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Abstract

We study predictive control in a setting where the dynamics are time-varying and
linear, and the costs are time-varying and well-conditioned. At each time step, the
controller receives the exact predictions of costs, dynamics, and disturbances for
the future : time steps. We show that when the prediction window : is sufficiently
large, predictive control is input-to-state stable and achieves a dynamic regret of
$ (_:)), where _ < 1 is a positive constant. This is the first dynamic regret bound
on the predictive control of linear time-varying systems. We also show a variation
of predictive control obtains the first competitive bound for the control of linear
time-varying systems: 1 + $ (_: ). Our results are derived using a novel proof
framework based on a perturbation bound that characterizes how a small change to
the system parameters impacts the optimal trajectory.

1 Introduction

We study the problem of predictive control in a linear time-varying (LTV) system, where the dynamics
is given by GC+1 = �CGC + �CDC + FC . Here, GC is the state, DC is the control action, and FC is the
disturbance or exogenous input. At each time step C, the online controller incurs a time-varying state
cost 5C (GC ) and control cost 2C (DC−1), and then decides its next control action DC . In deciding DC the
controller makes use of predictions of the next : future disturbances, cost functions, and dynamical
matrices, and seeks to minimize its total cost on a finite horizon ) . Our main results bound the
dynamic regret and competitive ratio of predictive controllers in this LTV setting.

Recently, a growing literature has sought to design controllers that achieve learning guarantees
such as static regret [1, 2], dynamic regret [3, 4], and competitive ratio [5]. The most relevant
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line of work concerns predictive control with learning guarantees, which studies how to leverage
the prediction window : to reduce the regret and competitive ratio. This line of work has focused
on linear time-invariant (LTI) systems [3, 4, 6, 7]. However, linear time-varying (LTV) systems
have received increasing attention in recent years due to their importance in a variety of emerging
applications, despite the challenges associated with analysis. For example, in the problem of power
grid frequency regulation, the dynamics is determined by the proportion of renewable energy in total
power generation, which is time-varying [8, 9]. It is also common to use the LTV systems as an
approximation of nonlinear dynamics in predictive control and planning [10–13].

The current lack of progress toward understanding measures like regret and competitive ratio in
LTV settings is due to the need for new techniques to generalize the dynamics from LTI to LTV and
the costs from quadratic to well-conditioned functions. Specifically, the proof approaches used in
previous studies on regret and competitive ratio of predictive control in LTI dynamics with quadratic
costs, e.g., [4, 6, 7], require explicitly writing down the cost-to-go function, optimal control actions,
and algorithm’s actions as functions of the system parameters. This is very difficult, if not impossible,
for general cost functions that do not have a quadratic form. A promising approach that does not
require such explicit characterizations is to derive results via reductions from optimal control to online
convex optimization with multi-step memory, e.g., [1, 3, 5, 14, 15]. However, such reductions usually
do not work well for LTV systems due to the need to represent the problem in control canonical form
[3, 5], or due to limitations on the policy class and comparisons to static benchmarks [1, 15].

Perhaps the most prominent approach for controlling LTV systems is Model Predictive Control
(MPC), also known as Receding Horizon Control [16]. Generally speaking, at each time step, an
MPC-style algorithm solves a predictive trajectory for the future : time steps and commit the first
control action in this trajectory. MPC-style algorithms are known to work well in practice, even when
the dynamics are non-linear and time-varying, e.g., [13, 17–19]. On theoretical side, the asymptotic
behaviors of MPC such as stability and convergence have been studied intensively under general
assumptions on dynamics and costs [20–23]. However, non-asymptotic guarantees such as regret
and competitive ratio of MPC-style policies have been limited. Despite recent work providing such
guarantees in the context of LTI systems with quadratic costs, e.g., [4, 6, 7], the derivation of regret
and competitive ratio results for MPC in LTV systems remains open.

Contributions. We provide the first regret and competitive ratio results for a controller in LTV
systems with time-varying costs. Specifically, we show that an MPC-style predictive control algorithm
(Algorithm 1) achieves a dynamic regret that decays exponentially with respect to the length of
prediction window : in the LTV system (Theorem 4.2): $ (_:)), where the decay rate _ is a positive
constant less than 1. This almost matches the exponential lower bound for improvement from
predictions in the LTI setting shown in [3] in the sense that, to achieve any target regret level, the
required length of prediction : shown by our bound differs from the theoretical lower bound by
at most a constant factor. With a variation of predictive control (Algorithm 2), we also show the
first competitive bound in LTV systems with time-varying well-conditioned costs (Theorem 4.3):
1 +$ (_: ), where the decay rate _ is identical with the one in the regret bound.

We develop a novel analysis framework based on a perturbation approach. Specifically, instead
of solving for the optimal states and control actions like previous analyses in the LTI setting with
quadratic costs, e.g., [4, 7], we bound how much impact an perturbation to the system parameters
can have on the optimal solution. This type of perturbation bound (Theorem 3.3) can be shown even
when the optimal trajectory cannot be written down explicitly, which allows it to be applied in LTV
systems with well-conditioned costs. Then, we utilize this perturbation bound to establish results on
dynamic regret and the competitive ratio. In addition, we want to emphasize that the perturbation
approach we develop is highly modular and extendable. For instance, if a stronger perturbation bound
for some specific class of dynamics and/or cost functions can be shown, the dynamic regret of the
predictive controller will improve. Similarly, to further generalize the problem setting (e.g., to include
additional constraints), one only needs to establish the corresponding perturbation bounds and the
regret result will follow.

Another important component of the proof is a novel reduction between LTV control and online
optimization. Connections between online optimization and control have received increasing attention
in recent years, e.g., [1, 3, 5, 14, 15]. Existing reductions rely on the canonical form, which does not
apply to LTV systems, and/or formulations of online optimization with memory of multiple prior
time steps, which makes the online problem more challenging. The reduction we present here relies
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on neither, and is thus a fundamentally different approach to connect control and online optimization.
Further, this reduction is not specific to the predictive control algorithm we study, and we expect it to
prove useful for other controllers in future work. A limitation of our reduction framework is that it
cannot handle state/control constraints. This limitation is shared by previous works [3, 4, 6, 7], and
represents a challenging open question in the literature.

2 Background and Setting

We consider a finite-horizon discrete-time online control problem with linear time-varying (LTV)
dynamics, time-varying costs, and disturbances, namely

min
G0:) ,D0:)−1

)∑
C=1
( 5C (GC ) + 2C (DC−1))

s.t. GC = �C−1GC−1 + �C−1DC−1 + FC−1, C = 1, . . . , ), (1)
G0 = G(0),

where GC ∈ R=, DC ∈ R<, and FC ∈ R= respectively denote the state, the control action, and the
disturbance of the system at time steps C = 1, . . . , ) , and G(0) ∈ R= is a given initial state. By
convention, the hitting cost function 5C : R= → R+ and control cost function 2C : R< → R+ are
assumed to be time-varying and well-conditioned. Define the tuple oC := (�C , �C , FC , 5C+1, 2C+1).
In the classical setting where no predictions are available, after observing state GC at time step C, the
algorithm needs to decide the control action DC before observing oC , which is an unknown random
disturbance input. We use the following event sequence to describe this ordering:

G0, D0, o0, G1, D1, o1, G2, . . . , G) −1, D) −1, o) −1, G) .

We assume that the algorithm has access to the exact predictions of disturbances, cost functions and
dynamical matrices in the future : time steps (which are time-varying); i.e., the event sequence is

G0, o0, o1, . . . , o:−1, D0, o: , D1, o:+1, . . . , D) −:−1, o) −1, D) −: , D) −:+1, . . . , D) −1.

Here we assume all predictions are exact, and leave the case of inexact predictions for future work.
This prediction model has been used in previous works like [4, 24–26], and is available in many
real-world applications such as disturbance estimation in robotics and frequency regulation in power
grids. The availability is due to the fact that, in such scenarios as mentioned above, experiments or
observations on the dynamics can be conducted repeatedly and consistently, which makes it feasible
to train a good predictor based on the data collected from repeated trials.

2.1 Assumptions

As is standard in studies of regret and competitive ratio in linear control problems, we assume the
cost functions are well-conditioned.
Assumption 2.1 (Well-conditioned Costs). The cost functions satisfy the following constraints:

1. 5C (·) is < 5 -strongly convex for C = 1, . . . , ) , and ℓ 5 -strongly smooth for C = 1, . . . , ) − 1.

2. 2C (·) is both <2-strongly convex and ℓ2-strongly smooth for C = 1, . . . , ) .

3. 5C (·) and 2C (·) are twice continuously differentiable for C = 1, . . . , ) .

4. 5C (·) and 2C (·) are non-negative, and 5C (0) = 2C (0) = 0 for C = 1, . . . , ) .

Note that assumptions (1) through (3) are quite common [3, 5, 14, 25, 27]. Assumption (4) is less
common, but can be satisfied via re-parameterization without loss of generality. Specifically, when
the minimizers of state cost 5C and control cost 2C are nonzero, we perform the transformation

G ′C ← GC − arg min
G

5C (G), D′C ← DC − arg min
D

2C+1 (D),

F′C ← FC + �C arg min
G

5C (G) + �C arg min
D

2C+1 (D).

The intuition of this transformation is that, when the minimizer of the cost function for the next step
is known, we can always perform a translation in the state and control space to align the minimizer
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with the origin. We refer the interested readers to Example 2.1 for a more intuitive explanation of the
above transformation.

Additionally, we need to assume the dynamics are controllable. It is crucial that the dynamical
system can be steered from an arbitrary initial state to an arbitrary final state via a finite sequence
of admissible control actions. For linear time-invariant (LTI) systems, the full-rankness of the
controllability matrix completely characterizes the reachability of the state space, which is generally
used as a standard assumption for analysis [7, 28, 29]. This can be generalized to parallel assumptions
for LTV systems as follows. We begin with a definition.

Definition 2.1. For a dynamical system with linear time-varying dynamics GC = �C−1GC−1+�C−1DC−1+
FC−1, C = 1, . . . , ), the transition matrix Φ(C2, C1) ∈ R=×= (from time step C1 to C2) is defined as

Φ(C2, C1) :=
{
�C2−1�C2−2 · · · �C1 if C2 > C1
� if C2 ≤ C1

,

and the controllability matrix " (C, ?) ∈ R=×(<?) is defined as

" (C, ?) :=
[
Φ(C + ?, C + 1)�C ,Φ(C + ?, C + 2)�C+1, . . . ,Φ(C + ?, C + ?)�C+?

]
.

The dynamical system is called controllable if there exists a constant 3 ∈ Z+, such that the controlla-
bility matrix " (C, 3) is of full row rank for any C = 1, . . . , ) − 3. The smallest constant 3 with such
property is called the controllability index of the system.

Given the above definition, we can state the key assumption necessary for the analysis of LTV
systems. We use a slightly stronger assumption than being merely controllable, which we refer to as
(3, f)-uniform controllability. It is a natural generalization of its counterpart for LTI systems (see
Assumption 2 in [28], where (3, f) is instead named as (ℓ, a)).
Assumption 2.2. There exists positive constants 0, 1, and 1′, such that

‖�C ‖ ≤ 0, ‖�C ‖ ≤ 1, and ‖�†C ‖ ≤ 1′

hold for all time steps C = 0, . . . , ) − 1, where �†C denotes the Moore–Penrose inverse of matrix �C .
Furthermore, there exists a positive constant f such that

fmin (" (C, 3)) ≥ f

holds for all time steps C = 0, . . . , ) − 3, where 3 denotes the controllability index.

Note that Assumption 2.2 implies fmin (" (C, ?)) ≥ f for all ? ≥ 3 because appending more columns
to a matrix with full row rank will not reduce its minimum singular value.

The LTV setting we consider is more general than the settings which existing results on regret and
competitive ratio have assumed [1, 3, 4, 7]. We highlight the implications of this general setting for
enabling applications in the following examples.

Example 2.1 (Trajectory tracking in LTV systems with well-conditioned costs). Consider a trajectory
tracking problem with LTV dynamics and well-conditioned costs, which generalizes the standard
linear quadratic tracking problem in [4, 30] with LTI dynamics and quadratic costs. We adopt
LTV dynamics GC+1 = �CGC + �CDC + FC and general well-conditioned cost functions 5C (·), 2C (·) (see
Assumption 2.1). With the desired trajectory 31:) , we consider a new state G̃C := GC − 3C and a new
disturbance F̃C := FC + �C3C − 3C+1. Thus, using the new state and disturbance, the problem naturally
fits into our problem setting with : future predictions of (�C , �C , FC , 5C , 2C , 3C+1). Note that predictive
control with LTV dynamics is practical in nonlinear systems [13, 31] because the nonlinearity could
be well approximated by LTV models [31].

Example 2.2 (Power grid frequency regulation). Consider the frequency regulation problem in [8],
where state G = [\>, l>]> represent the status of a power plant, and power generation ?in ∈ R= is
the control action. The continuous-time dynamics is given by[ ¤\

¤l

]
︸︷︷︸
¤G (C)

=

[
0 �

−" (C)−1! −" (C)−1�

]
︸                            ︷︷                            ︸

�̂(C)

[
\
l

]
︸︷︷︸
G (C)

+
[

0
" (C)−1

]
︸     ︷︷     ︸

�̂ (C)

?in︸︷︷︸
D (C)

.
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Algorithm 1 Predictive Control (%�: )
1: for C = 0, 1, . . . , ) − : − 1 do
2: Observe current state GC and receive predictions oC:C+:−1.
3: Solve and commit control actions DC := k̃:C (GC , FC:C+:−1; �)E0 .
4: At time step C = ) − : , observe current state GC and receive predictions oC:) −1.
5: Solve and commit control actions DC:) −1 := k̃:C (GC , FC:) −1; 0)E0::−1 .

Here " (C) denotes the rotational inertia matrix, which is time-varying and is determined by the
proportion of renewable power in total power generation at time C, and can be accurately predicted in
a certain time horizon [32, 33]; ! and � are known system parameters. Using standard discretization
techniques, we can formulate a discrete-time linear time-varying system GC+1 = �CGC + �CDC + FC ,
where �C and �C are determined by �̂(C) and �̂(C). The cost functions are quadratic costs which
penalizes frequency deviation [8]. This setting fits into our predictive control algorithm, since the
controllers have accurate predictions of �C and �C in the near future due to predictablity of " (C).

2.2 Predictive Control

We study a classical predictive control (PC) algorithm inspired by model predictive control, which
solves the optimization problem of : future time steps (where : is called the prediction window).
specifically, the algorithm receives the dynamics and disturbances of the next : time steps, calculates
the optimal solution, and then applies the first control action of the optimal solution. The PC algorithm
with prediction window : is denoted as %�: .

More formally, At time step C < ) − : , %�: solves the optimization problem k̃:C (GC , FC:C+:−1; �).
Since we need to consider horizon lengths other than : , for arbitrary ? ≥ 1 and time step C, we define
the optimization problem k̃

?
C (G, Z ; �) as

k̃
?
C (G, Z ; �) := arg min

H0:? ,E0:?−1

?∑
g=1

5C+g (Hg) +
?∑
g=1

2C+g (Eg−1) + � (H: )

s.t. Hg = �C+g−1Hg−1 + �C+g−1Eg−1 + Zg−1, g = 1, . . . , ?, (2)
H0 = G,

where G ∈ R= is the initial state, Z ∈ (R=) ? (indexed by 0, . . . , ? − 1) is a sequence of disturbances,
and � : R= → R is a standard terminal cost function regularizing the final state. Here we additionally
require that the terminal cost � has the form � (G) = U(‖G‖), where U : R≥0 → R≥0 is a convex K-
function (i.e. continuous increasing function with 0 at the origin, see Appendix A for definition) that is
twice continuously differentiable. For each time step g = 1, . . . , : , Hg ∈ R= is the predictive state, and
Eg ∈ R< is the predictive control action. To make the algorithm well-defined, at time step C = ) − : ,
%�: can finish the rest of the trajectory optimally by committing D) −::) −1 = k̃(G) −: , F) −::) −1; 0).
The pseudo-code of predictive control is given in Algorithm 1.

It is also important in our framework to study the behavior of predictive control under some fixed
terminal point. So, for prediction length ? ≥ 1 and time step C, we define an auxiliary optimization
problem with a strict terminal constraint H? = I as follows:

k
?
C (G, Z , I) := arg min

H0:? ,E0:?−1

?∑
g=1

5C+g (Hg) +
?∑
g=1

2C+g (Eg−1)

s.t. Hg = �C+g−1Hg−1 + �C+g−1Eg−1 + Zg−1, g = 1, . . . , ?, (3)
H0 = G, H? = I,

where the optimal value is denoted by ]?C (G, Z , I). We define this auxiliary optimization problem
besides k̃?C (G, Z ; �) because we need to fix both the initial state and the terminal state, for example,
when expressing a sub-trajectory of the offline optimal trajectory as the solution of an optimization
problem. k also allows us to study the impact of the perturbation at the terminal state on the optimal
trajectory directly, which will be useful in the proof of dynamic regret (Theorem 4.2) and competitive
ratio (Theorem 4.3).
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Throughout the paper, we use {(GC , DC )})C=1 to denote the trajectory of predictive control, and use
{(G∗C , D∗C )})C=1 to denote the offline optimal trajectory (i.e., the optimal solution of (1)). We also use
several standard definitions and notations in linear algebra and optimization, which we detail in
Appendix A for clarity. In particular, we use vector 2-norms and induced matrix 2-norms throughout
this paper unless otherwise specified.

Two standard metrics will be utilized to assess the performance of our predictive control algorithms,
namely dynamic regret supG (0) ,F

(
cost(�!�) − cost($%))

)
(the additional cost of our algorithm

against the optimal algorithm) and competitive ratio supG (0) ,F
cost(�!�)
cost($%) ) (the worst-case ratio of the

cost of our algorithm over that of the optimal algorithm).

3 A Perturbation Approach

In order to study the regret and competitive ratio of controllers in LTV systems, we develop a new
analysis based on a perturbation approach, which we introduce in this section. This approach is based
on developing bounds on how much the solutions to (2) and (3) change with respect to perturbations
to the initial/terminal states and the disturbance sequence. Our perturbation bounds are related to the
concept of incremental stability defined in [34], but not exactly the same because we consider the
optimal trajectory in a finite horizon whereas the incremental stability focuses on asymptotic behavior
over an infinite horizon. Simply stated, the key to our approach is to derive the perturbation bound
in Theorem 3.3, which states that if the target variable we are concerned with is the ℎ-th predictive
state/control input, while the perturbation occurs at the g-th time step, then the impact on the target
variable is exponentially small with respect to the time difference |ℎ − g |.
Proving such a result directly is challenging because of the complexity of the LTV dynamical
constraints in (2) and (3). Thus, we develop a novel reduction from LTV systems to fully-actuated
systems, i.e., systems where the controller can steer the system to any state in the whole space R=
freely at every time step. This special case is a form of online optimization called smoothed online
convex optimization (SOCO), and has received considerable attention recently, e.g., [24, 27, 35]. We
exploit the controllability of the dynamics to analyze the LTV system in chunks of 3 time steps. A
sequence of 3 time steps combined together can be thought as a fully-actuated system and thus we
can formulate a SOCO problem, which is (1/3)-times as long as the original LTV system. In this
section, we first show the perturbation bound for SOCO in Section 3.1, and then we leverage our
reduction to derive a result for general LTV systems in Section 3.2.

3.1 Smoothed Online Convex Optimization

The classic setting of SOCO is an online game played by an agent against an adversary: at each
time step C, the adversary reveals a hitting cost function 5̂C , a switching cost function 2̂C , and a
disturbance (or exogenous input) F̂C . The agent picks a decision point ĜC ∈ R=, and incurs a stage
cost of 5̂C (ĜC ) + 2̂C (ĜC , ĜC−1, F̂C−1). The agent seeks to minimize the total cost it incurs throughout the
game. The offline optimal cost is defined as the minimum cost if the agent has full knowledge of the
costs and disturbances at the start of the game. Instead of analyzing the performance of an online
algorithm directly, our focus is on studying how the perturbations of the system parameters (initial
state, terminal state, and disturbances) impact the offline optimal solution. These results are critical
for deriving the guarantees for predictive control in the online setting in Section 4.

To begin, observe that when the initial state Ĝ0, terminal state Ĝ? , and the disturbances F̂ are given,
the optimal ?-step trajectory of SOCO can be obtained from the unconstrained optimization problem

k̂(Ĝ0, F̂, Ĝ?) := arg min
Ĝ1:?−1

?−1∑
g=1

5̂g (Ĝg) +
?∑
g=1

2̂g (Ĝg , Ĝg−1, F̂g−1), (4)

where the objective is a convex function of the decision variables Ĝ1:?−1. Since (4) is an unconstrained
optimization problem, the gradient of its objective equals zero at k̂(Ĝ0, F̂, Ĝ?). Using this, we can
further show that the directional derivative of k̂(Ĝ0, F̂, Ĝ?) along some direction 4, denoted by j,
satisfies the linear equation "j = X, where symmetric matrix " is the Hessian of the objective
and vector X is determined by the direction 4. A special structure of the objective of (4) is that
the correlations only occur in two consecutive time steps. This implies that its Hessian " is block
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tri-diagonal. Such tri-diagonal structure of " has been noted by previous work, e.g. [36], and have
been leveraged to solve the linear equation "j = X quickly. In contrast, we focus on the exponential
decay phenomena "−1 exhibits, i.e., the magnitudes of entries decay exponentially with respect to
their distances to the main diagonal [37]. Bounding each entry of j = "−1X separately gives us the
following perturbation bound. We state this result formally in Theorem 3.1, and its proof can be
found in Appendix B.
Theorem 3.1. Given a tuple (Ĝ0, F̂, Ĝ?) that contains the initial state, the disturbances, and the
terminal state in this order, we consider the optimal solution of the SOCO problem

k̂(Ĝ0, F̂, Ĝ?) := arg min
Ĝ1:?−1

?−1∑
g=1

5̂g (Ĝg) +
?∑
g=1

2̂g (Ĝg , Ĝg−1, F̂g−1)

indexed by 1, . . . , ? − 1. Assume 5̂g : R= → R is `-strongly convex, 2̂g : R= × R= × RA → R is
convex and ℓ-strongly smooth, and both are twice continuously differentiable for g = 1, . . . , ?, thenk̂(Ĝ0, F̂, Ĝ?)ℎ − k̂(Ĝ ′0, F̂

′, Ĝ ′?)ℎ
 ≤ �0

(
_ℎ−1

0
Ĝ0 − Ĝ ′0

 + ?−1∑
g=0

_
|ℎ−g |−1
0

F̂g − F̂′g + _?−ℎ−1
0

Ĝ? − Ĝ ′?)
for all 1 ≤ ℎ ≤ ? − 1, where �0 = (2ℓ)/` and _0 = 1 − 2 ·

(√
1 + (2ℓ/`) + 1

)−1
.

As a remark, we do not require the hitting cost 5̂g to be strongly smooth, or the switching cost 2̂g to
be strongly convex in Theorem 3.1. This makes the assumptions on the SOCO costs 5̂g , 2̂g weaker
than the assumptions on the LTV costs 5g , 2g defined in (1).

3.2 Linear Time-Varying System

We now build upon the SOCO perturbation result to derive a perturbation result for LTV systems. In
particular, we show an exponentially-decaying perturbation bound for our LTV system by reducing it
to SOCO and apply Theorem 3.1. As we have discussed, LTV systems are more difficult than SOCO
because the dynamics prevent the online agent from picking the next state GC+1 freely at a given state
GC . We overcome this obstacle by redefining the decision points as illustrated in Figure 1. Specifically,
given state GC at time step C as the last decision point, we then ask the online agent to decide state
GC+3 at time step (C + 3) rather than GC+1 at time step (C + 1).
Since 3 is the controllability index, GC+3 can be picked freely from the whole space R= regardless of
GC . We also utilize the principle of optimality, e.g. if H0:: , E0::−1 is the optimal solution to k:C (G, b, I),
then H8: 9 , E8: 9−1 is the optimal solution to k 9−8

C+8 (H8 , b8: 9−1, H 9 ) for any 0 ≤ 8 < 9 ≤ : . Therefore, the
trajectory between time C and (C + 3) can be recovered by solving k3C (GC , FC:C+3−1, GC+3). So we are
able to formulate a valid SOCO problem on the sequence of time steps C, C + 3, C + 23, . . . .
Naturally, the hitting cost at time step (C + 3) remains the same, while the switching cost becomes
b3C (GC , FC:C+3−1, GC+3), where the function b ?C is defined as

b
?
C (G, Z , I) := ]?C (G, Z , I) − 5C+? (I). (5)

An illustration of the reduction can be found in Figure 1. We would like to point out that our reduction
from optimal control to SOCO is novel in that it leverages the principle of optimality to apply to
more general LTV settings, as opposed to the reduction via control canonical forms in [3] that is
specific to LTI systems. Unlike the switching costs in [14, 27, 35, 38] which are explicitly defined as
the ℓ2-distance or squared ℓ2-distance, the switching cost b ?C here is defined implicitly as the optimal
value of an optimization problem. Lemma 3.2 shows that the switching cost defined in (5) satisfies
the requirements of Theorem 3.1, which allows us to obtain the desired perturbation bound.
Lemma 3.2. Under Assumption 2.1 and 2.2, for integer ? ≥ 3, we have

1. k?C (G, Z , I) is !1 (?)-Lipschitz in (G, Z , I);
2. b ?C (G, Z , I) is convex and !2 (?)-strongly smooth in (G, Z , I).

Here !1 (?) = � (?) (1 + ℓ · � (?)/<2), !2 (?) = ℓ · � (?)2 + ℓ2 · � (?)4/<2 , where ℓ = max(ℓ 5 , ℓ2),

� (?) =

$ (03?) if 0 > 1;
$ (?2) if 0 = 1;
$ (1) if 0 < 1.
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b3
3
(G3 , F3:23−1 , G23 )
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Figure 1: Illustration of the reduction from LTV to SOCO. Here we consider a simple example
where C = 0 and ? = E3. At time step 0, the agent cannot steer the system to an arbitrary target state
at the next time step due to dynamical constraints. However, given (3, f)-uniform controllability,
the controller is able to enforce an arbitrary target state after 3 time steps, which prompts the
transformation to a SOCO problem with a decision point in every 3 time steps.

In Lemma 3.2, we use $ (·) to hide quantities 0, 1, and 1/f; the precise expression of � (?) and the
proof of Lemma 3.2 can be found in Appendix C. Using the reduction from LTV to SOCO, we obtain
a perturbation bound for the LTV systems (2) and (3) in Theorem 3.3, the proof of which is deferred
to Appendix D.

Theorem 3.3. Consider the optimization problem defined in (2) and (3) and with a horizon length
? ≥ 3. Under Assumptions 2.1 and 2.2, given any (G, Z , I) and (G ′, Z ′, I′),k̃?C (G, Z ; �)Hℎ − k̃

?
C (G ′, Z ′; �)Hℎ

 ≤ � (
_ℎ ‖G − G ′‖ +

?−1∑
g=0

_ |ℎ−g |
Zg − Z ′g)

k?C (G, Z , I)Hℎ − k?C (G ′, Z ′, I′)Hℎ ≤ � (
_ℎ ‖G − G ′‖ +

?−1∑
g=0

_ |ℎ−g |
Zg − Z ′g + _?−ℎ ‖I − I′‖)

hold for all time steps C. Here we define !0 = max3≤?≤23−1 !2 (?), and the constants are given by

_ =

(
1 − 2

(√
1 + (2!0/<2) + 1

)−1
) 1

23−1

, � =
2!0
<2
·
(
1 − 2

(√
1 + (2!0/<2) + 1

)−1
)−1

.

Theorem 3.3 allows us to bound the distance between any two trajectories so long as they can be
expressed as the optimal solutions of the optimization problem (2) or (3). For example, to bound the
norm of each state in the predictive trajectory k̃?C (G, Z ; �), we only need to set G ′ = 0, Z ′ = 0 in the
first inequality because an all zero trajectory can be expressed as k̃?C (0, 0; �). The formal statement
of this result can be found in Appendix E.

4 Performance Guarantees for Predictive Control

We now demonstrate the power of the perturbation approach in Section 3.2 by obtaining bounds on
regret and competitive ratio. The key intuition behind our analysis is the following: at time step C,
if the predictive controller with prediction window : is given the knowledge of G∗C and G∗

C+: , it can
fully recover the offline optimal states and control inputs for the future : time steps, G∗

C+1:C+: and
D∗
C:C+:−1, from k:C (G∗C , FC:C+:−1, G

∗
C+: ). However, without the knowledge of the offline optimal states,

the predictive controller solves k:C (GC , FC:C+:−1, GC+: ) instead, where GC+: is implicitly determined by
the :-th predictive state of k̃:C (GC , FC:C+:−1; �). We overcome this gap with our perturbation approach
(specifically, Theorem 3.3 and its corollaries), which allows us to bound the distance between the
controller’s trajectory and the offline optimal trajectory.
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4.1 Dynamic Regret

We first bound the dynamic regret of predictive control. For this analysis, a key observation is that the
offline optimal trajectory is given by G∗ = k̃)0 (G0, F0:) −1; 0)H1:) . Furthermore, the optimal trajectory
starting at time step C with state GC is equivalent to the trajectory of predictive control with prediction
window () − C) and no terminal cost, i.e. k̃) −CC (GC , FC:) −1; 0)H1:)−C . Using Theorem 3.3, we can bound
the change in decision points against the change in prediction window : . Lemma 4.1 formalizes this:
Lemma 4.1. For any integers ?, ℎ such that ? ≥ ℎ ≥ 1 and time step C < ) − ?, we havek̃?C (

GC , FC:C+?−1; �
)
Hℎ
− k̃?+1C

(
GC , FC:C+?; �

)
Hℎ

 ≤ 2�_?−ℎ
(
�_? ‖GC ‖ +

2�
1 − _ sup

0≤g≤) −1
‖Fg ‖

)
.

Then, we can follow the road map below to bound the dynamic regret of predictive control %�: :

(a) Given the well-conditioned state/control costs, it suffices to bound the distance between %�: ’s
trajectory and the offline optimal trajectory (i.e.,

GC − G∗C ) to show the dynamic regret result.
See inequalities (22) and (23) in Appendix H for technical details.

(b) At each time step C, the optimal next state (under an imaginary terminal cost �) from the
current state GC is given by k̃) −CC (GC , FC:) −1; �)H1 . However, reaching the optimal next state
from GC requires full knowledge of the future costs, dynamics, and disturbances. Although
%�: cannot reach the optimal next state due to incomplete knowledge of the future, it can
leverage the predictions of future : steps to decide a near-optimal control action from state GC .
By cumulatively summing up the bounded difference in Lemma 4.1 and applying Theorem 3.3,
one can show the suboptimality, measured by the distance

GC+1 − k̃) −CC (GC , FC:) −1; �)H1

, is in
the order of $ (_: ). See inequality (19) in Appendix H for technical details.

(c) Using the exponentially-decaying LTV perturbation bound in Theorem 3.3, we can convert the
per-step suboptimality bounds to a global suboptimality bound on

GC − G∗C  that is also in the
order of $ (_: ). See inequalities (20) and (21) in Appendix H for technical details.

The $ (_: ) upper bound on the distance between the algorithm’s trajectory and the offline optimal
trajectory leads to the regret bound in Theorem 4.2.
Theorem 4.2. Suppose ‖FC ‖ ≤ � for some constant � at each time step C. Let _, �, !0 be the decay
rate and constants defined in Theorem 3.3. If prediction window : ≥ 3 is sufficiently large, such that

: ≥ 1 + log
(

1
1 − X · �

(
2�

1 − _ + _
))/

log
(

1
_

)
(6)

for some positive constant X ∈ (0, 1), then the trajectory of %�: satisfies:

1. (Input-to-state Stability) The norm of each state GC is upper bounded by

‖GC ‖ ≤

�
X
· (1 − X)max(0,C−:) ‖G0‖ + 2�

X (1−_)

(
1 + 2�

1−_

)
� if 0 < C ≤ ) − :

�2

X
· (1 − X)) −2:_C+:−) ‖G0‖ +

(
2�2

X (1−_)

(
1 + 2�

1−_

)
+ 2�

1−_

)
� if ) − : < C ≤ ).

2. (Dynamic Regret) The dynamic regret of %�: is upper bounded by

cost(%�: ) − cost($%)) = $
((
� + _

: (‖G0‖ + �)
X

)2

_:) + _: ‖G0‖2
)
,

where the notation hides quantities 0, 1′, ℓ 5 , ℓ2 , �, 1/(1 − _) and !0.

An implication of Theorem 4.2 is that to obtain >(1) dynamic regret when the norm of disturbances
are uniformly upper bounded, it suffices to use a prediction window of length Θ(log)). This parallels
the result shown in [4], although in a more general setting.

4.2 Competitive Ratio

We now focus on bounding the competitive ratio of predictive control.Here, we study a modification
of the predictive control algorithm we have considered to this point. In particular, we introduce a
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Algorithm 2 Predictive Control with Replan Window ℎ (%�(:,ℎ) )
1: Suppose ) = =0ℎ + <0, where integers =0 ≥ 0, : − ℎ + 1 ≤ <0 ≤ : .
2: for C = 0, ℎ, . . . , =0 (ℎ − 1) do
3: Observe current state GC and receive predictions oC:C+:−1.
4: Solve and commit control actions DC:C+ℎ−1 := k̃:C (GC , FC:C+:−1; �)E0:ℎ−1 .
5: At time step C = =0ℎ, observe current state GC and receive predictions oC:) −1.
6: Solve and commit control actions DC:) −1 := k̃<0

C (GC , FC:) −1; 0)E0:<0−1 .

replan window ℎ, as defined in Algorithm 2 which we denote as %�(:,ℎ) . This style of algorithm
has been considered previously in the SOCO literature, where it has been shown to obtain a constant
competitive ratio in some settings where MPC does not [39].

Our analysis approach highlights why this modification is beneficial for competitive ratio. Specifically,
we obtain the competitive ratio bound by applying a potential method building on [40]. We define the
potential function as the squared distance between the algorithm’s trajectory and the offline optimal
trajectory, i.e., qC (GC , G∗C ) =

GC − G∗C 2
, which is standard in the literature [5, 14, 27]. We study how

this potential function changes over time. Intuitively, we need to upper bound the increment of this
potential function by the offline optimal cost to obtain a competitive ratio result. To achieve this, the
algorithm needs to “move closer” to the offline optimal trajectory rather than “moving further away”
from it. Recall that Theorem 3.3 gives thatk:C (GC , FC:C+:−1; �)Hℎ − k:C (G∗C , FC:C+:−1; �)Hℎ

 ≤ �_ℎGC − G∗C . (7)

When the algorithm commits the first predictive state (ℎ = 1), the left hand side of (7) might be
larger than

GC − G∗C  when �_ > 1. Thus, the algorithm must “wait” until the right hand side of (7)
becomes smaller than

GC − G∗C . This is accomplished in Algorithm 2 via the replan window ℎ.

Our main result for this section is the following competitive ratio bound for %�(:,ℎ) .
Theorem 4.3. Let _, �, !0 be the decay rate and constants defined in Theorem 3.3. In Algorithm 2,
if the replan window ℎ satisfies ℎ ≥ max{log ((1 + Y)�)/log (1/_), 3} for some positive constant Y,
and the prediction window : satisfies : ≥ ℎ + 3, then it has competitive ratio

sup
G (0) ,F

cost(%�(:,ℎ) )
cost($%)) = 1 +$

(
Y−1

(
!0 + ℓ 5
< 5

)1/2
· �_:−1−ℎ

)
,

where the notation only hides a small numerical constant.

Note that when the constant Y and the replan window ℎ are fixed, the competitive ratio is on the order
of 1 + $ (d: ) as the length of prediction : tends to infinity. One potential line of future work is to
understand if the replan window is necessary. It may be possible to either strengthen the constants
given in Theorem 3.3 or improve our proof approach so as to eliminate the requirement on ℎ.
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A Definitions and Notations

Definition A.1. We use the follow convention on linear algebra:

1. ‖·‖ denotes the (Euclidean) 2-norm for vectors and the induced 2-norm for matrices:

‖E‖ =
√
E2

1 + E
2
2 + · · · + E

2
=, E ∈ R=

‖�‖ = sup
E∈R=\{0}

‖�G‖
‖G‖ , � ∈ R

<×=;

2. f(�) is the collection of singular values of a matrix �, also known as the singular spectrum;

3. fmin (�) denotes the smallest singular value of a matrix �;

4. � � 0 indicates that a matrix � is positive semi-definite.

The notions of strong-convexity and smoothness are used throughout this paper:
Definition A.2. A real-valued function 6 : R= → R is called ℓ-strongly smooth if

6(H) ≤ 6(G) + 〈∇6(G), H − G〉 + ℓ
2
‖H − G‖22

and is called <-strongly convex if

6(H) ≥ 6(G) + 〈∇6(G), H − G〉 + <
2
‖H − G‖22

for any G, H ∈ R=. Here 〈·, ·〉 denotes the standard inner product of vectors.

We also require the terminal cost to be a K-function, the definition of which is given below.
Definition A.3. A function 6 : R≥0 → R≥0 is said to be a K-function (or belongs to class K), if it is
continuous, strictly increasing, and satisfies 6(0) = 0.

For ease of reference, we summarize in the following table all the notation used in the paper.

Notation Meaning
�C , �C dynamical matrices of the system at time step C

GC , DC , FC state, control action, and disturbance at time step C
5C , 2C hitting cost function and control cost function at time step C

< 5 , <2 strong convexity parameters of cost functions
ℓ 5 , ℓ2 strong smoothness parameters of cost functions

k̃
?
C (G, Z ; �) optimal trajectory† from step C in the future ? steps (free terminal state)
]̃
?
C (G, Z ; �) optimal value from step C in the future ? steps (free terminal state)
k
?
C (G, Z , I) optimal trajectory† from step C in the future ? steps (fixed terminal state I)
]
?
C (G, Z , I) optimal value from step C in the future ? steps (fixed terminal state I)

Hg , Eg , Zg
(in k and k̃) predictive state, control action, and disturbance
within the optimization

�, I terminal constraint function � (in k) or fixed terminal state I (in k̃)
{(GC , DC )})C=1 the trajectory of our predictive control algorithm
{(G∗C , D∗C )})C=1 the offline optimal trajectory (i.e., k̃)0 (G(0), F; 0))
k̂(Ĝ0, F̂, Ĝ?)

the converted SOCO trajectory with initial state Ĝ0, disturbances F̂,
and terminal state Ĝ?

5̂g , 2̂g , Ĝ1:?−1
hitting cost, transition cost, and optimal trajectory of the converted
SOCO problem

† Trajectory contains both states and control inputs, which are referred to by subscripts Hg and Dg , respectively.

B Proof of Theorem 3.1

In the next lemma we will use the notation �(' ,(� to denote the submatrix obtained by selecting the
blocks indexed by some set (' × (� while preserving their relative order. Specifically, consider a
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matrix � ∈ Rl=×l= formed by l × l blocks �8, 9 ∈ R=×=. Let 81 < · · · < 8 |(' | be the elements in
(' ⊆ {1, . . . , l}, and 91 < · · · < 9 |(� | be the elements in (� ⊆ {1, . . . , l}, both in ascending order.
Then �(' ,(� ∈ R |(' |=×|(� |= is defined as a block matrix

�(' ,(� :=


�81 , 91 �81 , 92 · · · �81 , 9|(� |
�82 , 91 �82 , 92 · · · �82 , 9|(� |
...

...
. . .

...
�8|(' | , 91

�8|(' | , 92
· · · �8|(' | , 9|(� |


.

For a diagonal block matrix � = diag(�1, . . . , �l) and a set ( ⊆ {1, . . . , l}, we use the shorthand
notation �( := diag

(
�81 , �82 , . . . , �8|( |

)
, where 81 < . . . < 8 |( | are the elements in (.

Lemma B.1. Suppose � is a positive definite matrix in Sl= formed by l × l blocks �8, 9 ∈ R=×=.
Assume that � is @-banded for an even positive integer @; that is

�8, 9 = 0,∀|8 − 9 | > @/2.

Let [00, 10] (10 > 00 > 0) be the smallest interval containing the spectrum f(�). Suppose
� = diag(�1, . . . , �l), where �8 ∈ S= is positive semi-definite. Let " =

(
(� + �)−1)

(' ,(�
as

defined above, where (', (� ⊆ {1, . . . , l}. Then we have ‖" ‖ ≤ �W 3̂ , where

� =
2
00
, W =

(√
cond(�) − 1√
cond(�) + 1

)2/@

, 3̂ = min
8∈(' , 9∈(2

|8 − 9 |.

Here cond(�) = 10/00 denotes the condition number of matrix �.

Proof of Lemma B.1. We first prove the lemma for the the special case where � = 0.

For the case 3̂ ≠ 0, write 3̂ = h@/2 + ^ for integers h, ^ satisfying h ≥ 0, 1 ≤ ^ ≤ @/2. Following the
same approach as the proof of Proposition 2.2 in [37], we see that there exists a polynomial ?h of
degree h, where �−1 − ?h (�)

 ≤ 1
00
·

(
1 +

√
cond(�)

)2

2 cond(�) W 3̂ ≤ �W 3̂ ,

where the last inequality holds because cond(�) ≥ 1.

Since ?E has degree E < 23̂
@

and � is @-banded, the matrix ?h (�) satisfies (?h (�))8, 9 = 0 for any
8 ∈ (' and 9 ∈ (� . We then obtain

‖%‖ =
(�−1

)
(' ,(�

 = (�−1 − ?h (�)
)
(' ,(�

 ≤ �−1 − ?h (�)
 ≤ �W 3̂ ,

because 2-norm of a submatrix cannot be larger than that of the original matrix.

For the case 3̂ = 0, as ‖%‖ =
(�−1)

(' ,(�

 ≤ �−1
 = 1

00
≤ �, the result trivially holds.

Now we show the general case (where �8 � 0 for 1 ≤ 8 ≤ =) through a reduction to the special case.
Define a positive definite matrix # := (00� + �) ∈ S=l , and then define matrix � ∈ S=l as follows,

� = #−
1
2 (� + �)#− 1

2 .

We start by showing that � � � � 10
00
· �. For any G ∈ R=l , we observe

G>�G = G>#−
1
2 �#−

1
2 G + G>#− 1

2 �#−
1
2 G

≥ G>#− 1
2 00�#

− 1
2 G + G>#− 1

2 �#−
1
2 G

= G>#−
1
2 (00� + �)#−

1
2 G

= ‖G‖2.
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For the other inequality, we have

G>�G = G>#−
1
2 �#−

1
2 G + G>#− 1

2 �#−
1
2 G

≤ G>#− 1
2 10�#

− 1
2 G + G>#− 1

2 �#−
1
2 G

= G>#−
1
2 (00� + �)#−

1
2 G + (10 − 00)G>#−1G

≤ ‖G‖2 + 10 − 00
00

· ‖G‖2

=
10
00
· ‖G‖2.

Thus � � � � 10
00
· �, which gives cond(�) ≤ 10

00
= cond(�). Note that � is also @-banded, so we

can apply the result of the special case (�8 = 0, 8 = 1, · · · , =) to obtain that(�−1)(' ,(�
 ≤ 2W 3̂� ≤ 2W 3̂ ,

where W� =

(√
cond(� )−1√
cond(� )+1

)2/@
≤ W. Using this inequality, we conclude that

‖%‖ =
((� + �)−1)(' ,(�

 = (#− 1
2�−1#−

1
2

)
(' ,(�


≤

(00� + �(' )−
1
2

 · (�−1)(' ,(�
 · (00� + �(� )−

1
2


≤ 1
00

(�−1)(' ,(�


≤ �W 3̂ .

Here we apply the fact that
(00� + �()−

1
2

 ≤ 1√
00

since �( � 0.

Now we return to the proof of Theorem 3.1

Proof of Theorem 3.1. Let 4 = (4>0 , `
>, 4>?)> be a vector where 40, 4? ∈ R= and

` = [`0, `1, . . . , `?−1],

for `8 ∈ RA , 8 = 0, 1, . . . , ? − 1. Let \ be an arbitrary real number. Define function ℎ̂ : R(?−1)×= ×
R= × R?×A × R= → R+ as

ℎ̂(Ĝ1:?−1, Ĝ0, F̂0:?−1, Ĝ?) =
?−1∑
g=1

5̂g (Ĝg) +
?∑
g=1

2̂g (Ĝg , Ĝg−1, F̂g−1).

To simplify the notation, we use Ẑ to denote the tuple of system parameters, i.e.,

Ẑ := (Ĝ0, F̂0:?−1, Ĝ?).

From out construction, we know that ℎ̂ is `-strongly convex in Ĝ1:?−1, so we use the decomposition
ℎ̂ = ℎ̂0 + ℎ̂1 , where

ℎ̂0 (Ĝ1:?−1, Ẑ) =
?−1∑
g=1

`

2
‖Ĝg ‖2 +

?∑
g=1

2̂g (Ĝg , Ĝg−1, F̂g−1),

ℎ̂1 (Ĝ1:?−1, Ẑ) =
?−1∑
g=1

(
5̂g (Ĝg) −

`

2
‖Ĝg ‖2

)
.

Since k̂( Ẑ + \4) is the minimizer of convex function ℎ̂(·, Ẑ + \4), we see that

∇Ĝ1:?−1 ℎ̂(k̂( Ẑ + \4), Ẑ + \4) = 0.
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Taking the derivative with respect to \ gives that

∇2
Ĝ1:?−1

ℎ̂(k̂( Ẑ + \4), Ẑ + \4) 3
3\
k̂( Ẑ + \4) = − ∇Ĝ0∇Ĝ1:?−1 ℎ̂(k̂( Ẑ + \4), Ẑ + \4)40

− ∇Ĝ?∇Ĝ1:?−1 ℎ̂(k̂( Ẑ + \4), Ẑ + \4)4?

−
?−1∑
g=0
∇Fg∇Ĝ1:?−1 ℎ̂(k̂( Ẑ + \4), Ẑ + \4)`g .

To simplify the notation, we define

" := ∇2
Ĝ1:?−1

ℎ̂(k̂( Ẑ + \4), Ẑ + \4),which is a (? − 1) × (? − 1) block matrix,

' (0) := −∇Ĝ0∇Ĝ1:?−1 ℎ̂(k̂( Ẑ + \4), Ẑ + \4),which is a (? − 1) × 1 block matrix,

' (?) := −∇Ĝ?∇Ĝ1:?−1 ℎ̂(k̂( Ẑ + \4), Ẑ + \4),which is a (? − 1) × 1 block matrix,

 (g) := −∇Fg∇Ĝ1:?−1 ℎ̂(k̂( Ẑ + \4), Ẑ + \4),∀0 ≤ g ≤ ? − 1,which are (? − 1) × 1 block matrices,

where in " , ' (0) , ' (?) , the block size is = × =; in  (g) , the block size is = × A. Hence we can write

3

3\
k̂( Ẑ + \4) = "−1

(
' (0)40 + ' (?)4? +

?−1∑
g=0

 (g)`g

)
.

Recall that ' (0) , ' (?) are (? − 1) × 1 block matrices with block size = × =. { (g) }0≤g≤?−1 are
(? − 1) × 1 block matrices with block size = × A. For ' (0) and  (0) , only the (1, 1)-th blocks are
non-zero. For ' (?) and  (?−1) , only the (?−1, 1)-th blocks are non-zero. For  (g) , g = 1, . . . , ?−2,
only the (g, 1)-th and (g + 1, 1)-th blocks are non-zero. Hence we see that

3

3\
k̂( Ẑ + \4)ℎ = ("−1)ℎ,1' (0)1,140 + ("−1)ℎ,?−1'

(?)
?−1,14?

+ ("−1)ℎ,1 (0)1,1 `0 + ("−1)ℎ,?−1 
(?−1)
?−1,1 `?−1

+
?−2∑
g=1
("−1)ℎ,g:g+1 

(g)
g:g+1,1`g .

Since the switching costs 2g (·, ·, ·), g = 1, . . . , ? are ℓ-strongly smooth, we know that the norms of

'
(0)
1,1 , '

(?)
?−1,1,  

(0)
1,1 ,  

(?−1)
?−1,1 , and { (g)

g:g+1,1}1≤g≤?−2

are all upper bounded by ℓ. Taking norm on both sides gives that 33\ k̂( Ẑ + \4)ℎ ≤ ℓ("−1)ℎ,1
‖40‖ + ℓ

("−1)ℎ,?−1
‖4? ‖

+ ℓ
("−1)ℎ,1

‖`0‖ + ℓ
("−1)ℎ,?−1

‖`?−1‖

+
?−2∑
g=1

ℓ
("−1)ℎ,g:g+1

‖`g ‖. (8)

Note that " can be decomposed as " = "0 + "1 , where

"0 := ∇2
1:?−1 ℎ̂0 (k̂( Ẑ + \4), Ẑ + \4),

"1 := ∇2
1:?−1 ℎ̂1 (k̂( Ẑ + \4), Ẑ + \4).

Since "0 is block tri-diagonal and satisfies (` + 2ℓ)� � "0 � `�, and "1 is block diagonal and
satisfies "1 � 0, we obtain the following with Lemma B.1:("−1)ℎ,1

 ≤ 2
`
_ℎ−1

0 ,
("−1)ℎ,?−1

 ≤ 2
`
_
?−ℎ−1
0 , and

("−1)ℎ,g:g+1
 ≤ 2

`
_
|ℎ−g |−1
0 ,

where _0 := (
√

cond("0) − 1)/(
√

cond("0) + 1) = 1 − 2 ·
(√

1 + (2ℓ/`) + 1
)−1

.
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Substituting this into (8), we see that 33\ k̂( Ẑ + \4)ℎ ≤ �0

(
_ℎ−1

0 ‖40‖ +
?−1∑
g=0

_
|ℎ−g |−1
0 ‖`g ‖ + _?−ℎ−1

0 ‖4? ‖
)
,

where �0 = (2ℓ)/`.

Hence we obtaink̂( Ẑ)ℎ − k̂( Ẑ + 4)ℎ = ∫ 1

0

3

3\
k̂( Ẑ + \4)ℎ3\


≤

∫ 1

0

 33\ k̂( Ẑ + \4)ℎ3\
≤ �0

(
_ℎ−1

0 ‖40‖ +
?−1∑
g=0

_
|ℎ−g |−1
0 ‖`g ‖ + _?−ℎ−1

0 ‖4? ‖
)
.

This finishes the proof.

C Proof of Lemma 3.2

Lemma C.1. Suppose function 5 (G, H) is convex and !-strongly smooth in (G, H), `-strongly convex
in H, and continuously differentiable. Define functions H∗ (G) := arg minH 5 (G, H) and 6(G) :=

minH 5 (G, H). Then, function H∗ is !
`

-Lipschitz and function 6 is
(
! + !2

`

)
-strongly smooth.

Proof of Lemma C.1. Let H∗ (G) = arg minH 5 (G, H). This function is well-defined since the strong
convexity of 5 (G, H) in H guarantees that H∗ (G) is unique. We see that for all G, G ′,

∇H 5 (G, H∗ (G)) = 0 and ∇H 5 (G ′, H∗ (G ′)) = 0.
Using these equalities, we obtain

0 = 〈H∗ (G) − H∗ (G ′),∇H 5 (G, H∗ (G)) − ∇H 5 (G ′, H∗ (G ′))〉
= 〈H∗ (G) − H∗ (G ′),∇H 5 (G, H∗ (G)) − ∇H 5 (G, H∗ (G ′))〉
+ 〈H∗ (G) − H∗ (G ′),∇H 5 (G, H∗ (G ′)) − ∇H 5 (G ′, H∗ (G ′))〉

≥ `‖H∗ (G) − H∗ (G ′)‖2 − ‖H∗ (G) − H∗ (G ′)‖ ·
∇H 5 (G, H∗ (G ′)) − ∇H 5 (G ′, H∗ (G ′)),

where we used the fact that a `-strongly convex function ℎ satisfies

〈0 − 1,∇ℎ(0) − ∇ℎ(1)〉 ≥ `‖0 − 1‖2,∀0, 1
and the Cauchy-Schwartz inequality in the last inequality. Since 5 is !-strongly smooth, we see that

‖H∗ (G) − H∗ (G ′)‖ ≤ 1
`

∇H 5 (G, H∗ (G ′)) − ∇H 5 (G ′, H∗ (G ′)) ≤ !

`
‖G − G ′‖,

which implies function H∗ is !
`

-Lipschitz.

Note that the gradient of 6 is given by

∇6(G) = ∇G 5 (G, H∗ (G)) + ∇H 5 (G, H∗ (G))
mH∗ (G)
mG

= ∇G 5 (G, H∗ (G)),

because ∇H 5 (G, H∗ (G)) = 0. Hence we obtain

‖∇6(G) − ∇6(G ′)‖ ≤ ‖∇G 5 (G, H∗ (G)) − ∇G 5 (G ′, H∗ (G ′))‖
≤ ‖∇G 5 (G, H∗ (G)) − ∇G 5 (G ′, H∗ (G))‖ + ‖∇G 5 (G ′, H∗ (G)) − ∇G 5 (G ′, H∗ (G ′))‖
≤ !‖G − G ′‖ + !‖H∗ (G) − H∗ (G ′)‖

≤
(
! + !

2

`

)
‖G − G ′‖.
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Lemma C.2. Suppose � is a l1 × l2 block matrix. Let �8 9 denote the (8, 9) th block of �, 1 ≤ 8 ≤
l1, 1 ≤ 9 ≤ l2. The induced 2-norm of � is upper bounded by

‖�‖ ≤ ©«
l1∑
8=1

l2∑
9=1

�8 92ª®¬
1
2

.

Proof of Lemma C.2. For unit vector G, we have the following:

‖�G‖2 =
l1∑
8=1

 l2∑
9=1

�8 9G 9


2

≤
l1∑
8=1

©«
l2∑
9=1

�8 9 · G 9ª®¬
2

≤
l1∑
8=1

©«
l2∑
9=1

�8 92ª®¬©«
l2∑
9=1

G 92ª®¬
=

l1∑
8=1

l2∑
9=1

�8 92
.

where we used the definition of the induced 2-norm in the first inequality and the Cauchy-Schwarz
inequality in the second inequality.

Now we come back to the proof of Lemma 3.2.

Proof of Lemma 3.2. To simplify the notation, we define the stacked state vector H, control vector E,
and disturbance vector Z as

H =


H0
H1
...
H?

 , E =

E0
E1
...

E?−1

 , Z =

Z0
Z1
...

Z?−1

 .
Recall that the transition matrix Φ(C2, C1) is defined as

Φ(C2, C1) :=
{
�C2−1�C2−2 · · · �C1 if C2 > C1
� if C2 ≤ C1

.

Using this, we can express the state vector H as an affine function of initial state G, control E, and
disturbance Z :

H = (GG + (EE + (Z Z, (9)
where

(Z :=


0 0 · · · 0

Φ(C + 1, C + 1) 0 · · · 0
Φ(C + 2, C + 1) Φ(C + 2, C + 2) · · · 0

...
...

. . .
...

Φ(C + ?, C + 1) Φ(C + ?, C + 2) · · · Φ(C + ?, C + ?)


, (G =


Φ(C, C)

Φ(C + 1, C)
Φ(C + 2, C)

...
Φ(C + ?, C)


,

and (E = (Z · 3806(�C , . . . , �C+?−1).
To simplify the notation, we use the shorthand " := " (C, ?) for the controllability matrix and

'Z := [Φ(C + ?, C + 1),Φ(C + ?, C + 2), . . . ,Φ(C + ?, C + ?)] .
throughout the proof. Since ? is greater than the controllability index 3, we know " has full row
rank. The dynamical constraints for (5), which is identical to the constraints of (3), can be written as

"E = I −Φ(C + ?, C)G − 'Z Z .
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Because " has full row rank, we let "† = "> ("">)−1 be the Moore-Penrose pseudo-inverse of
". Let + ∈ R(<?)×(<?−=) be a matrix whose columns constitute an orthonormal basis of :4A (").
Then, we can express all feasible control vector E as

E = "†
(
I −Φ(C + ?, C)G − 'Z Z

)
++A, (10)

where A is a free variable that can take any value in R<?−=.

Let � denote the objective function of b ?C , i.e.,

� (H, E) :=

(
?−1∑
g=1

5C+g (Hg) + 2C+g (Eg−1)
)
+ 2C+? (E?−1).

Since we can express the state vector H and control vector E as linear functions of G, I, Z and A, we
can write the switching cost (5) as an unconstrained optimization problem

min
A ∈R<?−=

� (H(G, I, Z , A), E(G, I, Z , A)), (11)

where functions H(G, I, Z , A) and E(G, I, Z , A) are determined by[
H
E

]
=

[
(G − (E"†Φ(C + ?, C) (E"† (Z − (E"†'Z (E+

−"†Φ(C + ?, C) "† −"†'Z +

]
·

G
I
Z
A

 . (12)

Note that if 0 ≠ 1, the following is due to Lemma C.2:

‖(Z ‖ ≤ ©«
?∑
8=1

8∑
9=1
‖q(C + 8, C + 9)‖2ª®¬

1
2

≤ ©«
?∑
8=1

8∑
9=1
02(8− 9)ª®¬

1
2

=

√
02?+2 − (? + 1)02 + ?��02 − 1

��
By Lemma C.2, we also have

‖(G ‖ ≤
√
02?+2 − 1
02 − 1

,
"† ≤ 1

f2 ·
√
02? − 1
02 − 1

, ‖(E ‖ ≤ 1‖(Z ‖, ‖'Z ‖ ≤
√
02? − 1
02 − 1

≤ 0
? − 1
0 − 1

.

Since the norm of a block matrix is upper bounded by the sum of norms of each block, we see that[(G − (E"†Φ(C + ?, C) (E"† (Z − (E"†'Z (E+

−"†Φ(C + ?, C) "† −"†'Z +

] ≤ � (?), (13)

where, when 0 ≠ 1,

� (?) =
(
1(0?+1 + 0 − 2)
f2 (0 − 1)

·
√
02? − 1
02 − 1

+ 1 + 1
1

)©«
1

√(
02?+2 − (? + 1)02 + ?

)��02 − 1
�� + 1

ª®®¬ +
√
02?+2 − 1
02 − 1

− 1
1
.

If 0 = 1, by Lemma C.2, we see that

‖(Z ‖ ≤ ©«
?∑
8=1

8∑
9=1
‖q(C + 8, C + 9)‖2ª®¬

1
2

≤ ©«
?∑
8=1

8∑
9=1
02(8− 9)ª®¬

1
2

=

√
?(? + 1)

2
.

By Lemma C.2, we also see that

‖(G ‖ ≤
√
? + 1,

"† ≤ 1

f2 ·
√
?, ‖(E ‖ ≤ 1‖(Z ‖, ‖'Z ‖ ≤ √?.

Therefore, for (13) to hold when 0 = 1, we need to set

� (?) =
(
1
√
?

f2
(√
? + 2

)
+ 1

) (
1 + 1

√
?(? + 1)

2

)
+

√
? + 1 ·

(
1 +

√
?

2

)
.
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Since � is convex and strongly smooth in (G, D), and both G, D are affine functions of (H, I, A),
� (G(H, I, A), D(H, I, A)) is convex and ℓ · � (?)2-strongly smooth in (H, I, A). Since � (G, D) is <2-
strongly convex in D, by (10), we have

∇2
A� (G(H, I, F, A), D(H, I, F, A)) � +ᵀ∇2

D� (G, D)+
� <2 �,

where we used that ‖+a‖2 = ‖a‖2,∀a ∈ R<?−= because the columns of + are orthonormal in the last
inequality. Therefore, by Lemma C.1, we know that (11) is convex and !2 (?)-strongly smooth in
(H, I), where

!2 (?) := ℓ · � (?)2 + ℓ
2 · � (?)4
<2

.

By Lemma C.1, we also know that the optimal solution of (11):

A∗ (G, I, Z) := arg min
A ∈R<?−=

� (H(G, I, Z , A), E(G, I, Z , A))

is ℓ · � (?)2/<2-Lipschitz. By (12) and (13), we see that

k
?
C (G, Z , I) =

[
(G − (E"†Φ(C + ?, C) (E"† (Z − (E"†'Z (E+

−"†Φ(C + ?, C) "† −"†'Z +

]
·


G
I
Z

A∗ (G, I, Z)


is !1 (?)-Lipschitz, where

!1 (?) = � (?) (1 + ℓ · � (?)2/<2).

D Proof of Theorem 3.3

The proof of Theorem 3.3 is based on the decision-point transformation introduced in Section 3.2.

Recall that we use 3 to the controllability index as defined in Definition 2.1. To show the perturbation
bound of k?C (·, ·, ·)Hℎ , suppose ℎ and ? satisfy D3 ≤ ℎ < (D + 1)3 and ? = E3 + A , where D, E, A ∈ N
and 0 ≤ A < 3. Now we shall select the decision points as

H0, H3 , · · · , H (D−1)3 , Hℎ , H (D+2)3 , · · · , H (E−1)3 , H? ,

which are also denoted by H80 , · · · , H8E−1 for simplicity. Since the distance of any consecutive decision
points falls in [3, 23), we can apply Lemma 3.2 to bound the strong smoothness of switching costs.
In the transformed SOCO problem, the disturbance input of the (g − 1)-th time period is a vector
F̂g−1 = Z8g−1:8g−1 ∈ R=×(8g−8g−1) . Each stage cost b8g−8g−1

C (G8g−1 , F̂g−1, G8g ) is convex and !2 (8g−8g−1)-
strongly smooth by Lemma 3.2, and is thus !0-strongly smooth by definition. Recall that the solution
of the transformed SOCO problem is denoted by k̂(GC , Z , GC+?). Then by Theorem 3.1 we havek?C (G, Z , I)Hℎ − k?C (G ′, Z ′, I′)Hℎ

=
k̂(G, Z , I)D − k̂(G ′, Z ′, I′)D
≤ �0

(
_D−1

0 ‖G − G ′‖2 +
E−2∑
g=0

_
|D−g |−1
0

Fg − F′g2 + _
(E−1)−D−1
0 ‖I − I′‖2

)
= �0

(
_D−1

0 ‖G − G ′‖2 +
E−2∑
g=0

_
|D−g |−1
0

8g+1−1∑
9=8g

Z 9 − Z ′92
+ _ (E−1)−D−1

0 ‖I − I′‖2

)
≤ �0
_0

(
_8D−80 ‖G − G ′‖2 +

E−2∑
g=0

8g+1−1∑
9=8g

_ | 9−8D |
Z 9 − Z ′92

+ _8E−1−8D ‖I − I′‖2

)
= �

(
_ℎ ‖G − G ′‖ +

?−1∑
g=0

_ |ℎ−g |
Zg − Z ′g + _?−ℎ ‖I − I′‖) .

The last inequality holds because each interval is of length at most (23 − 1). Here the constants are

�0 =
2!0
<2

, _0 = 1 − 2 ·
(√

1 + (2!0/<2) + 1
)−1
,
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� = �0/_0 =
2!0
<2

(
1 − 2 ·

(√
1 + (2!0/<2) + 1

)−1
)−1
, _ =

(
1 − 2

(√
1 + (2!0/<2) + 1

)−1
) 1

23−1

.

The proof of the perturbation bound of k?C (·, ·, ·)Hℎ is quite similar. The only difference lies in the
terminal cost, which can be addressed with the addition of a fixed auxiliary state. Specifically, we
append Gaux = 0 to the end of the decision point sequence, and define a zero transition cost to the
auxiliary state 2̂E (GC+? , FE−1, Gaux) ≡ 0 (note that 2̂E is trivially convex and !0-strongly smooth).
Denote the solution of the modified version of transformed SOCO problem by k̂ ′(GC , Z , Gaux), then
by the same argument as above, we havek̃?C (G, Z)Hℎ − k̃?C (G ′, Z ′)Hℎ = k̂ ′(G, Z , 0)D − k̂ ′(G ′, Z ′, 0)D

≤ · · · ≤ �
(
_ℎ ‖G − G ′‖ +

?−1∑
g=0

_ |ℎ−g |
Zg − Z ′g) ,

where the constants are the same as previously defined. This finishes the proof of Theorem 3.3.

E Stability of the Optimal Trajectory

Corollary E.1 (Stability of the Optimal Trajectory). For the predicted trajectory from solving (2)
with a prediction window ? ≥ 3, the norm of the ℎ-th predictive state is bounded above byk̃?C (G, Z ; �)Hℎ

 ≤ � (
_ℎ ‖G‖ +

?−1∑
g=0

_ |ℎ−g | ‖Zg ‖
)
≤ �_ℎ ‖G‖ + 2�

1 − _ sup
g

‖Zg ‖.

Proof of Corollary E.1. Note that k̃?C (0, 0)Hℎ = 0. By Theorem 3.3, we see thatk̃?C (G, Z)Hℎ = k̃?C (G, Z)Hℎ − k̃?C (0, 0)Hℎ
≤ �

(
_ℎ1 ‖G‖ +

?−1∑
g=0

_
|ℎ−g |
1 ‖Zg ‖

)
≤ �_ℎ1 ‖G‖ +

2�
1 − _1

sup
g

‖Zg ‖,

where the last inequality holds because

?−1∑
g=0

_
|ℎ−g |
1 ≤ 2

1 − _1
.

F Smoothness of the Optimal Cost

Corollary F.1. For any time step C and integer ? that satisfies ? ≥ 3, function ]?C (·, Z , ·) satisfies that

]
?
C (G, Z , I) ≤ (1 + [)]

?
C (G ′, Z , I′) +

!0 + ℓ 5
2

(
1 + 1

[

) (
‖G ′ − G‖2 + ‖I′ − I‖2

)
,∀G, G ′, Z , I, I′.

Lemma F.2. Assume a function 6 : R= → R+ is convex, ℓ-strongly smooth and continuously
differentiable. For all G, H ∈ R=, for all [ > 0, we have

6(G) ≤ (1 + [)6(H) + ℓ
2

(
1 + 1

[

)
‖G − H‖2.

Proof of Lemma F.2.

6(G) − 6(H) ≤ 〈∇6(H), G − H〉 + ℓ
2
‖G − H‖2
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≤ [

2ℓ
‖∇6(H)‖2 + ℓ

2[
‖G − H‖2 + ℓ

2
‖G − H‖2

≤ [6(H) + ℓ
2

(
1 + 1

[

)
‖G − H‖2.

where the second inequality follows from the generalized means inequality and the last inequality
holds because

0 ≤ 6
(
H − 1

ℓ
∇6(H)

)
≤ 6(H) −

〈
∇6(H), 1

ℓ
∇6(H)

〉
+ ℓ

2

∇6(H)ℓ

2
= 6(H) − 1

2ℓ
‖∇6(H)‖2

Now we come back to the proof of Corollary F.1.

When 3 ≤ ? ≤ 23 − 1, since b ?C (G, Z , I) is !0-strongly smooth by Lemma 3.2, we know

]
?
C (G, Z , I) = b

?
C (G, Z , I) + 5C+? (I)

is (!0 + ℓ 5 )-strongly smooth. Therefore, by Lemma F.2, we obtain that

]
?
C (G, Z , I) ≤ (1 + [)]

?
C (G ′, Z , I′) +

!0 + ℓ 5
2

(
1 + 1

[

) (
‖G ′ − G‖2 + ‖I′ − I‖2

)
.

When ? = 23, let G1 := k?C (G ′, Z , I′)H3 . We see that

]
?
C (G, Z , I) ≤ ]3C (G, Z0:3−1, G1) + ]3C+3 (G1, Z3:23−1, I)

≤ (1 + [)]3C (G ′, Z0:3−1, G1) +
!0 + ℓ 5

2

(
1 + 1

[

)
‖G − G ′‖2

+ (1 + [)]3C+3 (G1, Z3:23−1, I
′) +

!0 + ℓ 5
2

(
1 + 1

[

)
‖I − I′‖2

≤ (1 + [)]?C (G ′, Z , I′) +
!0 + ℓ 5

2

(
1 + 1

[

) (
‖G ′ − G‖2 + ‖I′ − I‖2

)
.

When ? > 23, let G1 := k?C (G ′, Z , I′)H3 , G2 := k?C (G ′, Z , I′)H?−3 . We see that

]
?
C (G, Z , I) ≤ ]3C (G, Z0:3−1, G1) + ]?−23

C+3 (G1, Z3:?−3−1, G2) + ]3C+?−3 (G2, Z?−3:?−1, I)

≤ (1 + [)]3C (G ′, Z0:3−1, G1) +
!0 + ℓ 5

2

(
1 + 1

[

)
‖G − G ′‖2

+ ]?−23
C+3 (G1, Z3:?−3−1, G2)

+ (1 + [)]3C+?−3 (G2, Z?−3:?−1, I
′) +

!0 + ℓ 5
2

(
1 + 1

[

)
‖I − I′‖2

≤ (1 + [)]?C (G ′, Z , I′) +
!0 + ℓ 5

2

(
1 + 1

[

) (
‖G ′ − G‖2 + ‖I′ − I‖2

)
.

G Proof of Lemma 4.1

Proof of Lemma 4.1. To simplify the notation, we define

I := k̃?C (GC ; �)H? , I
′ := k̃?+1C (GC ; �)H? .

We see that k̃?C (GC ; �)Hℎ − k̃?+1C (GC ; �)Hℎ
 = k?C (GC , I)Hℎ − k?C (GC , I′)Hℎ (14a)

≤ �_?−ℎ ‖I − I′‖ (14b)

≤ 2�_?−ℎ
(
�_? ‖GC ‖ +

2�
1 − _�

)
. (14c)

where we used the definition of k and k̃ in (14a); Theorem 3.3 in (14b); Corollary E.1 in (14c).
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H Proof of Theorem 4.2

Throughout the proof, we will use {(ĜC , D̂C )} to denote the trajectory of predictive control with
prediction window ) (%�) ). Recall that {(GC , DC )} denotes the trajectory of predictive control with
prediction window : (%�: ), and {(G∗C , D∗C )} denotes the offline optimal trajectory ($%)), i.e., the
optimal solution of (1).

For simplicity, we will use the shorthand notations

k̃
?
C (G; �) := k̃?C (G, FC:C+?−1; �) and k?C (G, I) := k?C (G, FC:C+?−1, I)

throughout the proof.

Proof of Theorem 4.2. Since GC+1 = k̃
?
C (GC ; �)H1 , for all 2 ≤ 8 ≤ : , we have

k̃:C−8 (GC−8; �)H8 = k̃:−1
C−8+1 (GC−8+1; �)H8−1 . (15)

Therefore, we obtain that for : ≤ C ≤ ) − : ,

‖GC ‖ =
k̃:C−1 (GC−1; �)H1


≤

:−1∑
8=1

k̃:C−8 (GC−8; �)H8 − k̃:C−8−1 (GC−8−1; �)H8+1
 + k̃:C−: (GC−: ; �)H:

 (16a)

=

:−1∑
8=1

k̃:C−8 (GC−8; �)H8 − k̃:−1
C−8 (GC−8; �)H8

 + k̃:C−: (GC−: ; �)H:
 (16b)

≤
:−1∑
8=1

2�_:−1−8
(
�_:−1‖GC−8 ‖ +

2�
1 − _�

)
+

(
�_: ‖GC−: ‖ +

2�
1 − _�

)
(16c)

≤ �_:−1

(
_‖GC−: ‖ + 2�

:−1∑
8=1

_:−1−8 ‖GC−8 ‖
)
+ 2�

1 − _

(
1 + 2�

1 − _

)
�,

where we used the triangle inequality in (16a); (15) in (16b); Lemma 4.1 and Corollary E.1 in (16c).

By a similar argument, for 1 ≤ C ≤ : , we have

‖GC ‖ =
k̃:C−1 (GC−1; �)H1


≤

C−1∑
8=1

k̃:C−8 (GC−8; �)H8 − k̃:C−8−1 (GC−8−1; �)H8+1
 + k̃:0 (G0; �)HC


=

C−1∑
8=1

k̃:C−8 (GC−8; �)H8 − k̃:−1
C−8 (GC−8; �)H8

 + k̃:0 (G0; �)HC


≤
C−1∑
8=1

2�_:−1−8
(
�_:−1‖GC−8 ‖ +

2�
1 − _�

)
+

(
�_C ‖G0‖ +

2�
1 − _�

)
≤ �_:−1

(
2�

C−1∑
8=1

_:−1−8 ‖GC−8 ‖
)
+ �‖G0‖ +

2�
1 − _

(
1 + 2�

1 − _

)
�, (17)

Recall that, under the assumption of (6), the sum of coefficients in (16) and (17) are upper bounded
by

�_:−1

(
2�

C−1∑
8=1

_:−1−8

)
≤ 1 − X, �_:−1

(
_ + 2�

:−1∑
8=1

_:−1−8

)
< 1 − X.

Using inequalities (16) and (17), one can show by induction that for C ≤ ) − :

‖GC ‖ ≤
�

X
· (1 − X)max(0,C−:) ‖G0‖ +

2�
X(1 − _)

(
1 + 2�

1 − _

)
�. (18)
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For C ≥ ) − : + 1, by Corollary E.1, we see that

‖GC ‖ =
k̃:) −: (G) −: , F) −::) −1, 0)HC+:−)


≤ �_C+:−) ‖G) −: ‖ +

2��
1 − _

≤ �
2

X
· (1 − X)) −2:_C+:−) ‖G0‖ +

(
2�2

X(1 − _)

(
1 + 2�

1 − _

)
+ 2�

1 − _

)
�.

This finishes the proof of ISS of %�: .

By Lemma 4.1 and (18), we also see that for C ≤ ) − : ,k̃:C (GC ; �)H1 − k̃
) −C
C (GC ; �)H1

 ≤ ) −C∑
?=:

k̃?C (GC ; �)H1 − k̃
?+1
C (GC ; �)H1


≤
∞∑
?=:

2�_?−1
(
�_? ‖GC ‖ +

2�
1 − _�

)
=

2�2

_(1 − _2)
· (_)2: ‖GC ‖ +

4�2

_(1 − _)2
· _:�

= $

((
� + _

: (‖G0‖ + �)
X

)
_:

)
. (19)

We further obtain that for C ≤ ) − : ,

‖GC − ĜC ‖ =
GC − k̃)0 (G0; �)


≤

GC − k̃) −C+1C−1 (GC−1; �)H1

 + C−1∑
8=1

k̃) −C+8C−8 (GC−8; �)H8 − k̃) −C+8+1C−8−1 (GC−8−1; �)H8+1


≤
GC − k̃) −C+1C−1 (GC−1; �)H1

 + C−1∑
8=1

�_8
GC−8 − k̃) −C+8+1C−8−1 (GC−8−1; �)H1

 (20a)

= $

((
� + _

: (‖G0‖ + �)
X

)
_:

)
, (20b)

where we used Theorem 3.3 and the fact that k̃) −C+8+1
C−8−1 (GC−8−1)H8+1 can be written as

k̃) −C+8+1C−8−1 (GC−8−1; �)H8+1 = k̃) −C+8C−8

(
k̃) −C+8+1C−8−1 (GC−8−1; �)H1 ; �

)
H8

in (20a); we used we used (19),GC−8 − k̃) −C+8+1C−8−1 (GC−8−1; �)H1

 = k̃:C−8−1 (GC−8−1; �)H1 − k̃
) −C+8+1
C−8−1 (GC−8−1; �)H1


and

1 +
C−1∑
8=1

�_8 ≤ 1 + �

1 − _ = $ (1)

in (20b).

By Corollary E.1, we see that G∗) − Ĝ)  ≤ 2�_) ‖G0‖ +
4��
1 − _ .

It follows that, by Theorem 3.3, the following holds for all C ≤ ) − ::G∗C − ĜC = k)0 (G0, G
∗
) ) − k)0 (G0, Ĝ) )

 ≤ �_: (2�_) ‖G0‖ +
4��
1 − _

)
.

Combining this inequality with (20) givesGC − G∗C  = $ ((
� + _

: (‖G0‖ + �)
X

)
_:

)
, ∀C ≤ ) − :. (21)
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Since
(DC − D∗C ) = �†C

(
(GC+1 − G∗C+1) − �C (GC − G

∗
C )

)
,

we have DC − D∗C  ≤ 1′ (GC+1 − G∗C+1 + 0GC − G∗C ) .
Therefore, under Corollary F.1, for any [ > 0,

]1C (GC , GC+1) − (1 + [)]1C (G∗C , G∗C+1) (22)

=
(
5C+1 (GC+1) − (1 + [) 5C+1 (G∗C+1)

)
+

(
2C+1 (DC ) − (1 + [)2C+1 (D∗C )

)
≤ 1

2

(
1 + 1

[

) (
ℓ 5

GC+1 − G∗C+12 + ℓ2
DC − D∗C 2

)
≤ 1

2

(
1 + 1

[

) (
ℓ 5 + 2(1′)2ℓ2

)GC+1 − G∗C+12 + 1
2

(
1 + 1

[

)
202 (1′)2ℓ2

GC − G∗C 2

≤
(
1 + 1

[

)
· !4

2

(GC − G∗C 2 +
GC+1 − G∗C+12

)
,

where
!4 := ℓ 5 + 2(1′)2ℓ2 + 202 (1′)2ℓ2 .

Then, for any [ > 0, we obtain the following inequality:

cost(%�: ) − (1 + [) cost($%))

=

(
) −:−1∑
C=0

]1C (GC , GC+1) + ]:) −: (G) −: , G) )
)
− (1 + [)

(
) −:−1∑
C=0

]1C (G∗C , G∗C+1) + ]
:
) −: (G

∗
) −: , G

∗
) )

)
=

) −:−1∑
C=0

(
]1C (GC , GC+1) − (1 + [)]1C (G∗C , G∗C+1)

)
+

(
]:) −: (G) −: , G) ) − (1 + [)]

:
) −: (G

∗
) −: , G

∗
) )

)
≤
) −:−1∑
C=0

(
]1C (GC , GC+1) − (1 + [)]1C (G∗C , G∗C+1)

)
+

(
]:) −: (G) −: , G

∗
) ) − (1 + [)]:) −: (G

∗
) −: , G

∗
) )

)
(23a)

≤
(
1 + 1

[

)
· !4

2

) −:−1∑
C=0

(GC − G∗C 2 +
GC+1 − G∗C+12

)
+

(
1 + 1

[

)
·
!0 + ℓ 5

2
G) −: − G∗) −:2 (23b)

=

(
1 + 1

[

)
· !4

) −:−1∑
C=0

GC − G∗C 2 +
(
1 + 1

[

)
·
!0 + ℓ 5

2
G) −: − G∗) −:2

≤
(
1 + 1

[

)
$

((
� + _

: (‖G0‖ + �)
X

)2

_2:)

)
, (23c)

where we used the fact that the cost of k̃:
) −: (G) −: ; 0) is less than or equal to the cost of

k:
) −: (G) −: , G

∗
)
) in (23a); we used (22) and Corollary F.1 in (23b); and we used (20) in (23c).

To bound the optimal cost, we consider a suboptimal controller inspired by the decision-point
transformation, where the controller forces the states G3 , G23 , · · · , G (E−1)3 , GE3+A to be 0 (3 is the
controllability index, and ) = E3 + A). The cost of this suboptimal control is determined by the
transformed transition cost b ?C (·, ·, ·) between each pair of consecutive decision points. By strong
smoothness of b ?C (·, ·, ·) proven in Lemma 3.2, we have

b
?
C (G, Z , 0) ≤

1
2
!2 (?)

(
‖Z ‖2 + ‖G‖2

)
≤ !0�

2

2
? + !0

2
‖G‖2,

where !0 = max3≤?≤23−1 !2 (?). These inequalities add up to

cost($%)) ≤ b30 (G0, F0:3−1, 0) +
E−2∑
g=1

b3g3 (0, Fg3:(g+1)3−1, 0) + b3+A(C−1)3 (0, F (E−1)3:) −1, 0)

26



≤ !0�
2

2
) + !0

2
‖G0‖2

= $ (�2) + ‖G0‖2).

Hence cost($%)) = $ (�2) + ‖G0‖2). Now we can take [ = Θ(_: ) in (23) to get a regret bound of

cost(%�: ) − cost($%)) = $
((
� + _

: (‖G0‖ + �)
X

)2

_:) + _: ‖G0‖2
)
.

I Proof of Theorem 4.3

Proof of Theorem 4.3. To simplify the notation, we will omit the disturbance sequence FC:C+:−1 in
k̃:C and k:C throughout the proof. At each time step C, we will use GC/DC to denote the state/input of
%�(:,ℎ) algorithm and use G∗C /D∗C to denote the state/input of the offline optimal. We define

�C := 5C (GC ), "C := 2C (DC−1),
�∗C := 5C (G∗C ), "∗C := 2C (D∗C−1).

Let G̃C+: := k̃:C (G∗C ; �)H: , ḠC+: = k̃:C (G∗C , 0)H: .

If C ≤ ) − :, C ≡ 0(mod ℎ), we haveGC+ℎ − G∗C+ℎ2

=
k̃:C (GC ; �)Hℎ − k:C (G∗C , G∗C+: )Hℎ2

≤
(k̃:C (GC ; �)Hℎ − k̃:C (G∗C ; �)Hℎ + k̃:C (G∗C ; �)Hℎ − k:C (G∗C , G∗C+: )Hℎ)2

(24a)

≤ (1 + n)
k̃:C (GC ; �)Hℎ − k̃:C (G∗C ; �)Hℎ2 +

(
1 + 1

n

)k̃:C (G∗C ; �)Hℎ − k:C (G∗C , G∗C+: )Hℎ2
(24b)

≤ (1 + n)
k̃:C (GC ; �)Hℎ − k̃:C (G∗C ; �)Hℎ2 +

(
1 + 1

n

)k:C (G∗C , G̃C+: )Hℎ − k:C (G∗C , G∗C+: )Hℎ2
(24c)

≤ (1 + n)�2_2ℎGC − G∗C 2 + �2_2(:−1−ℎ) ·
(
1 + 1

n

)G∗C+: − G̃C+:2 (24d)

≤ 1
1 + n

GC − G∗C 2 + �2_2(:−1−ℎ) ·
(
1 + 1

n

)G∗C+: − G̃C+:2
, (24e)

where we use the triangle inequality in (24a); the AM-GM inequality in (24b); the definition of G̃C+:
in (24c); Theorem 3.3 in (24d); the assumption of Theorem 4.3 on ℎ in (24e).

Since the objective function plus the indicator of the feasible set is < 5 -strongly convex in variables
GC+1:C+: , we see that G∗C+: − ḠC+:2 ≤ 2

< 5

:∑
g=1
(�∗C+g + "∗C+g). (25)

Since 5C+: is < 5 -strongly convex, we also see that
G∗
C+:

2 ≤ 2
< 5
�∗
C+: . Recall that the terminal

cost � (GC+: ) = U(‖GC+: ‖), where U is a class K function. By the definition of k̃, we see that
‖G̃C+: ‖ ≤ ‖ḠC+: ‖. Therefore, we obtain thatG∗C+: − G̃C+:2 ≤ 2‖G̃C+: ‖2 + 2

G∗C+:2 (26a)

≤ 2‖ḠC+: ‖2 + 2
G∗C+:2 (26b)

≤ 4
ḠC+: − G∗C+:2 + 6

G∗C+:2 (26c)

≤ 8
< 5

:∑
g=1
(�∗C+g + "∗C+g) +

12
< 5

�∗C+: (26d)

≤ 20
< 5

:∑
g=1
(�∗C+g + "∗C+g),
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where we used Cauchy-Schwarz inequality in (26a) and (26c); we used ‖G̃C+: ‖ ≤ ‖ḠC+: ‖ in (26b);
we used (25) in (26d).

Suppose ) = =0 · ℎ+<0, where =0 ∈ Z+ and : − ℎ+1 ≤ <0 ≤ : . Summing up the previous inequality
for C = 0, ℎ, 2ℎ, . . . , (= − 1)ℎ, we obtain that

=0∑
8=1

G8ℎ − G∗8ℎ2 ≤ �2_2(:−1−ℎ) · (1 + n)
2

n2 ·
=0−1∑
8=1

G∗8ℎ+: − G̃8ℎ+:2

≤ �2_2(:−1−ℎ) · (1 + n)
2

n2 · 20
< 5

· cost($%)), (27)

where we used (26) in the last inequality.

Therefore, we obtain that for all [ > 0,

cost(%�(:,ℎ) ) − (1 + [) cost($%))

=

(
=0−1∑
8=0

]ℎ8ℎ (G8ℎ , G (8+1)ℎ) + ]
<0
=0ℎ
(G=0ℎ , G) )

)
− (1 + [)

(
=0−1∑
8=0

]ℎ8ℎ (G
∗
8ℎ , G

∗
(8+1)ℎ) + ]

<0
=0ℎ
(G∗=0ℎ

, G∗) )
)

=

=0−1∑
8=0

(
]ℎ8ℎ (G8ℎ , G (8+1)ℎ) − (1 + [)]

ℎ
8ℎ (G

∗
8ℎ , G

∗
(8+1)ℎ)

)
+

(
]
<0
=0ℎ
(G=ℎ , G) ) − (1 + [)]<0

=0ℎ
(G∗=ℎ , G

∗
) )

)
≤

=0−1∑
8=0

(
]ℎ8ℎ (G8ℎ , G (8+1)ℎ) − (1 + [)]

ℎ
8ℎ (G

∗
8ℎ , G

∗
(8+1)ℎ)

)
+

(
]
<0
=0ℎ
(G=ℎ , G∗) ) − (1 + [)]

<0
=0ℎ
(G∗=ℎ , G

∗
) )

)
(28a)

≤
(
1 + 1

[

)
·
! + ℓ 5

2

=0−1∑
8=0

(G8ℎ − G∗8ℎ2 +
G (8+1)ℎ − G∗(8+1)ℎ2

)
+

(
1 + 1

[

)
·
! + ℓ 5

2

G=0ℎ − G∗=0ℎ

2

(28b)

=

(
1 + 1

[

)
· (! + ℓ 5 )

=0∑
8=1

G8ℎ − G∗8ℎ2

≤
(
1 + 1

[

)
· (! + ℓ 5 ) · �2_2(:−1−ℎ) · 20(1 + n)2

<n2 · cost($%)), (28c)

where we use the fact that the PC algorithm (with replan window ℎ) plans optimally after time step
=ℎ in (28a); we use Corollary F.1 in (28b); we use (27) in (28c).

By setting [ ∼ n−1
(
!+ℓ 5
<

) 1
2 · �_:−1−ℎ, we see that the competitive ratio of the %�(:,ℎ) algorithm

(with replan window ℎ) is in the order of

1 +$
(
n−1

(
! + ℓ 5
<

) 1
2

· �_:−1−ℎ

)
.
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