A Proof of Theorem 2.2]

A.1 Derivation of the self-consistent equation

We start from (I6) and rely on the following power counting principles: Each derivative provides a
smallness-factor of 1/4/m because G is a function of Y//m and Y*/1/m, while each independent
summation costs a factor of n; ~ m. However, we cannot have too many independent summa-
tions for if any index appears only once in the cumulant, then the latter vanishes identically by
the independence property of cumulants. For example, if is, ..., i, # i1, then the random vari-
ables Yi,i,, ..., Yi,. .4y, are independent of Y;,;, in the probability space of the random variables

{wila };:1 conditioned on the remaining random variables. By the law of total expectation and the
independence property it follows that

H(Yvilizv o 7}/'52k71i2k) =0

in this case. Thus we only need to sum over those cumulants in which each W- and X-index appears
at least twice (we call ¢ the IV-index of Y;;, Y5 and j the X-index). In the extreme case where each
W - and X-index appears exactly twice, we elther have a single cycle, or a union of cycles on disjoint
index sets. In the latter case the cumulant vanishes identically by the independence property. In
the former case, for a cycle of length 2k there are k indices each, we obtain a factor of nl_l from
the normalised sum, a factor of m~2k/2 = m~F from the derivatives, a factor of nlf mF from the

summations, and finally a factor of ny ~* from the cumulant in Proposition ie.

11
kn’fmkné el
nym

and the power counting is neutral. On the contrary, when some index appears three times, the overall
power counting described above is smaller by a factor of 1/+/m, and thus negligible to leading order.
In particular this argument shows that cycles of odd length only negligible as they cannot arise on
indices in which each W- and X-index appears exactly twice.

Thus, together with Proposition [3.2] we have (recalling that the shorthand notation ~ indicates

equalities up to an error of n 1 2)

K(Yiiins Yigis, Yo Yoo iin)
1129 Ligiqay Lisies + + -9 Liog_102k
14+ 2zEg = E E EaYW4 Oy i (Y*G)igil
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~ * L. * . *
~ }/7,11271/;2135}/13147 - }/7/2k711) E8Y1374 aYizkflizk ( )igil
k:>1117 lok
1 *
_— * *
= nm (Y;llz?Y;ﬂl) anizil (Y G)'ngl

11,12

nam Z Z Yv’”?’Y—Z;%’ m3i47 t Y;Zkll) an* T ayv*zkn (Y*G)lzll

k?>2 11,0502k
1 0% Z
* *
E :Ea Y G)izil + nim nk E6Y1;3 aYl*zwl (Y G>i2i1 ’
11,22 sz 0 i17...,i2k

2

where the summations Y * are understood over pairwise distinct indices. Here in the second
line the factorial (k — 1)! disappears since there are exactly (k — 1)! ways to map the variables
Yigias Yigie - -+ s Yigp_qigp, 100 Y0, Yiouy, oo Y0 i with distinct 41, ..., %2;. From this point on-
wards, we will omit reference to E to mmphfy notation slightly.

We now need to compute the partial derivatives in (ZI). The proof of the following lemma is included
in Appendix[C|
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Lemma A.1. Let G(z) = (M — 2)~', 2z € H, be the resolvent of the random matrix M = LYY* €
R™ "1 Then, it holds that

Y*GY
Oy~ (Y*G), ;. =Gi <1 — ( ¢ ) ) , (22a)
igiq 271 m iria
Y Y*GY
Oy, o Ovy  (Y7G) ) ~ =0y, Oy, (G) Giiy (1 - ( . ) > .
igig ingil 201 3iq 2k—1%2k m o) m inin

(22b)
Thus, using Lemma[A.T]in (ZI) we have

01 Y*GY
1+zg~ZGml< —( - ) )
3D DI SRR S € &M<P(YGY> )
34 2k—1%2k m i31;2k m 7;21‘2

k>2 nO U1yeeyi2k
n Y*GY
=619 —0i—g < >
m m
n JY*GY \\ 1 -
- <g a Eg <m>) Z aylsu Y‘2k—1i2k (GY)isiak ’
k>2 Si2k

(23)

where <Y GY> =L Tr Y26 — 1 2g from (T3). Again, we stress that the equalities are meant
in expectatlon Moreover shlftmg the index in the above summation, we get

*

k
m Z 6 Z 8Y13L4 Y‘2k—1i2k (GY)i3i2k

k‘>2 ’L3 ng

*

ny 1 gk
- 02%% Z ﬁ ' Z 8Yi31?4 o aYiszrﬂmHz (GY)i3i2k+2

+
D
2|
3\
SD—‘
> D
e

Yigiy 12k+112k+2 ( )i3i2k+2
13,0502k +2

Y*GY Y*GY
zgg”l(g_”l < )+02<1+zg—91g+91nlg< >>
no m

m

—p,M _ o) A1
=07 (14 26) — 00— 02) g (1= (14 20))
where in the third step we used ZI). Finally, together with (23), we have

n n n
129~ 019 (1= 22 (14 29)) = B2g(1 4+ 29) (1= 22 (1 + 29))
ny ny ’ 2 (24)
Fa(0r—02) g (1= TH (1 +29))
which corresponds to the desired equation (@) as ng,n1, m — oo. Thus, (24) combined with the
concentration inequality given in Lemma 3.4]completes the proof of Theorem 2.2}

Proof of Theorem[2.2] We need to show the concentration w.r.t. Ey, x = E. By the triangle and
Jensen inequality we have

Elg(z) — Eg(2)|* S Elg(2) — Ewg(2)|" + Ex[Ewg(z) — Eg(2)[*

< By (Bula(z) ~ Bug(2)) + Bu (Exla(z) ~ Bxa(:)) £ i
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and thus the almost sure convergence follows from the Borel-Cantelli Lemma, completing the proof
of Theorem [2.2]together with (24).

A.2  Proof of Proposition[3.2]
In light of the central limit theorem, we have that in the asymptotic limit the random variables
WX 1 &

= — Wit Xk,

( Vo >z‘j Vo z; ’

are approximately N (0, 02 02

, 04,04 )-normally distributed. Our next goal is to compute their cumulants.
The first cumulant or expectation vanishes identically. For the second cumulant we obtain:

WX)i, i WX)iai, - o . . . .
Lemma A.2. The cumulant of( \/%1 2 and ( \/,,)703 4 js nonzero only if i1 = i3 and i = 14, and in

this case it holds that

s (WX)iliz (WX);:M :0_20_2
Vi Vo e

Proof. We have

WX)i 0 (WX)is 1
K (( )111'L27 ( ) 314) — 7E(WX)11l2 (I/I/)()l?’l4
VAL V1o no
1 &
= ;0 Z EWi1k1Xk1i2Wi3k72X}€2i4
K1 ka=1

ng
1
— s 2 2 s s 2 2
B TT() Z 511135’224 EWi1k1Xk1i2 - 5111351214Uw0x~
ki1=1

Thus, the second cumulant is nonzero if ¢; = i3 and i = 74, and in this case it is exactly the variance
: WX)ij
of the random variable NI O]

We now consider four random entries, and we compute
1
ﬁ”f ((WX)i1i2 ) (WX)i?,iw (WX)isie ’ (WX)i7i8> .
0

We observe that the cumulant vanishes identically if any index appears exactly once by the indepen-
dence property, and thus each - and X-index must appear exactly twice. This is only possible if
we have two cycles on two indices each, or a single four-cycle. The cumulant of the former vanishes
identically by independence ant thus the only non-vanishing 4-cumulant is

<(WX)m2 WX)i, WX)igi, (WX)Zil)
E(WX)HQ (WX)* (WX)1314 (WX)*

i2i3 T4

1
- 2
U]
1 Z”O
= ﬁ EWillek'ligI/I/ingXk,QiQWigngk3i4Wilk4Xk4i4

0 ky,ko,ks,ka=1

2
no 2 2
1 (U o )
2 2 2 2 —Nwrr)
ﬁ z : EWillekliQWislek1i4 - n
0 k=1 0

Here for the first equality we used (I4)) where all but the trivial partition vanish identically since in
some expectation a single index appears. This result can be generalised:

Lemma A.3. For k > 2 and pairwise distinct indices we have

((WX)i1iz (WX)’)L;’LS (WX)i3i4 (WX):%“> = (o—iag)k +O( 0"
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Proof. As illustrated for the case with four random variables, to have a nonzero cumulant, we can
encode the 2k random variables as a cycle graph of length 2k. Then, the only contribution comes
from

k
(WX)iliz (WX)?Qkil 1 (0—1200-3) —k
: =—EWX); ., - WX) . =~—"—+0 ,
R ( \/n—o ) ) \/n—o nlg ( ) 172 ( )12k11 77,1571 + (nO )
which completes the proof. O

Finally, we compute the cumulants of the entries of the random matrix Y. Since the activation
function f is applied component-wise, it follows from the previous results that the only contribution
comes from k(Y iy, Y3, Yigigs -, Yih, ;) for k> 1and iy, . .., ig distinct, thus proving that Y’
has cycle correlations.

Proof of Proposition From the Berry-Esséen Theorem it follows that

7{1}2/20' a2

w(Yi) EYW/f e+ Ol )

J?D U’I‘

e*$2/2 _ _
:/Rf(crwamx) T+ Olng 2y O(ng 2,

and

—z2/2

AV, 7o) = (14 O %)) /RfQ(owawx)e do = 01(f)(1+ Olng/?)),

V2T
since the random variables (W X);;/,/no are approximately centred Gaussian with variance o,
Let £ > 1. Then, smce f is a smooth function with compact support, we have that f is in Cl for
some integer [ > 1 + 7. Using the Fourier inversion theorem, it follows that

2 2

f(xl) — / f ztlxldtl

N . 1 . ‘
— et f(tl) eztlmdtl + — 1 f(tl) eztlxldtl
27T [t1]<ng2* 21 [t1|>ny2F
- L F() eitmrgr 4 O (e )it
- w1 ft1)e t1 + (ng™ ) ,
2T ‘t1|Sn02k

where we used | f ()| < iz for some positive constant ¢. For notational simplicity we work in

the case k = 2, but the argument when k& > 2 is the same. We compute

K(Yiyins Yo Yisin i)

1112 1213 1314 1411

1 A . A ) - ) -
:@)4/ " if(tl)f(tz)f(tz)f(t4)/-”»(6”12”i2,6”22"2"3,6”3&’3“7e”“Z"M)dt+0(%_2),
Vi, [t |<ng

A (Ztl)ll 1 * 5 * 4 -
s (400 U ) K1) (720 (Fii) (Zi ) 4 O

la>1 [t: |<"0 i= 1

where we introduced Z := W .X/,/ng and in the second equality used that any cumulant involving
the deterministic 1 vanishes identically. We now expand the cumulant involving powers of Z via the
well known formula [21, Theorem 11.30] in terms of partitions of the set {1,...,1; + s+ 13+ l4}
whose joint with the partition {{1,...,l1},...,{li+la+l3+1,...,+l1 +l2+13+14}} is the trivial
partition. By the independence property it is clear that the leading contribution comes from those

partitions with one block connecting one copy of each of Z;,;,, Z7 ;. , Zisi,, Z;,;, and the remaining
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blocks being internal pairings. Since for odd [; there are [1!! - - - [4!! such partitions it follows that

K(Yiyin, Y Yii, Yir )

9112 12137 13949 140,

A (iti)li . .

Z Vi, |t < (t')my{(zili?’Zmzstigiu Zl“l)
Ja>1 ) no i=1 7 I3

l odd

x Var(Zy,i,) " =D/% .. Var(Z}, )(14 1)/2dt+(9( ~3/2)

040'4 1 2t2/2) —3/2
=2z , titatst 2L 2 )dt+ O
no (27‘(’)4 zk:>0/Vz |ts \<n e 4H( ) * ( )
42>
= i <0w0m /f/ *U’ o2 t?/2 dt) +O( —3/2)’
no

where in the penultimate step we used Lemmata[A.2HA3]and in the ultimate step we used the Fourier
property f(t) = it f(¢). Together with

Uwam/ —g' o2 t2/2 —x2/20,2 o2
it dt — e 292 dz
\ﬁ

, 67w2/2
= 0wOy OwOgX) ——
/ ouoa) =

dz = 05(f)/2.

we conclude

P (Visizs Visiys Yiaias Yii,) = 0205 (14 0(ng V%)),

12 13 ’ 7,411

just as claimed. O

B Proof of Theorem

B.1 Derivation of the self-consistent equation

We proceed as in Subsection[A-T] We know from (T3) that

1 < (Y*GY YY*G
Z( ) =”1<>—”1(1+zg> 25)
m P m i m m

We further claim the following.
Lemma B.1. It holds that

7221 <Y*GY>U =140 ((B1p(f)m)7 ). 06)

1=1 j=1

Together with (25), Lemma B.T]implies

1 Y*GY
=5 ( ) ~1— L1+ zg). 27
i i

Proof. Using the Woodbury matrix identityﬂ we have

1 (Y*GY 1 . (YY" -t 1z (Y'Y -1
— ==Y —z Y=—+ —z ,
m m m m m m m

SFor A e R™*", C e R™", U € R™" and V € R"*™ the Woodbury matrix identity is given by

(A+UCV) ' =AT - AU (CT +vATIU) T vaTh
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which implies
1 (Y*GY 1 Y*Y -1 Y*Y -t
S () T S () s ()

,J v 1,J ,J v %,J v

-1
So, we need to show that Y. . £ (u - z) ~ is approximately zero. Let e := [1---1]Tbea

2,7 m m ij

3

normalized vector in R™. We then write

R

i i

It turns out that e is approximately an eigenvector of %Y*Y. Indeed, it holds that

E (Y*Ye> | \F S OS EYiYi &m0 006(f) = (n1 016(f))es.

m
j=1k=1

Moreover, the variance is approximately O(n/m), which means that the standard deviation is of
order 1, while the expectation of order n;. Thus, e is approximately an eigenvector of %Y*Y with
eigenvalue 11601 ,(f). Since 61 ;(f) is nonzero by assumption, we have that e is approximately an

-1

eigenvector of the matrix (me z1 ) with eigenvalue (n161 ,(f) — 2)~*, from which the
Y*Y -

(e, ( p— z) e)

Given Lemma [B.T]and Proposition [3.3] we can now prove the global law for the random matrix M
with the cycle correlations.

result follows:

~ |(n1 9171,(]0) — Z>_1‘ < 1. O

Proof of Theorem[2.3] Applying Proposition[3.3]to (I6) and using the same power counting argument
as in (ZI) we obtain

* *

1 * 1 * *
U zgm o D Vi) vy, (7 Gl + 00 30wVt Vi) O, (VG
11,22 11,12,13

1 . * *

* nim Z Z H(Yili’z’ o Ytzkh)aYi*gm o aYi*zk’il (Y G)izh
T e>200,. o,

01(f) « O1,6(f)

nam “z; Y ( )1211 nam %:g;a i1 1211

*

1 0%
+ Z 2lc(;fl) Z 8Y* ay* (Y*G)izil’

i1 it
nO 2'3 2k*1

015000502k

(28)

where we omitted reference to E to simplify notation. Given Lemma[A.T] we only need to compute
dy- (Y*G)

igiy i201°

” Y*GY
6}/1;1 1221 ZaY )/ZQjGjil) ~ 7Gili1 < m > ;
1213
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where we omitted the contribution of 8y* YZ’; ; since it is very small. Plugging the partial derivatives
into @]) we get

e S G (1- (FEr) )y, (M)

11,12 i1 42,13

1 GY Y*GY
- nym Z k 1 . Z 83/7314 )/1219—1’52]9 <m>zz ) Gilil (1 B < m >z i >
k>2 i1 312k 212

ik

~0i(fg (1= 21+ zg)) —010(£)g (1= 1+ 29))
-9 (1 - *( + 2 )) Z nZ§1 i: Wiy, "'ayi%fﬂ'% (C::) .

E>2 770 iz, iog

where in the second step we used and (27). Finally, by shifting the index in the summation and
doing some simple bookkeeping, we have

n n n
14+zg~ (01 —61p)g (1 — El(l + zg)) — Ogn—;g(l +zg) (1 — Hl(l +zg))

ni o ny 2
— 01— 0) g% (1 - (1
+62(601 — 61 Gg)nog ( m( +zg)) :

which corresponds to the self-consistent equation (6)) as ng, n1,m — oo, where 6, is replaced by
61 — 01. In the same way as in the bias-free case, the concentration inequality of Lemma
can also be applied here, thereby concluding that g is approximately equal to its mean with high
probab1l1t The first claim of Theorem [2.5] then follows. The second claim follows easily from
Lemma Since 1161 (f) is approximately an eigenvalue of the random matrix EY*Y and since
the nonzero e1genvalues of Y*Y are the same as the one of Y'Y, we have that Apax =~ n161,5(f) is

an eigenvalue of M located away from the rest of the spectrum (called outlier). This concludes the
proof of Theorem [2.5] O

B.2 Proof of Proposition[3.3]

In light of the central limit theorem, in the asymptotic limit the random Variables (V\V/)Q” + B; are
approximately normally distributed with zero mean and variance 0202 + O’b In contrast to the

bias-free case, here we have two different nonzero second cumulants of the entries of the random

matrix Y/V% + B, and therefore also of the Y;;’s.

Proof of Proposition[3.3] The first identity follows in a straightforward manner by assumption (8):

e~ /2(c% 00 +07)
K dx+ O ~1/2 on=t?).
(Vij) = BY,; - /f T o =0l )

For the second cumulant, we first compute

1

= ;OE(WX)zm (WX)izi, + EB;, By,

- 6111351214 OwOg + 611l30b'

For i1 = i3 and iy = i4, the cumulant (Y5, 4,, Y, ) follows easily:

e—2/2(ch 00 +ot)

By, Vi, ) = (L+ Ong %) /f2 dz = 6,(f)(1+ O(ng '/*).

V2r(0202 + 0})

On the other hand, for i; = i3 and i3 # i4, to compute the cumulant (Y}, ;,, Y%, ), we need the
(WX )iqig

Tt + Bi, and Wiy B;, which turns out to be asymptotically

characteristic function of N
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equal to

2 2 2
exp (—W(t% +12) — aftth) .

Now, we can compute the cumulant of Y;,;, and Yz:“

K(Yiyin, Yini ) = (271r)2 f(xl)f(azg)e_it'”’ exp (—W(ﬁ + t%) — 05t1t2> dtdx
e / F(t1)f(t2) exp ( W(ﬁ +12) — a§t1t2> dty dto,
where in the second step we applied the Fourier inversion theorem. We denote the covariance matrix
Y by
5 ( 0b+ o7 Jiaga ag) (29)

with determinant det(X) = 02 02(02 02 + 207) and inverse matrix

DI - 1 03;0920 + Ul? —O'g
det(2) —o} o2oi+op )

Again applying the Fourier inversion formula, we obtain

* 1 ¢ —L@xt
mmJ@J~@ﬂ J)f(t)em 3050t
27 l(m7271m>
T e 2 dx
(2m)2 /f 1) Jdet(®)

—l(m,Eflm) _
x To)e 2 de =0 ,
277\/02 o2( 02 02 +207) Jr f( DS (w2) 1(f)

where

oA _ o (L (Owoi +0p) (et + 15) - 20301
202,02(0202 + 20?) ’

To complete the proof, it remains to compute the joint cumulant of Y5 :,, Y7, Yigi,, ..., Y, ;. for
k > landiy,...,1%2 distinct. For notational simplicity, we prove the statement for & = 2. First, we

use the cumulant asymptotics in order to asymptotically compute the characteristic function. The
cumulants have match those of the bias-free case, except for

(WX)iﬂz 112 2 2 2
K ( + B, | =005+ 0.
VAL Vv 1o

In addition to all these cumulants, we also have

. WX WX .
K <(WX)117,2 +B»L'1, ( )2421 +B“> — <( )lzls +B13, (WX)1314 +st> — O_g
Vo Vo Vo Vo

Therefore, the log-characteristic function is given by

n
ool t ol N~ o (1)t ((2e? 1
—mwre Db N2 2ty + tot w_w ti + O(ng?
5 >t —op(tita +tats) + p o H + O(ngy7)

+Bi1;(7)

=1 n>1
= Uw%2+%th_gb(t1t4+t2t3)+1og<1+ Ht+(’)n0 )
=1

for t1,to,t3,t4 € R such that |t | < nl/ We obtain the characteristic function by taking the
exponential of the above expression. By the same argument as in the proof of Proposition we
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have
k(Y; * Y, )

1429 Ligigy Ligtar Ligiy
1 (0202 [+, .= 0202 + o2 2 B
~ e ((2@2 /f'(tl)f’(t2)exp <—2b(t? +13) - a?tltz) dtldt2) + O(ng®?)
0
1 2
= Lz x 7 )
- x xro)e 2 dx
(27r\/01200%(01200925+2a§) /f( 1)f(2) )

o202

2

: —z{@n —3/2
+ — wx / o) i (z)e 2@ 2 ae | + O 7
1o (2”\/05)03(U%Ua§+205) Fi@n)f (w2) (92

where ¥ is the matrix defined by (29). It then follows that

’%<Y;1i27 i;’y Y;3i47 iiil) ~ EYYiliz iZingiaizL ijil - E}/iﬂz iiil E}/;Zi3}/;3i4
= 0:(/)n5 (14 0(ng %)),
as desired. The proof for k£ > 2 is similar. O

C Proofs of auxiliary results

Proof of Lemma[3.1} By applying the Fourier inversion theorem, we have
1 .

where ¢ x (t) is the characteristic function of the n-dimensional random vector X . It holds that
Jan (—iz1) f(x)e~ " ®dx = O, f(t). Then, it follows that

EX, f(X) =

EX, f(X) =

(2;)n /Rn (&nf (t)) ox (t)dt

— e [ FO(0ex(®)at

i e
=~ | fO (0 02 ex(®) ex(vt.

A
[\
oS
S~—
3

Cumulants can also be defined in an analytical way as the coefficients of the log-characteristic
function

log B = 3™, (30)
g - l l' )
1
where ), is the sum over all multi-indices I = (I1,...,l,,) € N™. We note that x;(X1,...,X,,) =
k({ X1}, ..., {X, }) means that X; appears [; times. One can prove that this definition of cumu-

lants is equivalent to the combinatorial one given by [14] (see [24] for a proof). Using definition (30)
results in

o1 . (it)!
t, 108 VX (t) =1 Z Kiteq T’
l
where l + ey = (I; +1,1a,...,1,). Since (it)! f(t) = ?(l\)(t), we finally obtain

BX 00 =30 M o [ T et = 3 e 000,

l

where we again applied the Fourier inversion formula. O
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Proof of Lemma[A.1) Let A™7 denote amxn; matrix such that A/ = 1¢(; j)=(x.1)}- Then, applying
the resolvent identity, we get

i —1 —1
Y (Y *teAid) Yy* o
B R M
oY e ¢ T m
It follows that dy;s G, = — (%)m Gjpforl <a,b<ny,1<i<m,and1 < j < ny. Therefore,

we have

o Y*GY
ayi*zn ¥ G 1211 Zay YZZ]G]“) = Gat (1 - ( m )i2i2> ,

which proves (3.6a). We now compute

. . (GY
Z 1213 Z21911 Y;QjGjil) ~ _Za ’213 <Y;2j (m> - Gilil)
J2k

Y Y*GY Y
(@), e (), (%),
m 1312k m 1212 m 1312k

where the approximation in the first line comes from the fact that the contribution of Oy« . Y.
ik

is very small and can therefore be neglected. Since the off-diagonals of the resolvent of random

matrices are small if Sz > nl_l, the partial derivative (9}/;; . G, i, can be omitted. This justifies the

second approximation. So, we obtain

Q

. GY Y*GY
8YL*21 8Yf2kll (Y G)izh ~ _8Yi3i4 . .aY}'Zk—limc ( m ) ‘ Gii <1 - ( m > ‘ ) >
1312k 1212
which completes the proof of Lemma[A.T] O

D Concentration inequality

Proof of Lemma[3.4] Without loss of generality, it suffices to prove the statement w.r.t. Ex since

by cyclicity the statement for Ey is analogous. We write X = (x1,...,&,;) with &, =
(T1ky - -+ Tngk)’» and similarly, Y = (y1,...,Ym). We denote by Fi, 1 < k < m, the filtra-
tion generated by {x;, 1 <[ < k} and by E¢[] := Ex[- | Fx| the conditional expectation w.r.t. Fy.

Now, we decompose g(z) — Exg(z) as a sum of martingale differences
Dy =E, Tr(M - 21,,) ' —Ep_ 1 Te(M — 21,,,)"", fork=1,...,m

By construction, we have E,,, Tr(M — z1,,,)"! = Tr(M — 21,,,) ' and Eo Tr(M — 21,,,)"! =
Ex Tr(M — 21,,)~ L. It then follows that

_ a1 &
9(z) = Exg(z ZEkTr —21,,) " = By Tr(M — 21,,,) 1=n—12Dk.

Next, we define M}, :== M — y,y;. We note that
Ep Tr(My, — 21,,) 7 = By Tr(Mj, — 21,,,) 7},
since M}, is independent of y;, and therefore is also independent of xj. So, we have
Dy = (Ex — Ejp_1)[Te(M — 21,,,) "' — Tr(My — 21,,,) ')
Then, by the Shermann-Morrison formula, we have
yi (M, — 21,,) "y
L+ yi (M — 21,,) tyg
|y (M), — 210,) "y
Sy (My — 210,) " 'y)
1

¥

| Te(M — 21,,,) 7" = Te(My, — 21,,) 7Y =
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where the last inequality follows from the resolvent identity:

[y (My, — 215,) | < yi(Mi — 215,) " (Mg, — 215,) 'y

_ Y ((Mk B Zlm)_l - (Mk B Zlnl)_l) Yk

a 21 3z

Sy (Mi — 210,) " "ys)
Sz

Thus, |Dy| < 2(32)71, and so g(2) — Exg(z) is a sum of bounded martingale differences. We can
now apply the Burkholder’s inequality which states that for {Dy,1 < k < m} being a complex-
valued martingale difference sequence, for p > 1,

P n p/2
<CE (Z |Dk|2> :

k=1

m

D> D

k=1

E

where C' is a positive constant depending on p. We refer to [S, Lemma 2.12] for a proof of this
inequality. By choosing p = 4, we get

1
Ex |g9(z) — Exg(2)|" = 7 Ex

A
| —
Q
5!
=
(]
]
=

-

IN

just as claimed. [

E Complex case

Remark E.1. We can also consider matrices X € C™*"™ and W € C"*™ of complex random
entries with zero mean and variance E|X;|? = 02 and E|W;;|? = 0. Let M = LYY* with Y =

f (Y/V—%) and let f: C — R be a real-differentiable function satisfying f«: flowozz) d?z =0.

e
Set 01(f) = [o|f(owoez)? %d?z. Then, it can be proved that the normalized trace of the
resolvent of M satisfies equation (7).
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