A Derivation of time-evolving attention operators

We show the full derivation of Equation 6 as follows. Let $\mathbf{X}^{\prime}=\left\{X_{i}^{\prime} \mid X_{i}^{\prime} \in \mathbb{R}^{d+d^{\prime}}\right\}_{i=1}^{n}$ be a sequence of vectors (which is the original d-dimensional input augmented with d^{\prime}-dimensional depth information). Let us further assume $X_{i}^{\prime}=\left\{x_{i j}^{\prime} \mid x_{i j}^{\prime} \in \mathbb{R}\right\}_{j=1}^{d+d^{\prime}}$. For two projection matrices $W_{q}^{\prime}, W_{k}^{\prime} \in \mathbb{R}^{d \times\left(d+d^{\prime}\right)}$ where $W_{q}^{\prime}=\left[\omega_{i j}\right]_{i, j=1}^{d+d^{\prime}, d+d^{\prime}}$ and $W_{k}^{\prime}=\left[\theta_{i j}\right]_{i, j=1}^{d+d^{\prime}, d+d^{\prime}}$, the query and key projections become:

$$
\begin{aligned}
& Q_{i}=X_{i}^{\prime} W_{q}^{\prime}=\left\{q_{i j} \mid q_{i j}=\sum_{l=1}^{d+d^{\prime}} x_{i l}^{\prime} \omega_{l j}\right\}_{j=1}^{d+d^{\prime}} \\
& K_{i}=X_{i}^{\prime} W_{k}^{\prime}=\left\{k_{i j} \mid q_{i j}=\sum_{l=1}^{d+d^{\prime}} x_{i l}^{\prime} \theta_{l j}\right\}_{j=1}^{d+d^{\prime}}
\end{aligned}
$$

Then, the pre-softmax dot-product attention matrix for \mathbf{X}^{\prime} becomes $\mathbf{A}^{\prime}=\left[a_{i j}^{\prime}\right]_{i, j=1}^{n, n}$ where

$$
\begin{aligned}
a_{i j}^{\prime} & =Q_{i} K_{j}=\sum_{\alpha=1}^{d+d^{\prime}}\left(q_{i \alpha} k_{j \alpha}\right) \\
& =\sum_{\alpha=1}^{d+d^{\prime}}\left(\sum_{\beta=1}^{d+d^{\prime}} x_{i \beta}^{\prime} \omega_{\beta \alpha} \sum_{\beta=1}^{d+d^{\prime}} x_{j \beta}^{\prime} \theta_{\beta \alpha}\right) \\
& =\sum_{\alpha=1}^{d+d^{\prime}}\left(\left(\sum_{\beta=1}^{d} x_{i \beta}^{\prime} \omega_{\beta \alpha}+\sum_{\beta=d+1}^{d+d^{\prime}} x_{i \beta}^{\prime} \omega_{\beta \alpha}\right)\left(\sum_{\beta=1}^{d} x_{j \beta}^{\prime} \theta_{\beta \alpha}+\sum_{\beta=d+1}^{d+d^{\prime}} x_{j \beta}^{\prime} \theta_{\beta \alpha}\right)\right) \\
& =\sum_{\alpha=1}^{d+d^{\prime}}\left(\sum_{\beta=1}^{d} x_{i \beta}^{\prime} \omega_{\beta \alpha} \sum_{\beta=1}^{d} x_{j \beta}^{\prime} \theta_{\beta \alpha}+\sum_{\beta=d+1}^{d+d^{\prime}} x_{i \beta}^{\prime} \omega_{\beta \alpha} \sum_{\beta=1}^{d} x_{j \beta}^{\prime} \theta_{\beta \alpha}\right. \\
& \left.+\sum_{\beta=1}^{d} x_{i \beta}^{\prime} \omega_{\beta \alpha} \sum_{\beta=d+1}^{d+d^{\prime}} x_{j \beta}^{\prime} \theta_{\beta \alpha}+\sum_{\beta=d+1}^{d+d^{\prime}} x_{i \beta}^{\prime} \omega_{\beta \alpha} \sum_{\beta=d+1}^{d+d^{\prime}} x_{j \beta}^{\prime} \theta_{\beta \alpha}\right) \\
& =\sum_{\alpha=1}^{d+d^{\prime}}\left(\sum_{\beta=1}^{d} x_{i \beta}^{\prime} \omega_{\beta \alpha} \sum_{\beta=1}^{d} x_{j \beta}^{\prime} \theta_{\beta \alpha}\right)+\sum_{\alpha=1}^{d+d^{\prime}}\left(\sum_{\beta=d+1}^{d+d^{\prime}} x_{i \beta}^{\prime} \omega_{\beta \alpha} \sum_{\beta=1}^{d} x_{j \beta}^{\prime} \theta_{\beta \alpha}\right) \\
& +\sum_{\alpha=1}^{d+d^{\prime}}\left(\sum_{\beta=1}^{d} x_{i \beta}^{\prime} \omega_{\beta \alpha} \sum_{\beta=d+1}^{d+d^{\prime}} x_{j \beta}^{\prime} \theta_{\beta \alpha}\right)+\sum_{\alpha=1}^{d+d^{\prime}}\left(\sum_{\beta=d+1}^{d+d^{\prime}} x_{i \beta}^{\prime} \omega_{\beta \alpha} \sum_{\beta=d+1}^{d+d^{\prime}} x_{j \beta}^{\prime} \theta_{\beta \alpha}\right)
\end{aligned}
$$

Recall that X_{i}^{\prime} is the concatenation of X_{i} and T^{l}. That means, for $1 \leq \beta \leq d, x_{i \beta}^{\prime} \in X_{i}=\left\{x_{i \gamma}\right\}_{\gamma=1}^{d}$ and for $d+1 \leq \beta \leq d+d^{\prime}, x_{i \beta}^{\prime} \in T^{l}=\left\{\tau_{\gamma}(l)\right\}_{\gamma=1}^{d^{\prime}}$. Furthermore, we decompose W_{q}^{\prime} as concatenation of two matrices W_{q}, \tilde{W}_{q} such that $W_{q}=\left[\omega_{i j}\right]_{i, j=1,1}^{d, d+d^{\prime}}$ and $\tilde{W}_{q}=\left[\omega_{i j}\right]_{i, j=d+1,1}^{d+d, d+d^{\prime}}$. Similarly, we decompose W_{k}^{\prime} into W_{k} and \tilde{W}_{k}. Then the previous expression for $a_{i j}^{\prime}$ can be re-written as:

$$
\begin{aligned}
a_{i j}^{\prime} & =\sum_{\alpha=1}^{d+d^{\prime}}\left(\sum_{\gamma=1}^{d} x_{i \gamma} \omega_{\gamma \alpha} \sum_{\gamma=1}^{d} x_{j \gamma} \theta_{\gamma \alpha}\right)+\sum_{\alpha=1}^{d+d^{\prime}}\left(\sum_{\gamma=1}^{d^{\prime}} \tau_{\gamma}(l) \omega_{\gamma+d, \alpha} \sum_{\gamma=1}^{d} x_{j \gamma} \theta_{\gamma \alpha}\right) \\
& +\sum_{\alpha=1}^{d+d^{\prime}}\left(\sum_{\gamma=1}^{d} x_{i \gamma} \omega_{\gamma \alpha} \sum_{\gamma=1}^{d^{\prime}} \tau_{\gamma}(l) \theta_{\gamma+d, \alpha}\right)+\sum_{\alpha=1}^{d+d^{\prime}}\left(\sum_{\gamma=d+1}^{d^{\prime}} \tau_{\gamma}(l) \omega_{\gamma+d, \alpha} \sum_{\gamma=d+1}^{d^{\prime}} \tau_{\gamma}(l) \theta_{\gamma+d, \alpha}\right) \\
& =\left(X_{i} W_{q}\right)\left(X_{j} W_{k}\right)^{\top}+\left(X_{i} W_{q}\right)\left(T^{l} \tilde{W}_{k}\right)^{\top}+\left(T^{l} \tilde{W}_{q}\right)\left(X_{j} W_{k}\right)^{\top}+\left(\tilde{W}_{q} \tilde{W}_{k}\right)\left(T^{l} \odot T^{l}\right) \\
& =a_{i j}+A_{1 i} T^{l \top}+T^{l} A_{2 j}+A_{3}\left(T^{l} \odot T^{l}\right)
\end{aligned}
$$

where $A_{i 1}, A_{2 j}$, and A_{3} are d^{\prime} dimensional vectors corresponding the given input vector X_{i}. For input vector sequence \mathbf{X}_{i}, these form the time-evolution operators of attention, $\mathbf{A}_{1}, \mathbf{A}_{2}, A_{3}$.

B Properties of random sine-cosine matrices

In Section 5, we redesigned a single feed-forward operation at depth l on a given input $X_{i} \in \mathbb{R}^{d}$ to produce output $X_{i+1} \in \mathbb{R}^{d^{\prime}}$ as $X_{i+1}=\sigma\left(U^{l} \Sigma V^{l} X_{i}+B\right)$ where $U^{l} \in \mathbb{R}^{d \times d}, V^{l} \in \mathbb{R}^{d^{\prime} \times d^{\prime}}$ are random sine-cosine matrices to approximate rotation, $\Sigma \in \mathbb{R}^{d \times d^{\prime}}$ is a rectangular diagonal matrix with learnable entries $\left\{\lambda_{j}\right\}_{j=1}^{\min \left(d, d^{\prime}\right)}, B \in \mathbb{R}^{d^{\prime}}$ is a learnable bias, and $\sigma(\cdot)$ is a non-linearity (ReLU in our case). $U^{l}\left(V^{l}\right)$ is defined as

$$
U^{l}=\frac{1}{\sqrt{d}}\left[\begin{array}{cccccc}
\sin \left(w_{11}^{l} \frac{l}{P}\right) & \ldots & \sin \left(w_{1 \frac{d}{2}}^{l} \frac{d l}{2 P}\right) & \cos \left(w_{11}^{l} \frac{l}{P}\right) & \ldots & \cos \left(w_{1 \frac{d}{2}}^{l} \frac{d l}{2 P}\right) \\
\vdots & & & & \vdots \\
\sin \left(w_{d 1}^{l} \frac{l}{P}\right) & \ldots & \sin \left(w_{d \frac{d}{2}}^{l} \frac{d l}{2 P}\right) & \cos \left(w_{d 1}^{l} \frac{l}{P}\right) & \ldots & \cos \left(w_{d \frac{d}{2}}^{l} \frac{d l}{2 P}\right)
\end{array}\right]
$$

where $w_{i j}^{l} \in \mathcal{N}\left(0, \sigma^{2}\right)$ and $P=\frac{d L}{2 \pi}$.
Let $A=U^{l}\left(U^{l}\right)^{\top}=\left[\alpha_{i j}\right]_{i, j=1,1}^{d, d}$. Then for all $1 \leq i \leq d$,

$$
\alpha_{i i}=\sum_{j=1}^{\frac{d}{2}} \frac{1}{d}\left(\sin ^{2}\left(w_{i j} \frac{j l}{P}\right)+\cos ^{2}\left(w_{i j} \frac{j l}{P}\right)\right)=\frac{1}{2}
$$

For all $i \neq j$,

$$
\begin{aligned}
\alpha_{i j} & =\frac{1}{d} \sum_{k=1}^{\frac{d}{2}}\left(\sin \left(w_{i k} \frac{k l}{P}\right) \sin \left(w_{j k} \frac{k l}{P}\right)+\cos \left(w_{i k} \frac{k l}{P}\right) \cos \left(w_{j k} \frac{k l}{P}\right)\right) \\
& =\frac{1}{d} \sum_{k=1}^{\frac{d}{2}}\left(A_{k}+B_{k}\right)
\end{aligned}
$$

where $A_{k}=\sin \left(w_{i k} \frac{k l}{P}\right) \sin \left(w_{j k} \frac{k l}{P}\right)$ and $B_{k}=\cos \left(w_{i k} \frac{k l}{P}\right) \cos \left(w_{j k} \frac{k l}{P}\right)$. Let $\frac{k l}{P}=\kappa$; then we can rewrite A_{k} and B_{k} as:

$$
\begin{aligned}
A_{k} & =\left(\frac{\exp \left(\mathbf{i} w_{i k} \kappa\right)-\exp \left(-\mathbf{i} w_{i k} \kappa\right)}{2 \mathbf{i}}\right)\left(\frac{\exp \left(\mathbf{i} w_{j k} \kappa\right)-\exp \left(-\mathbf{i} w_{j k} \kappa\right)}{2 \mathbf{i}}\right) \\
& =\frac{-1}{4}\left(\exp \left(\mathbf{i} w_{i k} \kappa+\mathbf{i} w_{j k} \kappa\right)+\exp \left(-\mathbf{i} w_{i k} \kappa-\mathbf{i} w_{j k} \kappa\right)\right. \\
& \left.-\exp \left(\mathbf{i} w_{i k} \kappa-\mathbf{i} w_{j k} \kappa\right)-\exp \left(-\mathbf{i} w_{i k} \kappa+\mathbf{i} w_{j k} \kappa\right)\right) \\
B_{k} & =\left(\frac{\exp \left(\mathbf{i} w_{i k} \kappa\right)+\exp \left(-\mathbf{i} w_{i k} \kappa\right)}{2}\right)\left(\frac{\exp \left(\mathbf{i} w_{j k} \kappa\right)+\exp \left(-\mathbf{i} w_{j k} \kappa\right)}{2}\right) \\
& =\frac{1}{4}\left(\exp \left(\mathbf{i} w_{i k} \kappa+\mathbf{i} w_{j k} \kappa\right)+\exp \left(-\mathbf{i} w_{i k} \kappa-\mathbf{i} w_{j k} \kappa\right)\right. \\
& \left.+\exp \left(\mathbf{i} w_{i k} \kappa-\mathbf{i} w_{j k} \kappa\right)+\exp \left(-\mathbf{i} w_{i k} \kappa+\mathbf{i} w_{j k} \kappa\right)\right)
\end{aligned}
$$

Assuming $w_{i k} \in X$ and $w_{j k} \in Y$ where X and Y are two independent random variables with pdf defined as $f(X)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{X^{2}}{2 \sigma^{2}}\right)$ and $f(Y)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{Y^{2}}{2 \sigma^{2}}\right)$,

$$
\begin{aligned}
\mathbb{E}\left[\exp \left(\mathbf{i} w_{i k} \kappa+\mathbf{i} w_{j k} \kappa\right)\right] & =\frac{1}{2 \pi \sigma^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp (\mathbf{i} X \kappa+\mathbf{i} Y \kappa) \exp \left(-\frac{X^{2}}{2 \sigma^{2}}\right) \exp \left(-\frac{Y^{2}}{2 \sigma^{2}}\right) d X d Y \\
& =\exp \left(-\frac{\sigma^{2}}{2} \kappa\right) \\
& =\mathbb{E}\left[\exp \left(\mathbf{i} w_{i k} \kappa-\mathbf{i} w_{j k} \kappa\right)\right]=\mathbb{E}\left[\exp \left(-\mathbf{i} w_{i k} \kappa-\mathbf{i} w_{j k} \kappa\right)\right]
\end{aligned}
$$

Then

$$
\mathbb{E}\left[A_{k}\right]=\frac{-1}{4}\left(2 \exp \left(-\frac{\sigma^{2}}{2} \kappa\right)-2 \exp \left(-\frac{\sigma^{2}}{2} \kappa\right)\right)=0
$$

and similarly,

$$
\mathbb{E}\left[B_{k}\right]=\frac{1}{4}\left(2 \exp \left(-\frac{\sigma^{2}}{2} \kappa\right)+2 \exp \left(-\frac{\sigma^{2}}{2} \kappa\right)\right)=\exp \left(-\frac{\sigma^{2}}{2} \kappa\right)
$$

Figure 2: Variation of BLEU score for En-De (WMT 2014) and En-Fr (WMT 2014) translation with different learning rates and warmup steps. x -axis in both plots show the ($l r_{\max }$, warmup_step) pairs. The model variation used here in TransEvolve-fullFF.

Therefore, $\mathbb{E}\left[\alpha_{i j}\right]=\frac{1}{d} \sum_{k=1}^{\frac{d}{2}} \exp \left(-\frac{\sigma^{2}}{2} \frac{k l}{P}\right)$ which approaches 0 as σ gets larger. Thus, on the limiting case, we get $\mathbb{E}\left[U^{l}\left(U^{l}\right)^{\top}\right]=\frac{1}{2} \mathbf{I}_{d}$ where \mathbf{I}_{d} is the d-dimensional identity matrix. This way, U^{l} approximates a rotation matrix as we choose $\sigma=\mathcal{O}(d)$.

C Task related details

Here we describe the experimental details for encoder-decoder and encoder-only tasks. TransEvolve is implemented using Tensorflow version 2.4.1.

Machine translation. For both En-De and En-Fr tasks, we use a batch size of 512 with maximum allowed input sentence length of 256 while training and train for a total of 300,000 steps. Time needed for training varies with model configurations: TransEvolve-randomFF-1 takes 18 hours to finish while TransEvolve-fullFF-2 takes around 32 hourrs. All of these training and testings are done with 32 -bit floating point precision. To find the optimal learning rate, we used the following pairs of (lr max , warmup_step) values (see Section 7.3): (1.0, 4000), (1.0, 8000), (1.0, 16000), $(1.5,4000),(1.5,8000)$, and, $(1.5,16000)$. For all the experiments, the optimizer we use is Adam with $\beta_{1}=0.9, \beta_{2}=0.98$, and $\epsilon=10^{-9}$. We used beam search with beam size 4 and length penalty 0.6. For En-De task, we used an extra decode length of 50 ; for En-Fr, this value is set to 35 . Figure 2 summarizes the variation in performance with different ($l r_{\max }$, warmup_step) values; we run 5 independent training and testing with different random seeds, and choose the maximum BLEU score from each runs to plot this variation.

Encoder-only tasks. As mentioned in Section 7.1, we experiment with the small version of TransEvolve variants $(d=256)$ for all the encoder-only tasks. We set the values of $\left(l r_{\text {max }}\right.$, warmup_step $)$ to $(0.5,8000)$ and use the default parameters of Adam to optimize. All encoder-only experiments are done using a maximum input length of 512 .
In the text classification regime, we use the BERT (base uncased) tokenizer from Huggingface ${ }^{1}$ The batch size is set to 80 . We train each model for 15 epochs. However, the best models emerge by $7-8$ epochs of training with a $\pm 0.2 \%$ error range in test accuracy over 5 randomly initialized runs.
In the long range sequence classification regime, the tokenization (character-level in IMDB and operation symbols in ListOps) and maximum input lengths are predefined. We use a batch size of 48 for the IMDB dataset, and 64 for the ListOps dataset. Again, we train all the models for 15 epochs, with best performances emerging after 9-10 epochs of training with error margins $\pm 0.8 \%$ in ListOps and ± 0.3 in IMDB datasets.

[^0]
[^0]: ${ }^{1}$ https://huggingface.co/transformers/model_doc/bert.html\#berttokenizer

