begin{align*}
& \left\{\mathrm{f} \in \Omega_{1}:(\mathrm{f}, \mathrm{H}) \vDash^{\prime} \theta\right\}=\left\{\mathrm{f} \in \Omega_{1}: g(\mathrm{f}) \vDash \theta\right\}=g^{-1}\left(X_{2}\right) \\
& \left\{\mathrm{f} \in \Omega_{2}:(\mathrm{f}, \mathrm{H}) \vDash^{\prime} \theta\right\}=\left\{\mathrm{f} \in \Omega_{2}: g^{-1}(\mathrm{f}) \vDash \theta\right\}=g\left(X_{1}\right) \tag{D.7}
\end{align*}
$$

Applying (D.7) and (D.1), D.6 becomes

$$
\begin{align*}
\varepsilon_{1} \cdot \frac{\mu\left(\Omega_{1}\right)}{\mu\left(\Omega_{2}\right)} \cdot \mu\left(X_{2}\right)+\left(1-\varepsilon_{1}\right) \cdot \mu\left(X_{1}\right)+\varepsilon_{2} \cdot \frac{\mu\left(\Omega_{2}\right)}{\mu\left(\Omega_{1}\right)} \cdot \mu\left(X_{1}\right)+\left(1-\varepsilon_{2}\right) \cdot \mu\left(X_{2}\right) \\
=\mu\left(X_{1}\right)+\mu\left(X_{2}\right) \tag{D.8}
\end{align*}
$$

the final cancellation by choice of $\varepsilon_{1}, \varepsilon_{2}$. In the latter case: since $m^{\mathcal{M}}(\mathrm{f}) \in \pi_{x}^{-1}\left(\left\{x^{\prime}\right\}\right)$ for any $\mathrm{f} \in \Omega_{1} \cup \Omega_{2}$, the third case of (D.3) gives $\left\{\mathrm{f} \in \Omega_{i}:(\mathrm{f}, \mathrm{H}) \vDash^{\prime} \theta\right\}=X_{i}$. Thus (D.6) becomes (D.8) in either case. Putting in D.8) as the second term in (D.5), we find $\mu(\theta)=\mu^{\prime}(\theta)$.
Now we claim $\mu(\zeta) \neq \mu^{\prime}(\zeta)$ for $\zeta=\zeta_{0} \cap \zeta_{1}$ where $\zeta_{1}=\pi_{(X:=1, Y)}^{-1}\left(\left\{y_{1}\right\}\right)$ and $\zeta_{0}=\pi_{(X:=0, Y)}^{-1}\left(\left\{y_{0}\right\}\right)$. We have

$$
\begin{align*}
\mu^{\prime}(\zeta)= & \mu\left(\left\{\mathrm{f} \in \Omega \backslash\left(\Omega_{1} \cup \Omega_{2}\right): \mathrm{f} \vDash \zeta\right\}\right) \\
& +\sum_{i=1,2}\left[\varepsilon_{i} \cdot \mu\left(\left\{\mathrm{f} \in \Omega_{i}:(\mathrm{f}, \mathrm{H}) \vDash^{\prime} \zeta\right\}\right)+\left(1-\varepsilon_{i}\right) \cdot \mu\left(\left\{\mathrm{f} \in \Omega_{i}: \mathrm{f} \vDash \zeta\right\}\right)\right] . \tag{D.9}
\end{align*}
$$

First suppose that $x=0$. If $\mathrm{f} \in \Omega_{1}$, then note that $(\mathbf{f}, \mathrm{H}) \vDash^{\prime} \zeta_{0}$ iff $g(\mathbf{f}) \vDash \zeta_{0}$, but this is never so, since $g(\mathrm{f}) \in \Omega_{2}$. If $\mathrm{f} \in \Omega_{2}$, then $(\mathrm{f}, \mathrm{H}) \vDash^{\prime} \zeta_{1}$ iff $\mathrm{f} \vDash \zeta_{1}$, which is never so again by choice of Ω_{2}. If $x=1$ then we find that $(\mathrm{f}, \mathrm{H}) \not \not \zeta_{1}\left(\right.$ if $\left.\mathrm{f} \in \Omega_{1}\right)$ and $(\mathrm{f}, \mathrm{H}) \not \not \neq \zeta_{0}$ (if $\mathrm{f} \in \Omega_{2}$). Thus $(\mathrm{f}, \mathrm{H}) \not \forall^{\prime} \zeta$ for any $f \in \Omega_{1} \cup \Omega_{2}$ and D.9 becomes

$$
\mu(\{\mathrm{f} \in \Omega: \mathrm{f} \vDash \zeta\})-\sum_{i=1,2} \varepsilon_{i} \cdot \mu\left(\left\{\mathrm{f} \in \Omega_{i}: \mathrm{f} \vDash \zeta\right\}\right)=\mu(\{\mathrm{f} \in \Omega: \mathrm{f} \vDash \zeta\})-\varepsilon_{1} \cdot \mu\left(\Omega_{1}\right)<\mu(\zeta)
$$

It is straightforward to check (via casework on the values y_{0}, y_{1}) that μ and μ^{\prime} disagree also on the PNS: $\mu\left(y_{x}, y_{x^{\prime}}^{\prime}\right) \neq \mu^{\prime}\left(y_{x}, y_{x^{\prime}}^{\prime}\right)$ as well as its converse. As for the probability of sufficiency (Definition 10), note that

$$
P\left(y_{x} \mid x^{\prime}, y^{\prime}\right)=\frac{P\left(y_{x}, x^{\prime}, y_{x^{\prime}}^{\prime}\right)+\overbrace{P\left(y_{x}, y_{x}^{\prime}, x^{\prime}, x\right)}^{0}}{P\left(x^{\prime}, y^{\prime}\right)}
$$

and it is again easily seen (given the definition of the $\left.\Omega_{i}\right)$ that $\mu\left(y_{x}, x^{\prime}, y_{x^{\prime}}^{\prime}\right) \neq \mu^{\prime}\left(y_{x}, x^{\prime}, y_{x^{\prime}}^{\prime}\right)$ while the two measures agree on the denominator; similar reasoning shows disagreement on the probability of enablement, since

$$
P\left(y_{x} \mid y^{\prime}\right)=\frac{P\left(y_{x}, y_{x^{\prime}}^{\prime}, x^{\prime}\right)+\overbrace{P\left(y_{x}, y_{x}^{\prime}, x\right)}^{0}}{P\left(y^{\prime}\right)} .
$$

References

[1] J. D. Angrist, G. W. Imbens, and D. B. Rubin. Identification of causal effects using instrumental variables. Journal of the ASA, 91(343):444-455, 1996.
[2] A. Balke and J. Pearl. Probabilistic evaluation of counterfactual queries. In Proceedings of AAAI, 1994.
[3] P. Billingsley. Convergence of Probability Measures. Wiley, 2nd edition, 1999.
[4] K. Genin. The Topology of Statistical Inquiry. PhD thesis, Carnegie Mellon University, 2018.
[5] D. Ibeling and T. Icard. Probabilistic reasoning across the causal hierarchy. In Proceedings of AAAI, 2020.
[6] A. S. Kechris. Classical Descriptive Set Theory. Springer New York, 1995.
[7] J. Pearl. Probabilities of causation: Three counterfactual interpretations and their identification. Synthese, 121(1):93-149, 1999.
[8] T. S. Richardson and J. L. Robins. Single world intervention graphs (SWIGs): A unification of the counterfactual and graphical approaches to causality. Working Paper Number 128, Center for Statistics and the Social Sciences, University of Washington, 2013.
[9] P. Suppes and M. Zanotti. When are probabilistic explanations possible? Synthese, 48:191-199, 1981.
[10] J. Tian, C. Kang, and J. Pearl. A characterization of interventional distributions in semiMarkovian causal models. In Proceedings of AAAI. 2006.

