
A Derivation of time-evolving attention operators

We show the full derivation of Equation 6 as follows. Let X′ = {X ′i|X ′i ∈ Rd+d′}ni=1 be a
sequence of vectors (which is the original d-dimensional input augmented with d′-dimensional
depth information). Let us further assume X ′i = {x′ij |x′ij ∈ R}d+d

′

j=1 . For two projection matrices

W ′q,W
′
k ∈ Rd×(d+d′) where W ′q = [ωij ]
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projections become:
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Then, the pre-softmax dot-product attention matrix for X′ becomes A′ = [a′ij ]
n,n
i,j=1 where
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
Recall that X ′i is the concatenation of Xi and T l. That means, for 1 ≤ β ≤ d, x′iβ ∈ Xi = {xiγ}dγ=1

and for d + 1 ≤ β ≤ d + d′, x′iβ ∈ T l = {τγ(l)}d′γ=1. Furthermore, we decompose W ′q as

concatenation of two matrices Wq, W̃q such that Wq = [ωij ]
d,d+d′

i,j=1,1 and W̃q = [ωij ]
d+d,d+d′

i,j=d+1,1.
Similarly, we decomposeW ′k intoWk and W̃k. Then the previous expression for a′ij can be re-written
as:
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= (XiWq)(XjWk)> + (XiWq)(T

lW̃k)> + (T lW̃q)(XjWk)> + (W̃qW̃k)(T l � T l)
= aij +A1iT

l> + T lA2j +A3(T l � T l)
where Ai1, A2j , and A3 are d′ dimensional vectors corresponding the given input vector Xi. For
input vector sequence Xi, these form the time-evolution operators of attention, A1,A2, A3.
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B Properties of random sine-cosine matrices
In Section 5, we redesigned a single feed-forward operation at depth l on a given input Xi ∈ Rd
to produce output Xi+1 ∈ Rd′ as Xi+1 = σ(U lΣV lXi + B) where U l ∈ Rd×d, V l ∈ Rd′×d′ are
random sine-cosine matrices to approximate rotation, Σ ∈ Rd×d′ is a rectangular diagonal matrix
with learnable entries {λj}min(d,d

′)
j=1 , B ∈ Rd′ is a learnable bias, and σ(·) is a non-linearity (ReLU

in our case). U l (V l) is defined as
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where wlij ∈ N (0, σ2) and P = dL

2π .

Let A = U l(U l)> = [αij ]
d,d
i,j=1,1. Then for all 1 ≤ i ≤ d,
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kl
P ). Let klP = κ; then we can

rewrite Ak and Bk as:
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Assuming wik ∈ X and wjk ∈ Y where X and Y are two independent random variables with pdf
defined as f(X) = 1
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Figure 2: Variation of BLEU score for En-De (WMT 2014) and En-Fr (WMT 2014) translation
with different learning rates and warmup steps. x-axis in both plots show the (lrmax, warmup_step)
pairs. The model variation used here in TransEvolve-fullFF.

Therefore, E[αij ] = 1
d

∑ d
2

k=1 exp(−σ
2

2
kl
P ) which approaches 0 as σ gets larger. Thus, on the limiting

case, we get E[U l(U l)>] = 1
2Id where Id is the d-dimensional identity matrix. This way, U l

approximates a rotation matrix as we choose σ = O(d).

C Task related details
Here we describe the experimental details for encoder-decoder and encoder-only tasks. TransEvolve
is implemented using Tensorflow version 2.4.1.

Machine translation. For both En-De and En-Fr tasks, we use a batch size of 512 with maximum
allowed input sentence length of 256 while training and train for a total of 300, 000 steps. Time
needed for training varies with model configurations: TransEvolve-randomFF-1 takes 18 hours to
finish while TransEvolve-fullFF-2 takes around 32 hourrs. All of these training and testings are
done with 32-bit floating point precision. To find the optimal learning rate, we used the following
pairs of (lrmax, warmup_step) values (see Section 7.3): (1.0, 4000), (1.0, 8000), (1.0, 16000),
(1.5, 4000), (1.5, 8000), and, (1.5, 16000). For all the experiments, the optimizer we use is Adam
with β1 = 0.9, β2 = 0.98, and ε = 10−9. We used beam search with beam size 4 and length penalty
0.6. For En-De task, we used an extra decode length of 50; for En-Fr, this value is set to 35. Figure 2
summarizes the variation in performance with different (lrmax, warmup_step) values; we run 5
independent training and testing with different random seeds, and choose the maximum BLEU score
from each runs to plot this variation.

Encoder-only tasks. As mentioned in Section 7.1, we experiment with the small version
of TransEvolve variants (d = 256) for all the encoder-only tasks. We set the values of
(lrmax, warmup_step) to (0.5, 8000) and use the default parameters of Adam to optimize. All
encoder-only experiments are done using a maximum input length of 512.

In the text classification regime, we use the BERT (base uncased) tokenizer from Huggingface1. The
batch size is set to 80. We train each model for 15 epochs. However, the best models emerge by 7-8
epochs of training with a ±0.2% error range in test accuracy over 5 randomly initialized runs.

In the long range sequence classification regime, the tokenization (character-level in IMDB and
operation symbols in ListOps) and maximum input lengths are predefined . We use a batch size of 48
for the IMDB dataset, and 64 for the ListOps dataset. Again, we train all the models for 15 epochs,
with best performances emerging after 9-10 epochs of training with error margins ±0.8% in ListOps
and ±0.3 in IMDB datasets.

1https://huggingface.co/transformers/model_doc/bert.html#berttokenizer
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