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Abstract

We consider non-convex stochastic optimization using first-order algorithms for
which the gradient estimates may have heavy tails. We show that a combination of
gradient clipping, momentum, and normalized gradient descent yields convergence
to critical points in high-probability with best-known rates for smooth losses when
the gradients only have bounded pth moments for some p ∈ (1, 2]. We then
consider the case of second-order smooth losses, which to our knowledge have not
been studied in this setting, and again obtain high-probability bounds for any p.
Moreover, our results hold for arbitrary smooth norms, in contrast to the typical
SGD analysis which requires a Hilbert space norm. Further, we show that after a
suitable “burn-in” period, the objective value will monotonically decrease whenever
the current iterate is not a critical point, which provides intuition behind the popular
practice of learning rate “warm-up” and also yields a last-iterate guarantee.

1 SGD and Heavy Tails

The standard algorithm for training large machine learning models today is stochastic gradient descent
(SGD) and its myriad variants [13, 11, 19, 39, 28]. SGD enjoys many properties that help explain
its empirical success: it can be implemented very easily, can efficiently process training data in
a streaming manner, and even achieves the optimal convergence rate for finding critical points of
smooth non-convex objectives [2]. In particular, SGD can be understood as optimizing the following
stochastic optimization problem:

min
~w
F (~w) = E

z
[f(~w, z)]

where f(~w, z) is some loss function taking model parameters ~w and a random example z, where z
has some distribution Pz . Then SGD consists of the update:

~wt+1 = ~wt − η∇f(~wt, zt)

where z1, . . . , zT are i.i.d. random variables distributed according to Pz , and η is some real number
called the learning rate. Assuming that F is L-smooth and that∇f(~w, z) satisfies E[‖∇f(~w, z)‖2] ≤
G2 for some G for all ~w, SGD satisfies [13]:

1

T
E

[
T∑
t=1

‖∇F (~wt)‖2
]
≤ O

(
L∆

T
+
G2

√
T

)
where ∆ = F (~w1)− inf F (~w). This implies that SGD takes O(ε−4) iterations to find an ε-critical
point, which is a point ~w such that ‖∇F (~w)‖ ≤ ε [13]. When the stochastic gradients are further
assumed to have light sub-gaussian tails, [21] shows that SGD with momentum can achieve this same
result in high probability as well.
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However, recent work [30, 31, 42, 41, 43] suggests that the assumptions of bounded variance or
light tails may be too optimistic in practical deep learning problems. For example, Zhang et al. [43]
provides empirical evidence that large NLP models based on attention and transformers [35, 10]
have heavy-tailed gradients. In particular, the variance is extremely large (perhaps even essentially
infinite for practical purposes), but the pth moment is bounded for some p ∈ (1, 2]. This setting is
significantly more complicated, and SGD’s convergence properties are difficult to characterize even
when assuming slightly stronger tail bounds [29] or various versions of convexity [36].

A standard tool when working with heavy-tailed random variables is truncation, or clipping. Suc-
cinctly, if X is a random variable such that E[‖X‖2] =∞, X itself may be poorly behaved due to
the heavy tail, but a truncated value Xclip = X

|X| min(|X|, τ) will be much more benign so long as τ
is chosen in an appropriate manner [6, 23]. Fortuitously, gradient clipping has long been a standard
technique to improve training of deep neural networks [26], and recent analysis [43, 14] suggests
that clipping allows SGD to deal with heavy-tailed stochastic gradients. Specifically, [43] shows that
SGD combined with clipping can find an ε-critical point in expectation in O

(
ε−

3p−2
p−1

)
iterations.

We propose to improve upon this backdrop in three important ways. First, the prior analysis of
[43] for non-convex convergence of SGD under heavy tails only provides an in-expectation analysis.
In-expectation results are unsatisfying because the quantity measured for convergence (i.e. gradient
norm or function value) is itself a random variable, and so might also have a heavy tail. In this
case individual training runs could be quite poor. Since training modern networks is quite expensive
[27, 5], it is important to be confident that each and every training run will produce a high-quality
result. We provide a variant of the normalized SGD with momentum algorithm of [9] that incorporates
gradient clipping and show that the method finds an ε-critical point in Õ

(
ε−

3p−2
p−1

)
iterations with

high probability.

Second, the vast majority of first-order optimization methods for stochastic non-convex optimization
consider exclusively the standard L2 or Hilbert-space norm. Such analyses can take advantage of
the fact that E[〈∇F (x), ~g〉] = ‖∇F (x)‖2 when ~g is an unbiased estimate of ∇F (x). In contrast,
our algorithms find critical points when the gradient is measured with any smooth norm (i.e. in a
Banach space). In this case, the gradient estimate ~g (which is a dual vector) must be converted into
an appropriate primal vector. This operation is non-linear in general and so may add some bias. It
turns out the key to operating with different norms is the popular practice of augmenting SGD iterates
with momentum. When using momentum-based updates we do not rely on the same unbiasedness
argument, and so the techniques can be extended to more general norms. This provides more concrete
evidence of the theoretical advantages of momentum.

Third, recent theoretical advances in non-convex optimization have produced a number of new
algorithms that avoid the lower-bounds of [2] by assuming extra structure on the objective F , such
as second-order smoothness. In this case, [32, 1, 12, 9, 3] provide algorithms that achieve faster
convergence rates. In particular, the algorithms of [12, 9] can find an ε-critical point in O(ε3.5)
iterations using a first-order stochastic oracle, which is the optimal rate [3]. To our knowledge,
no analysis even in expectation exists for second-order smooth losses under heavy tails. We fill
this gap, providing an algorithm that identifies an ε-critical point in Õ

(
ε−

5p−3
2p−2

)
iterations with

high probability. Further, in both smooth and second-order smooth cases we provide a convergence
guarantee for the last iterate of the optimization algorithm: with high probability, the objective value
for the final iterate will be smaller than the objective value at some approximate critical point.

Finally, we discuss an intriguing connection to the popular warm-up learning rate schedule [16, 15,
10], in which the learning rate starts small and increases over the first iterations of training. We show
that for normalized SGD with momentum, after a brief “burn-in” period, the objective value decreases
monotonically until an approximate critical point is reached. This provides an alternative motivation
for warm-up: it would be reasonable to keep the learning rate small during the “burn-in” period.
There is a long line of empirical research in understanding the need for warm-up. Warm-up has been
shown to be connected to the use of layer-normalization, and that improved use of layer-norm can
enable warm-up free training of transformer models [7, 37, 25]. Huang et al. [18] further build on
these insights and proposes a weight initialization scheme which removes the need for both layer
normalization and warm-up while training transformer models. Finally, Liu et al. [22] demonstrate
that the variance of the learning rate in optimizers like Adam is abnormally high in the early stages of
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the optimization process and further hypothesize that warm-up aids by reducing the variance in that
stage. Our results provide a different view from an optimization perspective.

Paper Organization: in Section 1.1 we provide our concrete assumptions and setup. In Sections 2
and 3, we provide our algorithms and high-probability convergence bounds. In Section 4, we provide
some empirical observations on the effect of the burn-in phase in our analysis.

1.1 Setup and assumptions

We assume that the objective F (~w) = E[f(~w, z)] is a Frechet-differentiable function mapping a
Banach space B to the reals R. Let ‖ · ‖ be the norm in B and ‖ · ‖? be the dual norm in the dual
space B?. To preserve analogy and notation from the Hilbert space setting, we will write 〈v, w〉 to
indicate the application of a dual vector v ∈ B? to a vector w ∈ B. We assume that ‖ · ‖p? is Frechet
differentiable and satisfies for some p, C for all x, y ∈ B:

‖x+ y‖p? ≤ ‖x‖p? + 〈∇‖x‖p?, y〉+ C‖y‖p? (1)

Such a Banach space is called (p, C)-smooth. Note that if ‖ · ‖ is the standard p norm in Rn for
p ∈ (1, 2], then ‖ · ‖ is the corresponding q norm, and the dual space is (2, 1

p−1 )-smooth. In the
common case that B is a Hilbert space (e.g. Rn with the euclidean norm), then B = B?, ‖ · ‖ = ‖ · ‖?
and p = 2 and C = 1. In this paper, we will exclusively consider the case p = 2 and C ≥ 1. Finally,
given any v ∈ B?, we will write d(v) ∈ B to indicate a unit vector satisfying both ‖d(v)‖ = 1 and
〈v, d(v)〉 = ‖v‖?, which we assume exists for all v. For more background on Banach spaces, see
Appendix E.

We assume F is L-smooth, which means that ‖∇F (~w) − ∇F (~x)‖? ≤ L‖~w − ~z‖?. In Sec-
tion 3, we will also assume that F is ρ-second-order smooth, which means that ‖(∇2F (~w) −
∇2F (~x))v‖? ≤ ρ‖~w − ~x‖‖v‖ for all ~w, ~x, v ∈ B. We assume that ∇f(~w, z) satisfies both
E[‖∇f(~w, z) − ∇F (~w)‖p?] ≤ Gp and E[‖∇f(~w, z)‖p?] ≤ Gp for some G and some p ∈ (1, 2].
We will design algorithms such that after T stochastic gradient evaluations, we can output a point ~w
such that ‖∇F (~w)‖? is small with high probability.

2 Normalized SGD with Momentum

In this section, we describe our algorithms for finding critical points with high probability in non-
convex objectives. Our analysis makes use of gradient clipping, momentum, and normalized updates.
Clipping is a standard technique for mitigating the effect of heavy tails, essentially by throwing
out outlier data. Momentum is useful as it intuitively averages together many clipped gradients,
resulting in a gradient estimate that concentrates about its mean with high probability. Normalizing
the updates allows for significantly simplified analyses because the bias terms introduced by the
moving average in momentum are now very precisely controlled by the learning rate, as originally
analyzed for Hilbert spaces in [9]. In order to analyze this algorithm, we need the following critical
Lemma, which characterizes the effect of taking a normalized SGD step (proved in appendix E).

Lemma 1. Suppose F : B → R be a Frechet-differentiable L-Smooth function from a Banach space
B to the reals. Let w ∈ B. Let g? ∈ B? and let g ∈ B be a unit-vector satisfying 〈g?, g〉 = ‖g‖?.
Define w′ = w − ηg. Define ε = g? −∇F (w). Then:

F (w′) ≤ F (w)− η‖∇F (w)‖? + 2η‖ε‖? +
Lη2

2

Theorem 2. Suppose Ez[‖∇f(~w, z)‖p?] ≤ Gp for all ~x for some G. Suppose F is L-smooth. Set
β = 1 − α, α = b

T
p

3p−2
and η = s

T
2p−1
3p−2

for arbitrary constant b and s satisfying α ≤ 1 and set

τ = G/α1/p. Then with probability at least 1− δ:

1

T

T∑
t=1

‖∇F (~wt)‖? ≤ O
(

log(T/δ)

T
p−1
3p−2

)
where the big-Oh hides constant that depend on L, G b, s, C and F (~w1)− F (~wT+1), but not T or δ.
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Algorithm 1 Normalized SGD with Clipping and Momentum
Input: Initial Point ~w1, learning rate η, momentum parameter β, clipping parameter τ , time
horizon T :
Set ~m0 = 0.
for t = 1 . . . T do

Sample zt ∼ Pz .
Set ~gclip

t = ∇f(~wt,zt)
‖∇f(~wt,zt)‖? min(τ, ‖∇f(~w1, zt)‖?).

Set ~mt = β ~mt−1 + (1− β)~gclip
t .

Set ~wt+1 = ~wt − ηd(~mt).
end for

This Theorem provides an analog of the standard in-expectation result for non-convex optimization,
but now the result holds with high-probability. Note that this matches the in-expectation convergence
rates from Zhang et al. [43] up to logarithmic factors. The next Theorem takes this theme one step
further: it shows that after a brief “burn-in” period, the decrease in objective value will in fact be
monotonic with high probability:
Theorem 3. Under the assumptions of Theorem 2, define the constants:

K = 10C max(1, log(3T/δ)) + 4C1/2
√

max(1, log(3T/δ)) + 1

Z =
sL

b
+GKb

p−1
p

Then, with probability at least 1− δ, for all t satisfying:

t ≥ T =
T

p
3p−2

b

(
p− 1

3p− 2
log(T ) + log(G)− log(Z)

)
we have

‖~mt −∇F (~wt)‖? ≤
2Z

T
p−1
3p−2

Further, so long as

‖~mt‖? ≥ 2

(
6Z

T
p−1
3p−2

+
Ls

2T
2p−1
3p−2

)
(2)

we have F (~wt+1) < F (~wt)− η
2‖~mt‖?. Moreover, whenever (2) is not satisfied for t ≥ T , we must

have

‖∇F (~wt)‖? ≤
14Z

T
p−1
3p−2

+
Ls

T
2p−1
3p−2

Finally, if t is the iteration with smallest value of ‖~mt‖? such that t ≥ T , we have:

‖∇F (~wt)‖? ≤ O
(

log(T/δ)

T
p−1
3p−2

)
Theorem 3 shows that after a small burn-in period T = o(T ), ~mt is very likely to be an extremely
good estimate of the true gradient ∇F (~xt). Moreover, we can empirically detect this event by
monitoring the norm of the exponentially weighted moving average ~m. This burn-in period is
especially interesting given the success of learning rate schedules that incorporate a “warm-up”
component, in which the learning rate actually increases during the first iterations. Our result seems
to hint at a mechanism for this schedule: by keeping the learning rate small during the burn-in period,
we can limit any increase in the objective value until we reach the stage at which it begins to decrease
steadily.

Further, Theorem 3 provides a very concrete algorithm to find critical points: after the burn-in period
of Õ(T

p
3p−2 ) iterates, we can simply return the point ~xt with the smallest value of ‖~mt‖. Intuitively,

this works because the objective value can only increase by a total of O(T
p

3p−2 η) = O(T
1−p
3p−2 ) =

O(1) during the burn-in period so even without a learning rate “warm-up”, we should not expect the
burn-in period to have too significant an effect on the objective value. After the burn-in period, ~mt is
always very close to∇F (~wt), so we make steady progress until a critical point is encountered.
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Proof of Theorem 2. Define ε̂t = ~mt −∇F (~wt). and εt = ~gclip
t −∇F (~wt). Also, define S(a, b) =

∇F (a)−∇F (b). By smoothness, we have ‖S(~wt, ~wt+1)‖? ≤ L‖~wt − ~wt+1‖?
From the definition of ~mt+1, we have the following recursive formulation for any t ≥ 1:

~mt+1 = (1− α)(∇F (~wt) + ε̂t) + α~g clip
t+1

= ∇F (~wt+1) + (1− α)(S(~wt, ~wt+1) + ε̂t) + αεt+1

ε̂t+1 = (1− α)S(~wt, ~wt+1) + (1− α)ε̂t + αεt+1 (3)

Further, by defining ~m0 = 0 and ~w0 = ~w1 so that ε̂0 = −∇F (~w1), we have that (3) holds for t = 0
as well. Now, we unravel the recursion for all iterations:

ε̂t+1 = (1− α)t+1ε̂0 + α

t∑
t′=0

(1− α)t
′
εt+1−t′ + (1− α)

t∑
t′=0

(1− α)t
′
S(~wt−t′ , ~wt+1−t′)

Next, take the magnitude of both sides and use triangle inequality (using the fact that
‖S(~wt, ~wt+1)‖? ≤ Lη):

‖ε̂t+1‖? ≤ (1− α)t+1‖ε̂0‖? + α

∥∥∥∥∥
t∑

t′=0

(1− α)t
′
εt+1−t′

∥∥∥∥∥
?

+ (1− α)ηL

t∑
t′=0

(1− α)t
′

≤ (1− α)t+1G+
(1− α)ηL

α
+ α

∥∥∥∥∥
t∑

t′=0

(1− α)t
′
εt+1−t′

∥∥∥∥∥
?

where in the second line we have used ~m0 = 0 and ‖∇F (~w0)‖? ≤ G, which follows since
‖∇F (~w0)‖? ≤ Ez[‖∇f(~w0, z)‖p?]1/p = G.

Now, we invoke Lemma 9, a concentration inequality in Banach space (see appendix B). This implies
that with probability at least 1− δ/T :∥∥∥∥∥

t∑
t′=0

(1− α)t
′
εt+1−t′

∥∥∥∥∥
?

≤ 10Cτ max(1, log(3T/δ)) +

t∑
t′=0

(1− α)t
′
Gp

τp−1

+ 4

(
C

t∑
t′=0

(1− α)2t
′
Gpτ2−p

)1/2√
max(1, log(3T/δ))

≤ 10Cτ max(1, log(3T/δ)) +
Gp

ατp−1
+

4
(
CGpτ2−p

)1/2√
max(1, log(3T/δ))

α1/2

Therefore, with probability at least 1− δ/T :

‖ε̂t+1‖? ≤ (1− α)t+1G+
(1− α)ηL

α
+ 10Cατ max(1, log(3T/δ))

+ 4
(
αCGpτ2−p

)1/2√
max(1, log(3T/δ)) +

Gp

τp−1

Now, with τ = G
α1/p , and Dδ = max(1, log(3T/δ)) this becomes:

≤ (1− α)t+1G+
(1− α)ηL

α
+Gα1−1/p

[
10CDδ + 4C1/p

√
Dδ + 1

]
= (1− α)t+1G+

(1− α)ηL

α
+Gα1−1/pK (4)

where we define the constant K = 10CDδ + 4C1/2
√
Dδ + 1.

Now, we have from Lemma 1:
T∑
t=1

‖∇F (~wt)‖? ≤
F (~w1)− F (~wT )

η
+
LTη

2
+ 2

T∑
t=1

‖ε̂t‖?
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so with probability at least 1− δ:

≤ F (~w1)− F (~wT )

η
+
LTη

2
+ 2

T∑
t=1

(1− α)tG+
(1− α)ηL

α
+Gα1−1/pK

≤ F (~w1)− F (~wT )

η
+
LTη

2
+

2G(1− α)

α
+

2(1− α)ηTL

α
+ 2GTα1−1/pK

Now set α = b

T
p

3p−2
and η = s

T
2p−1
3p−2

. This yields:

1

T

T∑
t=1

‖∇F (~wt)‖ ≤ O
(
T

1−p
3p−2 log(T/δ)

)

The proof of Theorem 3 follows essentially the same idea as that of Theorem 2. However, this time
we use the explicit bound on ‖ε̂t‖? and observe that after the burn-in period, the contribution from
‖ε1‖? has decreased exponentially to be insignificant, and so ~mt will be a very high-quality estimate
of∇F (~xt) at every single iteration.

Proof of Theorem 3. Use the settings η = s

T
2p−1
3p−2

and α = b

T
p

3p−2
and notice that from equation (4)

that with probability 1− δ, for all t:

‖ε̂t+1‖? ≤ (1− α)tG+
sL

bT
p−1
3p−2

+
GKb

p−1
p

T
p−1
3p−2

= (1− α)tG+
Z

T
p−1
3p−2

Further, we have

log(1− α) ≤ −α
log
(
G(1− α)t

)
≤ −tα+ log(G)

Therefore, if t ≥ T , then we have with probability at least 1− δ:

‖ε̂t+1‖? ≤
2Z

T
p−1
3p−2

This implies the bound on ‖∇F (~wt)‖? when ‖~mt‖? is smaller than the threshold described in the
Theorem statement. Next, again from Lemma 1,

F (~wt+1) ≤ F (~wt)− η‖∇F (~wt)‖? + 2η‖ε̂t‖? +
Lη2

2

≤ F (~wt)− η‖~mt‖? + 3η‖ε̂t‖? +
Lη2

2

≤ F (~wt)− η‖~mt‖? + η

(
6Z

T
p−1
3p−2

+
Ls

2T
2p−1
3p−2

)
from which we can conclude that if ‖~mt‖? ≥ 2

(
6Z

T
p−1
3p−2

+ Ls

2T
2p−1
3p−2

)
, F (~wt+1) ≤ F (~wt)− η

2‖~mt‖?.

Now, for the final part of the Theorem, observe that since F is G-Lipschitz, we must have that

F (~wT )− F (~w1) ≤ GT η = O(log(T ))

so that F (~wT )− F (~wT+1) ≤ O(F (~w1)− F (~wT+1) + log(T )). Now consider two cases, either

min
t≥T
‖~mt‖? ≤ 2

(
6Z

T
p−1
3p−2

+
Ls

2T
2p−1
3p−2

)
or not. In the first case, by our bound on ‖ε̂t‖?, the desired bound on ‖∇F (~wt)‖? follows. In the
latter case, we have

F (~wT+1) ≤ F (~wT )− η

2

T∑
t=T
‖~mt‖?
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So that

min
t≥T
‖~mt‖? ≤ O

(
F (~w1)− F (~wT+1) + log(T )

Tη

)
= Õ

(
1

T
2p−1
3p−2

)
And so again the result follows from our bound on ‖ε̂t‖?.

In addition to providing a method for identifying critical points, Theorem 3 also provides an intuitively
desirable guarantee about the last-iterate of the algorithm ~wT . Specifically, one can easily check that
the following Corollary:

Corollary 4. Under the notation and assumptions of Theorem 3, with probability at least 1− δ, there
exists some ŵ such that both of the following inequalities hold:

‖∇F (ŵ)‖? ≤ O
(

log(T/δ)

T
p−1
3p−2

)
F (~wT ) ≤ F (ŵ)

where ~wT is the last iterate of Algorithm 1

Proof. Set t̂ to be the last index such that ~wt̂ does not satisfy (2). Set ŵ = ~wt̂. Then Theorem 3
implies the result.

In most applications we are not actually interested in finding critical points, but instead wish to
actually minimize the objective F . This observation tells us that our objective value is at least never
worse than it would have been if had indeed searched specifically for a critical point. Moreover, by
providing a guarantee about ~wT , we have a closer match to practical use-cases: many of the theoretical
analyses of non-convex stochastic gradient methods [13, 38, 20] only show that a randomly selected
iterate has a small gradient norm. In contrast, Corollary 4 provides a non-asymptotic guarantee for
the final iterate, which is the iterate most likely to be deployed after training in practice.

3 Second-Order Smooth Losses

In this section, we provide our extension to losses that are second order smooth. The overall method
is very similar: we employ normalized SGD with momentum. However, in order to take advantage of
the second-order smoothness, we will need to use a more advanced form of momentum. Specifically,
we use implicit gradient transport [4], as implemented by [9] in their NIGT algorithm. This algorithm
replaces the standard momentum update with an extrapolation procedure:

~mt = β ~mt−1 + (1− β)∇f
(
~wt +

β(~wt − ~wt−1)

1− β
, zt

)
By evaluating the gradient at the “shifted” point ~wt + β(~wt−~wt−1)

1−β and performing a second-order
Taylor expansion enabled by the second-order smoothness assumption, it is possible to show that
~mt is a less-biased estimate of ∇F (~wt) than it would be using the standard momentum update. We
augment this procedure with gradient clipping in Algorithm 2 below, and provide its analysis in
Theorems 5 and 6, which are directly analogous to Theorems 2 and 3.

Theorem 5. Suppose Ez[‖∇f(~w, z)‖p] ≤ Gp for all ~w for some G. Suppose F is L-smooth and
ρ-second-order smooth. Set β = 1− α, α = b

T
2p

5p−3

and η = a

T
3p−1
5p−3

for arbitrary constants b and c

satisfying α ≤ 1, and set τ = G
α1/p . Then with probability at least 1− δ:

1

T

T∑
t=1

‖∇F (~wt)‖? ≤ O
(

log(T/δ)

T
2p−2
5p−3

)
where the big-Oh hides constant that depend on L, ρ, G, b, s, C, and F (~w1)− F (~wT+1), but not T
or δ.

We also have a direct analog of Theorem 3
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Algorithm 2 NIGT with Clipping
Input: Initial Point ~w1, learning rate η, momentum parameter β, clipping parameter τ , time
horizon T :
Set ~m0 = 0.
for t = 1 . . . T do

Sample zt ∼ Pz .
~xt = ~wt + β(~wt−~wt−1)

1−β

Set ~gclip
t = ∇f(~xt,zt)

‖∇f(~xt,zt)‖? min(τ, ‖∇f(~x1, zt)‖?).

Set ~mt = β ~mt−1 + (1− β)~gclip
t .

Set ~wt+1 = ~wt − ηd(~mt).
end for

Theorem 6. Under the assumptions of Theorem 5, define the constants:

K = 10 max(1, log(3T/δ)) + 4
√
C max(1, log(3T/δ)) + 1

Z =
ρs2

b2
+GKb

p−1
p

Then, with probability at least 1− δ, if

t ≥ T =
T

2p
5p−3

b

(
2p− 2

5p− 3
log(T ) + log(G)− log(Z)

)
Then we have

‖~mt −∇F (~xt)‖ ≤
2Z

T
2p−2
5p−3

And so long as

‖~mt‖? ≥ 2

(
6Z

T
2p−2
5p−3

+
Ls

2T
3p−1
5p−3

)
(5)

we have F (~wt+1) < F (~wt)− η
2‖~mt‖. Moreover, if (5) is ever not satisfied, we must have

‖∇F (~wt)‖? ≤
14Z

T
2p−2
5p−3

+
Ls

T
3p−1
5p−3

Finally, if t is the iteration with smallest value of ‖~mt‖ such that t ≥ T , we have with probability at
least 1− δ:

‖∇F (~wt)‖? ≤ O
(

log(T/δ)

T
2p−2
5p−3

)

Finally, we note that we have a statement about the last iterate of Algorithm 2 that is directly analogous
to Corollary 4:

Corollary 7. Under the notation and assumptions of Theorem 6, with probability at least 1− δ, there
exists some ŵ such that both of the following inequalities hold:

‖∇F (ŵ)‖? ≤ O
(

log(T/δ)

T
2p−2
5p−2

)
F (~wT ) ≤ F (ŵ)

where ~wT is the last iterate of Algorithm 2
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Figure 1: Comparison between warm-up and burn-in strategies on Masked language modeling BERT-
Large pre-training task. Plot (a) shows the eval accuracy when trained with Algorithm 1 and plot (b)
does the same when trained with LAMB.

4 Experiments

Our theoretical analysis suggests that there is a short “burn-in” phase in our algorithms during which
the momentum estimate ~mt may be far from the true gradient∇F (~wt), and after this period, ~mt will
always be close to ∇F (~wt). As a result, during the burn-in phase it is possible for the optimizer to
make slow or even negative progress, while afterwards we should expect more steady improvement.
This suggests that one might set the learning rate η = 0 throughout the burn-in phase and only begin
taking steps after ~mt has accumulated enough gradients to be come a good estimate. This procedure
is reminiscent of the common practice of learning rate “warm-up”, in which the learning rate starts at
0 and is linearly increased to some desired value during the initial phase of training, and then later
decreased. Thus, we sought to answer how much of the success of the warm-up schedule can be
attributed to burn-in.

To answer this question, we conducted an experimental study on the BERT pretraining task. We
chose to experiment on BERT since it has been shown to have heavy tails empirically [43] and the
common practice is already to clip the gradients. Figure 3 plots the masked language model accuracy
of BERT-Large model when trained with Algorithm 1. We also include experimental results using
the LAMB optimizer instead of Algorithm 1. LAMB optimizer has been shown to obtain state of the
art performance on BERT task [40]. Moreover, both our analysis and the LAMB optimizer relies on
normalized updates. Note that we also include experimental results using the smaller BERT-Base
model in the appendix. All our experiments were conducted using the Tensorflow framework on
TPUv3 architecture.

When using Algorithm 1, we employ base learning rate η0 of 0.3 and batch size
of 512. We came up with this learning rate by performing grid search η0 ∈
[1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001] and choosing the one which attains the best
eval accuracy. To obtain the optimal base learning rate of 0.3, we again ran a grid search
η0 ∈ [0.1, 0.2, 0.3, 0.4, 0.5]. Our warmup baseline employs the standard practice of linear warm-up
for 3125 steps and polynomical decay of ηt = η0 ∗ (1 − t

T ) for the rest of the steps. For a fair
comparison with the baseline, we start the polynomial decay after 3125 steps regardless of how many
steps were used for burn-in. We set the learning rate to the constant base learning rate value of 0.3 for
BERT-Large for steps in between burn-in and polynomial decay. For the models trained using burn-in,
instead of linear warm-up, we set the base learning rate η0 to zero for the amount of steps we run the
burn-in for. As shown in Fig 1, we perform a grid search across [0, 250, 500, 1000, 2000, 3125] steps
for the initial burn-in period and compare their results. Notice that, without warm-up or burn-in (i.e.
0 burn-in steps), we see very poor performance. Further, this poor performance persists for smaller
values of burn-in, but with large enough burn-in values we suddenly see very good results. Once
this critical level of burn-in is achieved, we continue to see small gains as the amount of burn-in is
increased. This suggests that without burn-in or warm-up, the first iterations are taking extremely poor
steps in the non-convex landscape that may destroy some favorable properties of the initialization
point. With enough burn-in, each step is well-aligned with the true gradient and so we may avoid this
bad behavior. Further, we see that employing burn-in recovers almost all of the advantage gained
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from employing warm-up (final accuracy of 62.95% with burn-in vs. 63.45% with warm-up). These
results lend empirical support to our theoretical intuition that the initial steps of the optimization may
be unhelpful, or even hurtful.

For the LAMB optimizer, we reproduce all the hyperparameters from You et al. [40]. Most impor-
tantly, we train all our models using the base learning rate η0 of 6.25e-4 and batch size of 512. As
shown in Fig 1, again the warmup baseline employs the standard practice of linear warm-up for
3125 steps [40] and polynomical decay of ηt = η0 ∗ (1− t

T ) for the rest of the steps. Again, for a
fair comparison with the baseline, we start the polynomial decay after 3125 steps regardless of how
many steps were used for burn-in. We set the learning rate to the constant base learning rate value
of 6.25e-4 for steps in between burn-in and polynomial decay. Note that when using the LAMB
optimizer, warm-up baseline does considerably better than models where burn-in was employed.
However, notice that the gap between employing warm-up and using neither warm-up nor burn-in is
considerably smaller than with Algorithm 1, for which not using either technique results in extremely
poor accuracy. This suggests that the additional heuristics employed by the LAMB optimizer over
the simple normalized SGD approach of Algorithm 1 are providing some non-trivial robustness that
remains to be understood. Further, there is still a noticeable gap between the linear learning-rate
increase in warm-up and the coarser burn-in policy. It remains to be seen exactly what mechanism
this smoother policy employs to aid optimization.

5 Conclusion

We have provided algorithms based on normalized SGD with momentum and gradient clipping that
provide high probability-rates for finding critical points of non-convex objectives with heavy-tailed
gradients. We also show that as a by-product of our high-probability bounds, the algorithms provide
a pleasing result for the last iterate of the optimization procedure. Specifically, the last iterate has
function value smaller than the function value of a critical point.

Finally, we identify a critical “burn-in” phase early in optimization in which the optimizer may be
making poor decisions. Empirically, we show that keeping the learning rate zero for the first iterations
indeed does help training compared to simply running the optimizer with no special treatment during
this phase. It is an interesting question to precisely identify what other advantages are provided by
the increasing schedule used by warm-up during this phase.

Acknowledgments: The authors thank the anonymous reviewers for many helpful suggestions.
AC was a visiting researcher at Google when this work was completed.
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A Proofs for Section 3

In this section we provide the missing proofs of Theorems 5 and 6.
Theorem 5. Suppose Ez[‖∇f(~w, z)‖p] ≤ Gp for all ~w for some G. Suppose F is L-smooth and
ρ-second-order smooth. Set β = 1− α, α = b

T
2p

5p−3

and η = a

T
3p−1
5p−3

for arbitrary constants b and c

satisfying α ≤ 1, and set τ = G
α1/p . Then with probability at least 1− δ:

1

T

T∑
t=1

‖∇F (~wt)‖? ≤ O
(

log(T/δ)

T
2p−2
5p−3

)
where the big-Oh hides constant that depend on L, ρ, G, b, s, C, and F (~w1)− F (~wT+1), but not T
or δ.

Proof. The start of our proof is very similar to that of Theorem 3 in [9]. Similar to the proof of
Theorem 2, define ε̂t = ~mt − ∇F (~wt) and εt = ~gclip

t − ∇F (~xt). Also (and as a departure from
Theorem 2), define S(a, b) = ∇F (a)−∇F (b)−∇2F (b)(a− b). Then we have a recursion for all
t ≥ 1:

~mt+1 = (1− α)(∇F (~wt) + ε̂t) + α~gclip
t+1

= (1− α)(∇F (~wt+1) +∇2F (~wt+1)(~wt − ~wt+1)) + (1− α)(S(~wt, ~wt+1) + ε̂t)

+ α(∇F (~wt+1) +∇2F (~wt+1)(~xt+1 − ~wt+1) + α(S(~xt+1, ~wt+1) + εt+1)

Now, observe that by definition of ~xt+1, the hessian-dependent terms cancel:

= ∇F (~wt+1) + (1− α)(S(~wt, ~wt+1) + ε̂t) + α(S(~xt+1, ~wt+1) + εt+1)

ε̂t+1 = (1− α)(S(~wt, ~wt+1) + ε̂t) + α(S(~xt+1, ~wt+1) + εt+1)

Further, as in the proof of Theorem 2, we set ~w0 = ~w1 and notice ε̂0 = −∇F (~w1) so that the above
recursion holds for t = 0 as well. Then we again unwind the recursion:

ε̂t+1 = (1− α)t+1ε̂0 + α

t∑
t′=0

(1− α)t
′
εt+1−t′ + (1− α)

t∑
t′=0

(1− α)t
′
S(~wt−t′ , ~wt−t′+1)

+ α

t∑
t′=0

(1− α)t
′
S(~xt−t′+1, ~wt−t′+1)

‖ε̂t+1‖? ≤ (1− α)t+1‖ε̂0‖? + α

∥∥∥∥∥
t∑

t′=0

(1− α)t
′
εt+1−t′

∥∥∥∥∥
?

+ (1− α)

∥∥∥∥∥
t∑

t′=0

(1− α)t
′
S(~wt−t′ , ~wt−t′+1)

∥∥∥∥∥
?

+ α

∥∥∥∥∥
t∑

t′=0

(1− α)t
′
S(~xt−t′+1, ~wt−t′+1)

∥∥∥∥∥
?

Now, by second-order smoothness, we have ‖S(a, b)‖? ≤ ρ
2‖a− b‖

2 (see Proposition 17) and further
(1−α)2
α + 1− α ≤ 2 1−α

α , so that combining the last two sums yields:

≤ (1− α)t+1‖ε̂0‖? + α

∥∥∥∥∥
t∑

t′=0

(1− α)t
′
εt+1−t′

∥∥∥∥∥
?

+
(1− α)ρη2

α

t∑
t′=0

(1− α)t
′

≤ (1− α)t+1‖ε̂0‖? + α

∥∥∥∥∥
t∑

t′=0

(1− α)t
′
εt+1−t′

∥∥∥∥∥
?

+
(1− α)ρη2

α2

Now, by exactly the same argument as in Theorem 2, defining Dδ = max(1, log(1/δ)) we have with
probability at least 1− δ/T :

‖ε̂t+1‖? ≤ (1− α)t+1G+
(1− α)ρη2

α2
+ 10CατDδ + 4

√
αCGpτ2−pDδ +

Gp

τp−1
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Then, with τ = G
α1/p , this becomes:

≤ (1− α)t+1G+
(1− α)ρη2

α2
+Gα1−1/p

[
10CDδ + 4

√
CDδ + 1

]
= (1− α)t+1G+

(1− α)ρη2

α2
+Gα1−1/pK (6)

where we again define the constant K = 10Dδ + 4
√
CDδ + 1.

Now, we have from Lemma 1:

T∑
t=1

‖∇F (~wt)‖? ≤
F (~w1)− F (~wT )

η
+
LTη

2
+ 2

T∑
t=1

‖ε̂t‖?

so with probability at least 1− δ:

≤ F (~w1)− F (~wT )

η
+
LTη

2
+ 2

T∑
t=1

[
(1− α)t+1G+

(1− α)ρη2

α2
+Gα1−1/pK

]
≤ F (~w1)− F (~wT )

η
+
LTη

2
+

2G(1− α)

α
+

2(1− α)Tρη2

α2
+ 2GTα1−1/pK

Now set α = b

T
2p

5p−3

and η = s

T
3p−1
5p−3

. This yields with probability at least 1− δ:

1

T

T∑
t=1

‖∇F (~wt)‖? ≤ O
(
T

2−2p
5p−3 log(T/δ)

)

Theorem 6. Under the assumptions of Theorem 5, define the constants:

K = 10 max(1, log(3T/δ)) + 4
√
C max(1, log(3T/δ)) + 1

Z =
ρs2

b2
+GKb

p−1
p

Then, with probability at least 1− δ, if

t ≥ T =
T

2p
5p−3

b

(
2p− 2

5p− 3
log(T ) + log(G)− log(Z)

)
Then we have

‖~mt −∇F (~xt)‖ ≤
2Z

T
2p−2
5p−3

And so long as

‖~mt‖? ≥ 2

(
6Z

T
2p−2
5p−3

+
Ls

2T
3p−1
5p−3

)
(5)

we have F (~wt+1) < F (~wt)− η
2‖~mt‖. Moreover, if (5) is ever not satisfied, we must have

‖∇F (~wt)‖? ≤
14Z

T
2p−2
5p−3

+
Ls

T
3p−1
5p−3

Finally, if t is the iteration with smallest value of ‖~mt‖ such that t ≥ T , we have with probability at
least 1− δ:

‖∇F (~wt)‖? ≤ O
(

log(T/δ)

T
2p−2
5p−3

)
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Proof. Use the settings η = s

T
3p−1
5p−3

and α = b

T
2p

5p−3

and notice that from equation (6) that with

probability 1− δ, for all t:

‖ε̂t+1‖? ≤ (1− α)tG+
(1− α)ρη2

α2
+Gα1−1/pK

= (1− α)tG+
ρs2

b2T
2p−2
5p−3

+
GKb

p−1
p

T
2p−2
5p−3

= (1− α)tG+
Z

T
2p−2
5p−3

Again, we have the identity:

log(1− α) ≤ −α
log
(
G(1− α)t)

)
≤ −tα+ log(G)

Therefore, if t satisfies:

t ≥ T
2p

5p−3

b

(
2p− 2

5p− 3
log(T ) + log(G)− log (Z)

)
we have with probability at least 1− δ:

‖ε̂t+1‖? ≤
2Z

T
2p−2
5p−3

Next, again from Lemma 1:

F (~wt+1) ≤ F (~wt)− η‖∇F (~wt)‖? + 2η‖ε̂t‖? +
Lη2

2

≤ F (~wt)− η‖~mt‖+ 3η‖ε̂t‖? +
Lη2

2

≤ F (~wt)− η‖~mt‖+ η

(
6Z

T
2p−2
5p−3

+
Ls

2T
3p−1
5p−3

)

Now, analogously to Theorem 3, we argue that if ‖~mt‖ ≥ 2

(
6Z

T
2p−2
5p−3

+ Ls

2T
3p−1
5p−3

)
, then F (~wt+1) ≤

F (~wt)− η
2‖~mt‖.

The last part of the Theorem follows from an identical case-work argument to that of Theorem 3.

B A Concentration Bound for Truncated Random Vectors

A key tool in proving our bounds is the following result, which provides a dimension-free concentra-
tion bound analogous to the concentration bounds for scalar random variables that can be found in
[23, 6]. We present the simpler results for Hilbert space first, and then generalize to the Banach space
case.
Lemma 8. Suppose X1, . . . , XT are random vectors in a Hilbert space adapted to a filtration
F1,F2, . . . with means Et−1[Xt] = µt. Suppose there is some p ∈ (1, 2] such that for all t there is
some Gt <∞ such that E[‖Xt‖p] ≤ Gp

t . Let b1, . . . , bT be fixed constants, with B = maxt bt such
that B ≤ 1. For some τ > 0, let X̂t = Xt

‖Xt‖ min(τ, ‖Xt‖). Then with probability at least 1− δ:∥∥∥∥∥
T∑
t=1

bt(X̂t − µt)

∥∥∥∥∥ ≤ 4Bτ log(3/δ) +

T∑
t=1

btG
p
t

τp−1
+ 2

√√√√ T∑
t=1

b2tG
p
t τ

2−p max(1, log(3/δ))

The proof has two main steps: first, we bound the bias and the variance of the truncated random
vectors in terms of the truncation threhsold. Then, we use a dimension-free Feedman-style bound
to show that the average of these truncated vectors concentrates about the mean of the original
un-truncated vectors.
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Proof. First, we will bound ‖E[X̂t]− µt‖, following analysis similar to that present in [43]:

‖E[X̂t]− µt‖ = ‖E[X̂t −Xt]‖
≤ E[‖X̂t −Xt‖]
≤ E[‖Xt‖1[‖Xt‖ ≥ τ ]]

≤ E[‖Xt‖p/τp−1]

≤ Gp
t

τp−1

Next, we bound the variance E[‖X̂t − E[X̂t]‖2]:

E[‖X̂t − E[X̂t]‖2] ≤ E[‖X̂t‖2]

≤ E[‖Xt‖pτ2−p]

≤ Gp
t τ

2−p

Now, invoke a vector-valued Feedman-inequality (Lemma ??), observing that ‖X̂t‖ ≤ τ always so
that ‖bt(X̂t − E[X̂t])‖ ≤ 2btτ ≤ 2Bτ where B = maxt bt. Thus, with probability 1− δ:

∥∥∥∥∥
T∑
t=1

bt(X̂t − E[X̂t])

∥∥∥∥∥ ≤ 6Bτ max(1, log(3/δ)) + 3

√√√√ T∑
t=1

b2tG
p
t τ

2−p max(1, log(3/δ))

Therefore by triangle inequality:∥∥∥∥∥
T∑
t=1

bt(X̂t − µt)

∥∥∥∥∥ ≤ 6Bτ max(1, log(3/δ)) +

T∑
t=1

btG
p
t

τp−1
+ 3

√√√√ T∑
t=1

b2tG
p
t τ

2−p max(1, log(3/δ))

Now, we present the generalization to Banach spaces.
Lemma 9. Suppose X1, . . . , XT are random vectors in some Banach space B satisfying (7) with
p ≤ 2 and C ≥ 1 adapted to a filtration F1, F2, . . . . Let Et−1[Xt] = µt. Suppose there is some
p ∈ (1, 2] such that for all t there is some Gt < ∞ such that E[‖Xt‖p] ≤ Gp

t . Let b1, . . . , bT be
fixed constants, with B = maxt bt such that B ≤ 1. For some τ > 0, let X̂t = Xt

‖Xt‖ min(τ, ‖Xt‖).
Then with probability at least 1− δ:∥∥∥∥∥
T∑
t=1

bt(X̂t − µt)

∥∥∥∥∥ ≤ 10CBτ max(1, log(3/δ)) +

T∑
t=1

btG
p
t

τp−1
+ 4

(
C

T∑
t=1

bptG
p
t τ
p−p

)1/p√
max(1, log(3/δ))

The proof follows the same structure as the previous result for Hilbert spaces.

Proof. Note that the bound

‖E[X̂t]− µt‖ ≤
Gp
t

τp−1

continues to hold as the arguments apply without modification in Banach spaces. For the variance,
we have an analogous statement:

E[‖X̂t − E[X̂t]‖p] ≤ E[‖X̂t‖p]
≤ E[‖Xt‖pτp−p]

≤ Gp
t τ
p−p
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Now, invoke a vector-valued Feedman-inequality (Lemma ??), observing that ‖X̂t‖ ≤ τ always so
that ‖bt(X̂t − E[µ̂t])‖ ≤ 2btτ ≤ 2Bτ where B = maxt bt. Thus, with probability 1− δ:

∥∥∥∥∥
T∑
t=1

bt(X̂t − E[X̂t])

∥∥∥∥∥ ≤ 10CBτ max(1, log(3/δ)) + 4

(
C

k∑
t=1

bptG
p
t τ
p−p

)1/p√
max(1, log(3/δ)

Therefore by triangle inequality:∥∥∥∥∥
T∑
t=1

bt(X̂t − µt)

∥∥∥∥∥ ≤ 10CBτ max(1, log(3/δ)) +

T∑
t=1

btG
p
t

τp−1
+ 4

(
C

k∑
t=1

bptG
p
t τ
p−p

)1/p√
max(1, log(3/δ))

C Dimension-Free Martingale concentration from 1-d concentration

In this section, we show how to obtain a dimension-free Freedman-style martingale concentration
bound in a Banach space via a reduction to the ordinary 1-dimensional Freedman inequality. The
conversion is based on a construction outlined in [8] for converting 1-dimensional online linear
optimization algorithms into dimension-free algorithms. It may be of independent interest as simple
alternative proof for such concentration results, as well as providing a possibly more user-friendly
result in comparison to advanced bounds available in [34, 24, 17]. However, we emphasis that the
results in this section are essentially provided only for completeness: they do not improve upon
previously available bounds.

Suppose B is a real Banach space whose norm ‖ · ‖ is Frechet differentiable and satisfies for some p
and C for all x, y:

‖x+ y‖p ≤ ‖x‖p + 〈∇‖x‖p, y〉+ C‖y‖p (7)
Notice that if B is a Hilbert space, we can take p = 2 and C = 1.

Given any sequence of random vectors X1, . . . , XT in B, consider the sequence of real numbers
s1, . . . , sT defined recursively by:

1. s0 = 0

2. If
∑t−1
i=1Xi 6= 0, then we set:

st = sign

(
t−1∑
i=1

si

)
〈∇‖

∑t−1
i=1Xi‖p, Xt〉

p‖
∑t−1
i=1Xi‖p−1

,

where sign(x) = 1 if x ≥ 0, −1 if x < 0 and 0 if x = 0.

3. If
∑t−1
i=1Xi = 0, set st = 0.

The critical property of this sequence is the following, proved in [8] Theorem 5.3. We reproduce the
proof for completeness below as we have mildly tightened the constants:
Lemma 10. Suppose B, st and Xt are as described above and p ≥ 1. Then |st| ≤ ‖Xt‖ for all t,
and ∥∥∥∥∥

T∑
t=1

Xt

∥∥∥∥∥ ≤
∣∣∣∣∣
T∑
t=1

st

∣∣∣∣∣+

(
max
t≤T
‖Xt‖p + C

T∑
t=1

‖Xt‖p
)1/p

Proof. For the bound on st, observe that since x 7→ ‖x‖ is by definition 1-Lipschitz, ‖(∇‖x‖)‖? ≤ 1.
Therefore we have

|st| ≤
|〈∇‖

∑t−1
i=1Xi‖p, Xt〉|

p‖
∑t−1
i=1Xi‖p−1

≤ 〈∇‖
t−1∑
i=1

Xi‖, Xt〉

≤ ‖Xt‖
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Now, for the second statement we proceed by induction. Clearly the statement holds for T = 1.
Suppose now that ∣∣∣∣∣

T−1∑
t=1

Xt

∣∣∣∣∣ ≤
∥∥∥∥∥
T−1∑
t=1

st

∥∥∥∥∥+

(
max
t≤T−1

‖Xt‖p + C

T−1∑
t=1

‖Xt‖p
)1/p

Now, first observe that if
∑T−1
i=1 Xi = 0, then ‖

∑T
i=1Xi‖ = ‖Xi‖ ≤ maxt≤T ‖Xi‖ and so the

statement holds. Let us now assume
∑T−1
i=1 Xi 6= 0 Define X1:t =

∑t
i=1Xi. Then we have:∥∥∥∥∥

T∑
i=1

Xi

∥∥∥∥∥ = (‖X1:T−1 +XT ‖p)
1/p ≤ (‖X1:T−1‖p + 〈∇‖X1:T−1‖p, XT 〉+ C‖XT ‖p)1/p

Now we consider two cases, either ‖X1:T−1‖p + 〈∇‖X1:T−1‖p, XT 〉 ≤ 0 or not. If ‖X1:T−1‖p +
〈∇‖X1:T−1‖p, XT 〉 ≤ 0, then we have just shown:∥∥∥∥∥

T∑
i=1

Xi

∥∥∥∥∥ ≤ C1/p‖XT ‖ ≤

∣∣∣∣∣
T∑
i=1

si

∣∣∣∣∣+

(
max
t≤T
‖Xt‖p + C

T∑
i=1

‖Xt‖p
)1/p

and so we are done.

Instead, let us suppose ‖X1:T−1‖p + 〈∇‖X1:T−1‖p, XT 〉 > 0. This implies ‖X1:T−1‖ +
〈∇‖X1:T−1‖p,XT 〉
p‖X1:T−1‖p−1 ≥ 0 as well. Now, since the function x 7→ xp is convex for any positive x,

we have xp + pyxp−1 ≤ (x+ y)p for any x ≥ 0 and x+ y ≥ 0. Thus:

‖X1:T−1‖p + 〈∇‖X1:T−1‖p, XT 〉 ≤
(
‖X1:T−1‖+

〈∇‖X1:T−1‖p, XT 〉
p‖X1:T−1‖p−1

)p
Putting this together with our induction hypothesis:∥∥∥∥∥
T∑
i=1

Xi

∥∥∥∥∥ ≤
((
‖X1:T−1‖+

〈∇‖X1:T−1‖p, XT 〉
p‖X1:T−1‖p−1

)p
+ C‖XT ‖p

)1/p

≤

∣∣∣∣∣
T−1∑
i=1

si

∣∣∣∣∣+

(
max
i≤T−1

‖Xi‖p + C

T−1∑
i=1

‖Xi‖p
)1/p

+
〈∇‖X1:T−1‖p, XT 〉
p‖X1:T−1‖p−1

p

+ C‖XT ‖p
1/p

≤

∣∣∣∣∣
∣∣∣∣∣
T−1∑
i=1

si

∣∣∣∣∣+
〈∇‖X1:T−1‖p, XT 〉
p‖X1:T−1‖p−1

∣∣∣∣∣+

(
max
i≤T−1

‖Xi‖p + C

T−1∑
i=1

‖Xi‖p
)1/p

p

+ C‖XT ‖p
1/p

Now, following [8], we observe that for any positive a, b and c, (a+b)p−bp ≤ (a+b+c)p−(b+c)p.

Thus, setting a =
∣∣∣∣∣∣∑T−1

i=1 si

∣∣∣+ 〈∇‖X1:T−1‖p,XT 〉
p‖X1:T−1‖p−1

∣∣∣, b =
(

maxi≤T−1 ‖Xi‖p + C
∑T−1
i=1 ‖Xi‖p

)1/p
and b+ c =

(
maxi≤T ‖Xi‖p + C

∑T
i=1 ‖Xi‖p

)1/p
, we obtain:∣∣∣∣∣

∣∣∣∣∣
T−1∑
i=1

si

∣∣∣∣∣+
〈∇‖X1:T−1‖p, XT 〉
p‖X1:T−1‖p−1

∣∣∣∣∣+

(
max
i≤T−1

‖Xi‖p + C

T−1∑
i=1

‖Xi‖p
)1/p

p

≤ (a+ b+ c)p + bp − (b+ c)p

= (a+ b+ c)p − C‖XT ‖p

Plugging this identity back into our previous bound on
∥∥∥∑T

i=1Xi

∥∥∥, we have:∥∥∥∥∥
T∑
i=1

Xi

∥∥∥∥∥ ≤
∣∣∣∣∣
∣∣∣∣∣
T−1∑
i=1

si

∣∣∣∣∣+
〈∇‖X1:T−1‖p, XT 〉
p‖X1:T−1‖p−1

∣∣∣∣∣+

(
max
i≤T
‖Xi‖p + C

T∑
i=1

‖Xi‖p
)1/p

=

∣∣∣∣∣
∣∣∣∣∣
T−1∑
i=1

si

∣∣∣∣∣+ sign

(
t−1∑
i=1

si

)
sT

∣∣∣∣∣+

(
max
i≤T
‖Xi‖p + C

T∑
i=1

‖Xi‖p
)1/p

=

∣∣∣∣∣
T∑
i=1

si

∣∣∣∣∣+

(
max
i≤T
‖Xi‖p + C

T∑
i=1

‖Xi‖p
)1/p
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C.1 Warm-up: Hilbert space

Now, we show how to use Lemma 10 in conjuction with the standard 1-dimensional Freedman
inequality to generate concentration bounds in Hilbert spaces. First, we state a (mildly weaker)
version of the standard 1-dimensional inequality.
Lemma 11. [Freedman’s inequality] Suppose D1, D2, . . . , DT is a martingale difference sequence
adapted to a filtration F1, F2, . . . such thatDi ≤ R almost surely for all i. Let Ei indicate expectation
conditioned on Fi. Suppose further that for all t with probability 1,

σ2
t ≥ Et−1[D2

t ]

Then with probability at least 1− δ, for all k we have

k∑
t=1

Dt ≤
2R log(1/δ)

3
+

√√√√2

k∑
t=1

σ2
t log(1/δ)

Proof. From the standard inequality (see e.g. [33] Theorem 1.1), we have

P

[
∃k :

k∑
t=1

Dt ≥ ε

]
≤ exp

(
− ε2/2∑k

t=1 σ
2
t +Rε/3

)
Now, set the RHS equal to δ to obtain:

ε2/2∑k
t=1 σ

2
t +Rε/3

= log(1/δ)

The result now follows by using the quadratic formula to bound ε.

Now, we are in a position to describe our extension of Freedman’s inequality to Hilbert spaces (which
satisfy the hypotheses of Lemma 10 with p = 2 and C = 1):
Lemma 12. Suppose X1, . . . , XT is a martingale difference sequence in a Hilbert space such that
‖Xt‖ ≤ R almost surely for some constant R. Further, assume Et−1[‖Xt‖2] ≤ σ2

t with probability
1 for some constants σt. Then with probability at least 1− 3δ, for all k we have:∥∥∥∥∥

k∑
t=1

Xt

∥∥∥∥∥ ≤ 3Rmax(1, log(1/δ))

+ 3

√√√√ k∑
t=1

σ2
t max(1, log(1/δ))

Proof. Define st as in Lemma 10. Then with probability 1 we have for all k:∥∥∥∥∥
k∑
t=1

Xt

∥∥∥∥∥ ≤
∣∣∣∣∣
k∑
t=1

st

∣∣∣∣∣+

√√√√R2 +

K∑
t=1

‖Xt‖2

Further, notice that st is itself a martingale difference sequence, and satisfies |st| ≤ ‖Xt‖ ≤ R.
Therefore by Lemma 11, with probability at least 1− 2δ∣∣∣∣∣

k∑
t=1

st

∣∣∣∣∣ ≤ 2R log(1/δ)

3
+

√√√√2

k∑
t=1

σ2
t log(1/δ)

Now, for the second term, set Zt = ‖Xt‖2 − Et−1[‖Xt‖2]. Then Zt is also a martingale difference
sequence. Since ‖Xt‖2 ≤ R2 with probability 1, Zt ≤ R2 with probability 1. Further,

Et−1[‖Zt‖2] ≤ Et−1[‖Xt‖4] ≤ Et−1[‖Xt‖2]R2 ≤ σ2
tR

2
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Thus, again by Lemma 11, with probability at least 1− δ:

k∑
t=1

Zt ≤
2R2 log(1/δ)

3
+

√√√√2

T∑
t=1

R2σ2
t log(1/δ)

which implies:

k∑
t=1

‖Xt‖2 ≤
k∑
t=1

σ2
t +

2R2 log(1/δ)

3
+

√√√√2

k∑
t=1

R2σ2
t log(1/δ)

Applying Young inequality:

≤
k∑
t=1

σ2
t +

2R2 log(1/δ)

3
+

√√√√R4 log2(1/δ) +

(
k∑
t=1

σ2
t

)2

≤ 2

k∑
t=1

σ2
t +

5R2 log(1/δ)

3

Putting everything together, with probability at least 1− 3δ:

∥∥∥∥∥
k∑
t=1

Xt

∥∥∥∥∥ ≤
∣∣∣∣∣
k∑
t=1

st

∣∣∣∣∣+

√√√√R2 +

K∑
t=1

‖Xt‖2

≤ 2R(log(1/δ) + 3/2)

3
+

√√√√2

k∑
t=1

σ2
t log(1/δ) +

√√√√2

k∑
t=1

σ2
t +

5R2 log(1/δ)

3

≤ 3Rmax(1, log(1/δ)) + 3

√√√√ k∑
t=1

σ2
t max(1, log(1/δ))

C.2 Extension to Banach space

Having provided the concentration results in the more familiar Hilbert space setting, now we move to
Banach spaces. We will also need the following useful observation:

Lemma 13. For any 0 < p ≤ q and any positive x1, . . . , xT ,

(
T∑
t=1

xqt

)1/q

≤

(
T∑
t=1

xpt

)1/p

Proof. We differentiate the expression
(∑T

t=1 x
p
t

)1/p
with respect to p and show that the derivative

is always negative, which suffices to prove the Lemma.

21



d

dp

(
T∑
t=1

xpt

)1/p

=
d

dp
exp

{
1

p
log

[
T∑
t=1

exp (p log(xt))

]}

=

(
T∑
t=1

xpt

)1/p
− log

[∑T
t=1 exp (p log(xt))

]
p2

+

∑T
t=1 exp (p log(xt)) log(xt)

p
∑T
t=1 exp (p log(xt))


=

(
T∑
t=1

xpt

)1/p
− log

[∑T
t=1 x

p
t

]
p2

+

∑T
t=1 x

p
t log(xt)

p
∑T
t=1 x

p
t


=

(∑T
t=1 x

p
t

)1/p
p2

(
− log

[
T∑
t=1

xpt

]
+

∑T
t=1 x

p
t log(xpt )∑T
t=1 x

p
t

)

=

(∑T
t=1 x

p
t

)1/p−1
p2

(
T∑
t=1

xpt log(xpt )− log

[
T∑
t=1

xpt

](
T∑
t=1

xpt

))
since log is an increasing function and xt > 0:

≤

(∑T
t=1 x

p
t

)1/p−1
p2

(
T∑
t=1

xpt log

[
T∑
t=1

xpt

]
− log

[
T∑
t=1

xpt

](
T∑
t=1

xpt

))
= 0

Lemma 14. Suppose X1, . . . , XT is a martingale difference sequence in a Banach space satisfying
(7) for p ∈ (1, 2] such that ‖Xt‖ ≤ R almost surely for some constant R. Further, assume
Et−1[‖Xt‖2] ≤ σ2

t with probability 1 for some constants σt. Then with probability at least 1− 3δ,
for all k we have:∥∥∥∥∥

k∑
t=1

Xt

∥∥∥∥∥ ≤ 2R(log(1/δ) + 3/2)

3
+

√√√√2

k∑
t=1

σ2
t log(1/δ) +

(
2C

k∑
t=1

σpt +
7CRp log(1/δ)

3

)1/p

Additionally, if C ≥ 1 and p ≤ 2:

5CRmax(1, log(3/δ)) + 4

(
C

k∑
t=1

σpt

)1/p√
max(1, log(3/δ))

Proof. First, note that by Jensen, we have Et−1[‖Xt‖p] ≤ Et−1[‖Xt‖2]p/2 ≤ σpt .

Define st as in Lemma 10. Then with probability 1 we have for all k:∥∥∥∥∥
k∑
t=1

Xt

∥∥∥∥∥ ≤
∣∣∣∣∣
k∑
t=1

st

∣∣∣∣∣+

(
Rp + C

K∑
t=1

‖Xt‖p
)1/p

Further, notice that st is itself a martingale difference sequence, and satisfies |st| ≤ ‖Xt‖ ≤ R.
Therefore by Lemma 11, with probability at least 1− 2δ∣∣∣∣∣

k∑
t=1

st

∣∣∣∣∣ ≤ 2R log(1/δ)

3
+

√√√√2

k∑
t=1

σ2
t log(1/δ)

Now, for the second term, set Zt = ‖Xt‖p − Et−1[‖Xt‖p]. Then Zt is also a martingale difference
sequence. Since ‖Xt‖p ≤ Rp with probability 1, Zt ≤ 2Rp with probability 1. Further,

E
t−1

[‖Zt‖2] ≤ E
t−1

[‖Xt‖2p] ≤ E
t−1

[‖Xt‖p]Rp ≤ σptRp
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Thus, again by Lemma 11, with probability at least 1− δ:

k∑
t=1

Zt ≤
4Rp log(1/δ)

3
+

√√√√2

T∑
t=1

Rpσpt log(1/δ)

k∑
t=1

‖Xt‖p ≤
k∑
t=1

σpt +
4Rp log(1/δ)

3
+

√√√√2

k∑
t=1

Rpσpt log(1/δ)

Applying Young inequality:

≤
k∑
t=1

σpt +
4Rp log(1/δ)

3
+

√√√√R2p log2(1/δ) +

(
k∑
t=1

σpt

)2

≤ 2

k∑
t=1

σpt +
7Rp log(1/δ)

3

Putting everything together, with probability at least 1− 3δ:∥∥∥∥∥
k∑
t=1

Xt

∥∥∥∥∥ ≤
∣∣∣∣∣
k∑
t=1

st

∣∣∣∣∣+

(
Rp + C

K∑
t=1

‖Xt‖p
)1/p

≤ 2R(log(1/δ) + 3/2)
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Now, if C ≥ 1, we can apply Lemma 13 and over approximate to obtain with probability 1− 3δ:

∥∥∥∥∥
k∑
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Xt
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3
+

(
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)1/p√
2 log(1/δ) +

(
2C

k∑
t=1
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)1/p

+

(
7CRp log(1/δ)

3

)1/p

≤ 5CRmax(1, log(1/δ)) + 4

(
C

k∑
t=1

σpt

)1/p√
max(1, log(1/δ))

Figure 2: Comparison between warm-up and burn-in strategies on Masked language modeling BERT-
Base pre-training task. Plot (a) shows the eval accuracy when trained with Algorithm 1 and plot (b)
does the same when trained with LAMB.

23



D Experiments

In this section, we run additional experiments on BERT-Base pre-training task. BERT-Base is a
smaller version of BERT-Large model we experimented in Section 4. Again, all our experiments were
conducted using the Tensorflow framework on TPUv3 architecture. When using Algorithm 1, we train
all the models shown using the base learning rate η0 of 0.5 and batch size of 512. We came up with this
learning rate by performing grid search η0 ∈ [1.0, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001]
and choosing the one which attains the best eval accuracy. Again, shown in Fig 2, our warmup
baseline employs the standard practice of linear warm-up for 3125 steps and polynomical decay of
ηt = η0 ∗ (1 − t

T ) for the rest of the steps. For a fair comparison with the baseline, we start the
polynomial decay after 3125 steps regardless of how many steps were used for burn-in. We set the
learning rate to the constant base learning rate value of 0.5 for for steps in between burn-in and
polynomial decay. For the models trained using burn-in, instead of linear warm-up, we set the base
learning rate η0 to zero for the amount of steps we run the burn-in for. As shown in Fig 2, we perform
a grid search across [0, 250, 500, 1000, 2000, 3125] steps for the initial burn-in period and compare
their results. When training the smaller BERT-Base model we observe that burn-in is less crucial
compared to when training BERT-Large i.e. the model converges regardless of the amount of burn-in
employed. Moreover, we don’t see any convergence issues when we don’t employ even any warm-up,
this suggests that warm-up is also much less crucial (similar to burn-in) on the simpler BERT-Base
problem.

E Smoothness Lemmas in Banach Spaces

In this section we provide a few technical lemmas relating to smoothness in Banach spaces. Most of
these are fairly straightforward generalizations of standard results in Hilbert spaces.

We begin with a notations and definitions. Recall that a Banach space over the reals is a real vector
space B together with a norm ‖ · ‖ : B → R such that B is complete with respect to the topology
induced by the norm. The dual space B? is the space of bounded linear functions B → R. When B is
a Hilbert space, there is a natural isomorphism between i : B? → B such that for any v ∈ B? and
w ∈ B, v(w) = 〈i(v), w〉. In order to preserve notational familiarity, even when B is not a Hilbert
space, we therefore adopt the notation 〈v, w〉 to refer to v(w), the application of the linear function
v ∈ B? to the vector w ∈ B. Note that in this way the ordering of the arguments to 〈·, ·〉 is important:
〈w, v〉 is meaningless. The dual space B? is equipped with the dual norm ‖v‖? = sup‖x‖≤1〈v, x〉,
and is itself a Banach space.

A function F : B → R is Frechet differentiable if for all w ∈ B there is a bounded linear operator
v ∈ B? such that:

lim
δ→0

|F (w + δ)− F (w)− 〈v, δ〉|
‖δ‖

= 0

the operator v is denoted∇F (w). Note that if F is Frechet differentiable, it also satisfies the familiar
directional derivative identity: if f(t) = F (w + tδ), then

f ′(t) = 〈∇F (w + tδ), δ〉

The second derivative or Hessian of F at a point w is a linear map∇2F (w) : B → B? satisfying:

lim
δ→0

‖∇F (w + δ)−∇F (w)−∇2F (w)δ‖?
‖δ‖

= 0

In this paper we exclusively consider spaces such that B? satisfies:

‖x+ y‖p? ≤ ‖x‖p? + 〈∇‖x‖p?, y〉+ C‖y‖p? (8)

for some p and C for all x, y ∈ B?. We will also assume that C ≥ 1.
Proposition 15. Suppose that F : B → R is Frechet differentiable and the gradient satisfies
‖∇F (x)−∇F (y)‖? ≤ L‖x− y‖ for all x, y ∈ B (i.e. F is L-smooth). Then for all x, y ∈ B:

F (x) ≤ F (y) + 〈∇F (y), x− y〉+
L

2
‖x− y‖2
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Proof. Consider the function g : R → R given by g(t) = F (y + t(x − y)). Since F is Frechet
differentiable, g is differentiable and g′(t) = 〈∇F (y + t(x − y)), (x − y)〉. Therefore by the
fundamental theorem of calculus:

g(1) = g(0) +

∫ 1

0

g′(t)dt

= g(0) + g′(0) +

∫ 1

0

(g′(t)− g′(0))dt

≤ g(0) + 〈∇F (y), x− y〉+

∫ 1

0

|g′(t)− g′(0)|dt

≤ g(0) + 〈∇F (y), x− y〉+

∫ 1

0

|〈∇F (y + t(x− y))−∇F (y), x− y〉|dt

≤ g(0) + 〈∇F (y), x− y〉+

∫ 1

0

tL‖x− y‖2dt

= g(0) + 〈∇F (y), x− y〉+
L

2
‖x− y‖2|

Now plug in the definition of g(1) and g(0) to conclude the argument.

Proposition 16. Suppose that F : B → R is twice Frechet differentiable and the Hessian satisfies
‖(∇2F (x) − ∇2F (y))v‖? ≤ ρ‖v‖‖x − y‖ for all x, y, v ∈ B (i.e. F is ρ-second-order smooth).
Then for all x, y ∈ B:

F (x) ≤ F (y) + 〈∇F (y), x− y〉+
〈∇2F (y)(x− y), x− y〉

2
+
ρ

6
‖x− y‖3

Proof. Consider the function g : R → R given by g(t) = F (y + t(x − y)). Since F is twice
Frechet differentiable, g is twice differentiable and g′(t) = 〈∇F (y + t(x− y)), x− y〉 and g′′(t) =
〈∇2F (y + t(x− y))(x− y), x− y〉. Therefore by the fundamental theorem of calculus:

g(1) = g(0) +

∫ 1

0

g′(t)dt

= g(0) +

∫ 1

0

(
g′(0) +

∫ t

0

g′′(k)dk

)
dt

= g(0) + g′(0) +

∫ 1

0

∫ t

0

g′′(k)dkdt

= g(0) + g′(0) +

∫ 1

0

∫ t

0

g′′(0)dkdt+

∫ 1

0

∫ t

0

(g′′(k)− g′′(0))dkdt

= g(0) + g′(0) +
g′′(0)

2
+

∫ 1

0

∫ t

0

(g′′(k)− g′′(0))dkdt

= g(0) + g′(0) +
g′′(0)

2
+

∫ 1

0

∫ t

0

〈(∇2F (y + k(x− y))−∇2F (y))(x− y), x− y〉dkdt

≤ g(0) + g′(0) +
g′′(0)

2
+

∫ 1

0

∫ t

0

ρ‖x− y‖3kdkdt

≤ g(0) + g′(0) +
g′′(0)

2
+
ρ‖x− y‖3

6

Now plug in the definition of g(1) and g(0) to conclude the argument.

Proposition 17. Suppose that F : B → R is twice Frechet differentiable and the Hessian satisfies
‖(∇2F (x) − ∇2F (y))v‖? ≤ ρ‖v‖‖x − y‖ for all x, y, v ∈ B (i.e. F is ρ-second-order smooth).
Then for all x, y ∈ B:

‖∇F (y)− F (x)−∇2F (x)(y − x)‖? ≤
ρ

2
‖x− y‖2
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Proof. For any fixed z ∈ B, define gz(t) = 〈∇F (x + t(y − x)), z〉. Then we have g′z(t) =
〈∇2F (x+ t(y − x))(y − x), z〉. Then, by the fundamental theorem of calculus:

gz(1) = gz(0) +

∫ 1

0

g′z(t)dt

≤ gz(0) + g′z(0) +

∫ 1

0

|g′z(t)− g′z(0)|dt

≤ gz(0) + g′z(0) +

∫ 1

0

ρt‖x− y‖2‖z‖dt

≤ gz(0) + g′z(0) +
ρ‖x− y‖2‖z‖

2

rearrange and apply the definition of gz:

〈∇F (y)−∇F (x)−∇2F (x)(y − x), z〉 ≤ ρ‖x− y‖2‖z‖
2

Since z was arbitrary, by definition of dual norm we have

‖∇F (y)−∇F (x)−∇2F (x)(y − x)‖? ≤
ρ

2
‖x− y‖2

The following important Lemma generalizes Lemma 2 of [9] to more general norms, and improves
constants.
Lemma 1. Suppose F : B → R be a Frechet-differentiable L-Smooth function from a Banach space
B to the reals. Let w ∈ B. Let g? ∈ B? and let g ∈ B be a unit-vector satisfying 〈g?, g〉 = ‖g‖?.
Define w′ = w − ηg. Define ε = g? −∇F (w). Then:

F (w′) ≤ F (w)− η‖∇F (w)‖? + 2η‖ε‖? +
Lη2

2

Proof. First, by smoothness (Proposition 15) we have

F (w′) ≤ F (w) + 〈∇F (w), w′ − w〉+
L

2
‖w′ − w‖2

Next, since ‖g‖ = 1,

F (w′) ≤ F (w)− η〈∇F (w), g〉+
Lη2

2

= F (w)− η〈g? − ε, g〉+
Lη2

2

= F (w)− η(‖g?‖? − 〈ε, g〉) +
Lη2

2

≤ F (w)− η‖∇F (w) + ε‖? + η‖ε‖?‖g‖+
Lη2

2

≤ F (w)− η‖∇F (w)‖? + 2η‖ε‖? +
Lη2

2
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