
MarioNette: Self-Supervised Sprite Learning

Dmitriy Smirnov
MIT

Michaël Gharbi
Adobe Research

Matthew Fisher
Adobe Research

Vitor Guizilini
Toyota Research Institute

Alexei A. Efros
UC Berkeley

Justin Solomon
MIT

Abstract

Artists and video game designers often construct 2D animations using libraries of
sprites—textured patches of objects and characters. We propose a deep learning
approach that decomposes sprite-based video animations into a disentangled rep-
resentation of recurring graphic elements in a self-supervised manner. By jointly
learning a dictionary of possibly transparent patches and training a network that
places them onto a canvas, we deconstruct sprite-based content into a sparse, con-
sistent, and explicit representation that can be easily used in downstream tasks, like
editing or analysis. Our framework offers a promising approach for discovering
recurring visual patterns in image collections without supervision.

Since the early days of machine learning, the accepted unit of image synthesis has been the pixel. But
while the pixel grid is a natural representation for display hardware and convolutional generators, it
does not easily permit high-level reasoning and editing.

In this paper, we take inspiration from animation to consider an atomic unit that is richer and
easier to edit than the pixel: the sprite. In sprite-based animation, a popular early technique for
drawing cartoons and rendering video games, an artist draws a collection of patches—a sprite sheet—
consisting of texture swatches, characters in various poses, static objects, and so on. Then, each
frame is assembled by compositing a subset of the patches onto a canvas. By reusing the sprite sheet,
authoring new content requires minimal effort and can even be automated procedurally.

Our goal is to invert this process, simultaneously tackling unsupervised instance segmentation and
dictionary learning. Given an image dataset, e.g., frames from a sprite-based video game, we train
a model that jointly learns a 2D sprite dictionary, capturing recurring visual elements in an image
collection, and explains each input frame as a combination of these potentially transparent sprites.
Whereas standard CNN-based generators hide their feature representation in their intermediate layers,
our model wears its representation “on its sleeve”: by explicitly compositing sprites from its learnt
dictionary onto a background canvas, rather than synthesizing pixels from hidden neural features, it
provides a readily-interpretable visual representation.

Our contributions include the following:

• We describe a grid-based anchor system along with a learned dictionary of textured patches (with
transparency) to extract a sprite-based image representation.

• We propose a method to learn the patch dictionary and the grid-based representation jointly, in a
differentiable, end-to-end fashion.

• We compare to past work on learned disentangled graphics representations for video games.
• We show how our method offers promising avenues for further work towards identifying visual

patterns in more complex data such as natural images and video.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

1 Related Work

Decomposing visual content into semantically meaningful parts for analysis, synthesis, and editing is
a long-standing problem. We review the most closely related work.

Layered decompositions. Wang and Adelson [54] decompose videos into layers undergoing
temporally-varying warps for compression. Similarly, Flexible Sprites [24] and Kannan et al. [27]
represent videos with full-canvas semi-transparent layers to facilitate editing. Like Flexible Sprites,
we adopt translation-only motion but restrict transformations to small neighborhoods around anchors,
making inference tractable with many (�100) sprites. Other methods decompose videos with moving
subjects, such as humans, into independent layers, enabling matting [41] and retiming of individual
actions [40]; unlike sprite-based techniques, motion and appearance are not disentangled. Sbai et al.
[48] use a layered representation as inductive bias in a GAN with solid colored layers. Automatic
decompositions into “soft layers” according to texture, color, or semantic features have been used
in image editing [1, 2]. Gandelsman et al. [12] use deep image priors [52] to separate images into
layer pairs. Huang and Murphy [19] introduce a recurrent architecture to output multiple layers
sequentially. Reddy et al. [46] discover patterns in images via differentiable compositing.

Interpretable generators for neural synthesis. Neural networks improve the fidelity and realism of
generative models [14, 28] but limit control and interpretability [5, 6, 8, 16]. Several works explore
interpretability using differentiable domain-specific functions. Hu et al. [18], Li et al. [31] constrain
the generator to sets of parametric image operators. Mildenhall et al. [44] use a ray-marching prior
and rendering model to encode a radiance field for novel view synthesis. Neural textures [51] replace
RGB textures on 3D meshes with high-dimensional features. Rendering under new views enables
view-consistent editing. Lin et al. [33] use spatial transformers in their generator to obtain geometric
transformations. We synthesize frames by compositing 2D sprites undergoing rigid motions, enabling
direct interpretation and control over appearance and motion.

Object-centric representations. Our learned sprites reveal, segment, and track object instances.
Similarly, Slot Attention [37] extracts object-centric compositional video representations. However,
our sprites are interpretable—motion and appearance are direct outputs—and our model scales to
more objects per scene. SCALOR [23] handles up to 100 instances but does not produce a common
dictionary or handle diverse sprites. While SPACE [34] decomposes images into object layers, it
tends to embed sprites in the background, providing no control. Our method achieves a higher IoU
of recurring sprite patterns (see §3.1). Stampnet [53] discovers and localizes objects but focuses
on simpler, synthetic datasets. MONet [7] decomposes images into multiple object regions using
attention. Earlier attention mechanisms leverage pattern recurrence [9, 30] and motion cues [11] to
identify individual objects. Recent works use parametric primitives as image building blocks [32, 49].

Applying our sprite decompositions to video games, we can learn about dynamics and gameplay,
benefiting downstream agents [17, 26] and aiding content-authoring for research and game devel-
opment, as in Procedural Content Generation [50]. GameGAN [29] synthesizes new frames from
controller input. They split rendering into static and dynamic components but render full frames,
without factorization into parts. Their generator is difficult to interpret: appearance and dynamics are
entangled within its parameters.

Compression. Appearance consistency and motion compensation are central to video compression [4,
38, 42]. We model videos as compositions of moving sprites, factoring redundancy in the input. This
draws inspiration from works like DjVu [15] and Digipaper [20], which compress scanned documents
by separating them into a background layer and foreground text. Image epitomes [25] summarize and
compress image shape and appearance into a miniature texture. Our sprite dictionary fills a similar
role, providing superior editing control.

2 Method

We start with an input sequence of n RGB frames fI1; : : : ; Ing with resolution w�h. Our goal is
to decompose each frame Ii 2 R3�w�h into a set of possibly overlapping sprites, organized into ‘
depth layers, selected from a finite-size dictionary. The dictionary is a collection of trainable latent
codes fz1; : : : ; zmg that are decoded into RGBA sprites using a neural network generator (§2.1).

2

Figure 1: Overview. We jointly learn a sprite dictionary, represented as a set of latent codes decoded
by a generator, as well as an encoder network that embeds a frame into a grid of latent codes, or
anchors. Comparing anchor embeddings to dictionary codes lets us assign a sprite to each grid cell.
Our encoder also outputs a binary switch per anchor to turn sprites on and off. After compositing, we
obtain a reconstruction of the input. Our self-supervised training optimizes a reconstruction loss.

Our training pipeline is illustrated in Figure 1. We �rst process each input frame with a convolutional
encoder to producègrids of feature vectors, one grid per depth layer (§2.2). The grids are lower
resolution than the input frame, with a downsampling factor proportional to the sprite size. We
call the center of each grid cell ananchor. We compare each anchor's feature vector against the
dictionary's latent codes, using a softmax scoring function, to select the best matching sprite per
anchor (§2.3). Using our sprite generator, we decode each anchor's matching sprite. This gives us a
grid of sprites for each of thèlayers. To factorize image patterns that may not align with our anchor
grid, we allow sprites to move in a small neighborhood around anchors (§2.4). We composite the
layers from back to front onto the output canvas to obtain our �nal reconstruction (§2.5). Optionally,
the background is modeled as a special learnable sprite that covers the entire canvas.

We train the dictionary latent codes, frame encoder, and sprite generator jointly on all frames, compar-
ing our reconstruction to the input (§2.6). This self-supervised procedure yields a representation that
is sparse, compact, interpretable, and well-suited for downstream editing and learning applications.

2.1 Dictionary and sprite generator

The central component of our representation is a globaldictionaryof m textured patches or sprites
D = f P1; : : : ; Pm g, where eachPi 2 R4� k� k is an RGBA patch. Our sprites have an alpha channel,
which allows them to be partially transparent, with possibly irregular (i.e., non-square) boundaries.
This is useful for representing animations with multiple depth layers and also allows to learn sprites
smaller than their maximal resolution, if necessary, by setting alpha to zero around the boundary. The
dictionary is shared among all frames; we reconstruct frames using only sprites from the dictionary.

Instead of optimizing for RGBA pixel values directly, we represent the dictionary as a set of trainable
latent codesf z1; : : : ; zm g, with zi 2 Rd. We decode these codes into RGBA sprites using a fully-
connected sprite generatorPi = G(zi). This latent representation allows us to de�ne a similarity
metric over the latent space, which we use to pair anchors with dictionary sprites to best reconstruct
the input frame (§2.3). At test time, we can forego the sprite generator and edit the RGBA sprites
directly. Unless otherwise speci�ed, we set latent dimension tod = 128 and patch size tok = 32.

We randomly initialize the latent codes from the standard normal distribution. Our sprite generator
�rst applies zero-mean unit-variance normalization—Layer Normalization [3], without an af�ne
transformation—to each latent codezi individually, followed by one fully-connected hidden layer with
8d features, Group Normalization [55], and ReLU activation. We obtain the �nal sprite using a fully-
connected layer with sigmoid activation to keep RGBA values in[0; 1]. Latent code normalization
is crucial to stabilize training and keep the latent space in a compact subspace as the optimization
progresses. See §3.3 for an ablation study of this and other components.

3

2.2 Layered frame decomposition using sprite anchors

We seek a decomposition that best explains each input frame using dictionary sprites. We exploit
translation invariance and locality in our representation; our sprites are “attached” to a regular grid
of reference points, oranchors, inspired by [13, 47]. Each anchor has at most one sprite; we call it
inactiveif it has none.

Figure 2: Layered sprite decomposition with local
anchors. We assign at most one sprite per anchor
and predict a local transformation of each placed
sprite around its anchor. To allow for occlusions be-
tween sprites, we use multiple sprite layers, which
we compose back to front to obtain the �nal image.

Figure 3: Encoder architecture.

We give the sprites freedom of motion around
their anchors to factorize structures that may not
be aligned with the anchor grid. This local—or,
Eulerian—viewpoint makes inference tractable
and avoids the pitfalls of tracking the global
motion ofall the sprites across the canvas (a La-
grangian viewpoint). To enable multiple layers
with sprite occlusions, we output` > 1 anchor
grids for each frame (` = 2 in our experiments).
Figure 2 illustrates our layered anchor grids and
local sprite transformations.

We use a convolutional encoderE to map the
w� h RGB frameI i to ` grids of anchors, with
resolution2w

k � 2h
k . Each anchorj in layerl is

represented by a feature vectoral
j 2 Rd char-

acterizing local image appearance around the
anchor and an active/inactive switch probabil-
ity pl

j 2 [0; 1]. Our frame encoder contains
log2(k) � 1 downsampling blocks, which use
partial convolutions [36] with kernel size 3 and
stride 2 (for downsampling), Group Normaliza-
tion, and Leaky ReLU. It produces a tensor of
intermediate features for each layer, which are
normalized with LayerNorm. From these, we obtain the anchor switches with an MLP with one
hidden layer of sized followed by Group Normalization and Leaky ReLU. We get anchor features
using a linear projection followed by LayerNorm. The encoder architecture is illustrated in Figure 3.

2.3 Per-anchor sprite selection

Once we have the layered anchor grids for the input frame, we need to assign sprites to the active
anchors. We do this by scoring every dictionary elementi against each anchorj at layerl , using a
softmax over dot products between dictionary codes and anchor features:

sl
ij =

exp(a l
j � z i =

p
d)

P m
k =1 exp(a l

j � z k =
p

d) : (1)

Recall that both the anchor features and dictionary latent codes are individually normalized using a
Layer Normalization operator. Restricting both latent spaces to a compact subspace helps stabilize
the optimization and avoid getting stuck in local optima. During training, each anchor's sprite is a
weighted combination of the dictionary elements, masked by the anchor's active probability:

Sl
j = pl

j

mX

i =1

sl
ij Pi : (2)

This soft patch selection allows gradients to propagate to both dictionary and anchor features during
training. Except for natural image and video datasets, at test time, we use hard selections, i.e., for each
anchor, we pick the sprite (Sl

j := Pi) with highest scoresl
ij and binarize the switchespl

j 2 f 0; 1g.

2.4 Local sprite transformations

In real animations, sprites rarely perfectly align with our regular anchor grid, so, to avoid learning
several copies of the same sprites (e.g., all sub-grid translations of a given image pattern), we allow
sprites to move around their anchors. In our implementation, we only allow 2D translations of up to
1=2 the sprite size on each side of the anchor, i.e.,T l

j = (x l
j ; yl

j) 2 [� k=2; k=2]2.

4

	Related Work
	Method
	Dictionary and sprite generator
	Layered frame decomposition using sprite anchors
	Per-anchor sprite selection
	Local sprite transformations
	Compositing and reconstruction
	Training procedure

	Experimental Results
	Comparisons
	Sprite-based game deconstruction
	Ablation Study
	Future Directions and Limitations

	Conclusion

