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A Proof of Proposition 4

We recall Proposition 4
Proposition 4. Let f be (µ, d)-convex. Suppose x̂ minimizes f over S and x̃ minimizes f over
star(x̂, S). Then, for any x ∈ S,

f(x)− f(x̃) ≥ µ
(
1
3d(x, x̃)

)
.

Figure 3: Illustration of Proposition 4.

Proof. The proof relies on the observation that if λ 7→ zλ is a line segment such that z0 ∈ ∂fx
(i.e. f(z0) = f(x)), z1 ∈ ∂fy (i.e. f(z1) = f(y)), and zλ ∈ fx \ f◦y (i.e. f(x) ≥ f(zλ) ≥ f(y)) for
λ ∈ [0, 1], then

f(x)− f(y) = f(z0)− f(z1) ≥ µ(d(z0, z1)).
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This is seen by repeating the proof of Lemma 3: since zλ 6∈ f◦y we must have (f(zλ)−f(z1))/λ ≥ 0.
Plugging in zλ = z0 + λ(z1 − z0) and taking the limit infimum as λ ↓ 0 gives 0 ≤ 〈∇f |z1 , z0 − z1〉.
By (µ, d)-convexity of f , then,

f(z1)− f(z0) ≥ f(z1)− f(z0)− 〈∇f |z1 , z0 − z1〉 ≥ µ(d(z1, z0)).

Finally, if k such segments zλ form a path from x to y, then at least one of them must have
d(z1, z0) ≥ 1

kd(x, y). This is due to the triangle inequality for d.

We now restrict our attention to the plane P containing (x, x̂, x̃). Let C be the minimal cone
containing fx̃ with vertex at x̂. We note that, by optimality of x̃, no point x ∈ S can lie in the interior
of C.

Then C ∩ P is complementary to the union of two half-planes H1 and H2 with boundary lines `1
and `2, respectively. These lines intersect ∂fx at two respective points, s1 and s2, and are tangent to
fx̃ at two respective points, t1 ≡ x̃ and t2. Finally, fx ⊇ fx̂ by optimality of x̂. This is depicted in
Figure 3 above.

There are two cases to consider. In the first case, x ∈ H1. Then the line segment connecting x̃ and x
is contained entirely in D = fx \ f◦x̃ . By the preceding discussion,

f(x)− f(x̃) ≥ µ(d(x, x̃)) ≥ µ
(
1
3d(x, x̃)

)
.

In the second case x ∈ H2 \ H1. In this case, the segment from x̃ to s1 along `1 lies entirely in
D. Similarly, the segments from s1 to t2 and from t2 to x are line segments contained in D. Each
of these three segments connects ∂fx̃ to ∂fx, and they together form a path from x̃ to x. By the
preceding discussion,

f(x)− f(x̃) ≥ µ
(
1
3d(x, x̃)

)
.

This completes the proof.

B Proof of Proposition 7

We recall Proposition 7:
Proposition 7. Let F be a model class, ψ a (µ, d)-convex loss, and f∗ the population minimizer of
the ψ-risk. Then, the star estimator f̃ satisfies the excess risk bound

EΨ(E(f̃)) ≤ EΨ

(
sup
f∈F ′

{
1

n

n∑
i=1

2ε′i(ψi(f
∗)− ψi(f))− (1 + ε′i)µ( 1

3d(fi, f
∗
i ))

})
(10)

where the ε′i are i.i.d. symmetric Rademacher random variables, F ′ = ∪λ∈[0,1]λF + (1− λ)F , and
Ψ : R→ R is any increasing, convex function.

Proof. We’ll work forwards from (9), which says that

E(f̃) = Eψ(f̃i)− Eψ(f∗)i ≤ sup
f∈F ′

{
(En − E)(ψ(f∗i )− ψ(fi))− Enµ(d(fi, f

∗
i )/3)

}
Using the notation ∆i(f) = ψ(f∗i )− ψ(f)i, νi(f) = 1

2µ( 1
3d(fi, f

∗
i )), we can rewrite this as

E(f̃) ≤ sup
f∈F ′

{
1

n

n∑
i=1

(1− E)∆i(f)− 2νi(f)

}
.

Adding and subtracting Eνi(f) gives

= sup
f∈F ′

{
1

n

n∑
i=1

(1− E)(∆i(f)− νi(f))− (1 + E)νi(f)

}
.

By applying EΨ to both sides and applying Lemma G1 (a symmetrization result along the lines of
Liang et al. (2015)) with A = ∆, B = ν, and T = F , we get

≤ EΨ

(
2 sup
f∈F ′

{
1

n

n∑
i=1

ε′i(∆i(f)− νi(f))− νi(f)

})

= EΨ

(
sup
f∈F ′

{
1

n

n∑
i=1

2ε′i(ψ(f∗)i − ψ(f)i − 1
2µ( 1

3d(fi, f
∗
i )))− µ( 1

3d(fi, f
∗
i ))

})
,

where we plugged in the definition of ∆i and νi. This completes the proof.
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C Proof of Theorem 12

We recall Theorem 12:

Theorem 12. Let ψ be an η-exp-concave loss function taking values in [0,m]. Then the star estimator
in F satisfies the excess risk bound

EΨ(E(f̃)) ≤ EΨ

(
sup
f,g∈F ′

{
1

n

n∑
i=1

4ε′i(ψi(f)− ψi(g))− η(ψi(f)− ψ(gi))
2

18mη ∨ 36

})
. (15)

where Ψ is any increasing, convex function and F ′ = ∪λ∈[0,1]λF + (1− λ)F . Alternatively, when
ψ is p-uniformly convex with modulus α and ‖ψ‖lip-Lipschitz, we have

EΨ(E(f̃)) ≤ EΨ

(
sup
f,g∈F ′

{
1

n

n∑
i=1

4 ‖ψ‖lip (fi − gi)ε′i −
α|fi − gi|p

3p

})
. (16)

Proof. We’ll work forwards from (10), which says that

EΨ(E(f̃)) ≤ EΨ

(
sup
f∈F ′

{
1

n

n∑
i=1

2ε′i(ψ(f∗)i − ψ(f)i − 1
2µ( 1

3d(fi, f
∗
i )))− µ( 1

3d(fi, f
∗
i ))

})

≤ EΨ

(
sup
f,g∈F ′

{
1

n

n∑
i=1

2ε′i(ψ(g)i − ψ(f)i − 1
2µ( 1

3d(fi, gi)))− µ( 1
3d(fi, gi))

})
,

where the second step enlarges the domain in the supremum. For (15), we plug in the definition of
the offset from Proposition 11

µ( 1
3d(x, y)) =

|ψ(x)− ψ(y)|2

18m ∨ 36/η
.

Under the condition that ψ takes values in [0,m], we have that

|ψ(x)− ψ(y)|2 ≤ 2m|ψ(x)− ψ(y)| ≤ (2m ∨ 4/η)|ψ(x)− ψ(y)|.

It follows that we can apply our “contraction lemma” for offset processes, Lemma G2, with the
contractions

|ψ(x)− ψ(y)− 1
2µ( 1

3d(x, y))|
≤ |ψ(x)− ψ(y)|+ | 12µ( 1

3d(x, y))|

≤ |ψ(x)− ψ(y)|+ (m ∨ 2/η)|ψ(x)− ψ(y)|
18m ∨ 36/η

≤ 19

18
|ψ(x)− ψ(y)|.

For (16), we first require the following lemma.

Lemma C1. Let ψ : R→ R be (µ, d)-convex and ‖ψ‖lip-Lipschitz with respect to d(x, y) = |x− y|.
Let r ≥ 0 be the largest constant such that µ(cx) ≤ crµ(x) for c ≤ 1 which is non-negative by
monotonicity of µ. Then

µ( 1
3 |x− y|) ≤

(
2
3

)r ‖ψ‖lip |x− y|.
Applying the lemma with r = p, we simply apply the contractions

|ψ(x)− ψ(y)− 1
2µ( 1

3d(x, y))| ≤ |ψ(x)− ψ(y)|+ 1
2µ( 1

3d(x, y)) ≤ (1 + 2p−1/3p) ‖ψ‖lip |x− y|

using Lemma G2, and then plug in

µ( 1
3d(x, y)) =

α|x− y|p

3p
,

from the definition of p-uniform convexity.
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Proof of Lemma C1. Let z be the minimizer of ψ over [x, y]. By Lemma 3 we have
ψ(x)− ψ(z) ≥ µ(|x− z|), ψ(y)− ψ(z) ≥ µ(|y − z|). (25)

Since |x− y| = |x− z|+ |y − z| because z ∈ [x, y], we have
µ( 1

3 |x− y|) ≤ µ( 1
3 (|x− z|+ |y − z|)).

By monotonicity of µ, this is
≤ µ( 2

3 (|x− z| ∨ |y − z|))
≤
(
2
3

)r {µ(|x− z|) ∨ µ(|y − z|)} .
Using (25), we have

≤
(
2
3

)r |ψ(x)− ψ(z)| ∨
(
2
3

)r |ψ(y)− ψ(z)|
≤
(
2
3

)r ‖ψ‖lip |x− z| ∨ ( 23)r ‖ψ‖lip |y − z|
≤
(
2
3

)r ‖ψ‖lip |x− y|,
where in the last step we again used that

|x− y| = |x− z|+ |y − z| ≥ |x− z| ∨ |y − z|
by our choice of z. This completes the proof.

D Proof of Proposition 15

We recall Proposition 15.

Proposition 15. If ψ is a self-concordant loss and f̂ is the empirical risk minimizer in a convex class
F , then

EΨ(E(f̃)) ≤ EΨ

(
sup
f∈F ′

{
1

n

n∑
i=1

4(ψi(f)− ψ(f∗i ))ε′i − ω
(
‖fi − f∗i ‖ψ,f∗i

)})
, (18)

for ω(z) = z − log(1 + z), ‖z‖ψ,w =̇
√
z2ψ′′(w), and (ε′i)

n
i=1 are independent, symmetric

Rademacher random variables and Ψ is any increasing, convex function.

Proof. Combining the self-concordance inequality Lemma 14 with Lemmas 3 and 5 immediately
gives us

E(f̂) = Eψ(f̂)− Eψ(f∗) ≥ Eω(‖f̂ − f∗‖ψ,f∗) (26)
for the empirical risk minimizer f̂ in a convex class. Since f̂ is the risk minimizer, we also have
Enψ(f∗)− Enψ(f̂) ≥ 0. Adding these two and rearranging, we have

E(f̂) ≤ 2E(f̂)− Eω(‖f̂ − f∗‖ψ,f∗)
≤ 2(E− En)ψ(f̂)− 2(E− En)ψ(f∗)− Eω(‖f̂ − f∗‖ψ,f∗)

≤ 2 sup
f∈F

{
(E− En)ψ(f̂)− (E− En)ψ(f∗)− 1

2Eω(‖f − f∗‖ψ,f∗)
}

Applying EΨ on both sides gives

EΨ(E(f̂)) ≤ EΨ

(
2 sup
f∈F

{
(E− En)ψ(f̂)− (E− En)ψ(f∗)− 1

2Eω(‖f − f∗‖ψ,f∗)
})

= EΨ

(
2 sup
f∈F

{
(E− En)(ψ(f̂)− ψ(f∗))− 1

4 (E + E)ω(‖f − f∗‖ψ,f∗)
})

By Jensen’s inequality, this is

≤ EΨ

(
2 sup
f∈F

{
(E− En)(ψ(f̂)− ψ(f∗))− 1

4 (1 + E)ω(‖f − f∗‖ψ,f∗)
})

.

The proof is then complete after applying Lemma G1 with A(f) = 2(ψ(f)− ψ(f∗)), T = F , and
B(f) = 1

2ω(‖f − f∗‖ψ,f∗).
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E Proof of Theorem 19

We recall Theorem 19.
Theorem 19. Let ψ be an η-exp-concave loss taking values in [0,m]. Then, with probability at least
1− 9e−z , the star estimator f̃ applied to (ψ,F) satisfies

E(f̃) ≤ inf
0≤α≤γ

{
4α+

10√
n

∫ γ

α

√
H2(s) ds+

2H2(γ)

cn
+
γ
√

8π√
n

+

(
2

cn
+
γ
√

8√
n

)
z

}
, (23)

where H2(s) =̇ H2(s, ψ ◦ F ′) and c = 36−1(1/m ∧ η/2).

Proof. We work forwards from (15), which tells us

EΨ(E(f̃)) ≤ EΨ

(
sup
t∈T

{
Zt − cZ2

t

})
,

where we define Z, t, T , and c according to

Zt =
1

n

n∑
i=1

4ε′it(Xi, Yi) =
1

n

n∑
i=1

4ε′i(ψ(f(Xi), Yi)− ψ(g(Xi), Yi)),

t = ψ(f(Xi), Yi)− ψ(g(Xi), Yi),

T = ψ ◦ F ′ − ψ ◦ F ′,

c =
1

36

(
1

m
∨ η

2

)
.

Let V be a covering of T at resolution γ in L2(Pn) that is chosen to include 0, so that #V ≤
exp(2H2(γ)) almost surely by construction of T and definition of H2(−). Then we can choose
π : T → V with the properties that (1) ‖t− π(t)‖2,P ≤ γ uniformly over t ∈ T , and (2) π(t) = 0 if
‖t‖2,P < γ.

The proof will proceed in three lemmas which will be stated below and proved subsequently. The
first lemma shows that supt∈T

{
Zt − cZ2

t

}
can be controlled in terms of (i) the local complexity of

(Zt)t∈T at scale γ and (ii) the offset complexity of a finite approximation to (Zt)t∈T at resolution γ.
The second and third lemmas develop high-probability bounds for these two terms.

Lemma E1 (from Liang et al. (2015, Lemma 6)). It holds almost surely that

sup
t∈T

{
Zt − cZ2

t

}
≤ sup

t∈T

{
Zt − Zπ(t)

}
+ sup
v∈V

{
Zv − (c/4)Z2

v

}
. (27)

Lemma E2.

P

(
sup
t∈T

{
Zt − Zπ(t)

}
≥ 4α+

10√
n

∫ γ

α

√
2H2(s) ds+ γ

√
8π

n
+ x

)
≤ 2e−nx

2/(8γ2) (28)

Lemma E3.
P
(

sup
v∈V

{
Zv − (c/4)Z2

v

}
>

4H2(γ) + 2x

cn

)
≤ e−x. (29)

Applying a union bound to the event in (28) with x = zγ
√

8, the event in (29) with z = x, and the
complement of the event (27), we obtain that with probability at least 1− 3e−z

sup
t∈T

{
Zt − Zπ(t)

}
≤ 4α+

10√
n

∫ γ

α

√
H2(s) ds+

2H2(γ)

cn
+
γ
√

8π√
n

+

(
2

cn
+
γ
√

8√
n

)
z

Finally, since EΨ(E(f̃)) ≤ EΨ
(
supt∈T

{
Zt − cZ2

t

})
for all convex and increasing Ψ, we can apply

the following.

Lemma E4 ( Panchenko (2003, Lemma 1)). If EΨ(X) ≤ EΨ(Y ) for all convex and increasing
functions Ψ, then

P(Y ≥ t) ≤ Ae−at =⇒ P(X ≥ t) ≤ Ae1−at.
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Thus, we have

E(f̃) ≤ 4α+
10√
n

∫ γ

α

√
H2(s) ds+

2H2(γ)

cn
+
γ
√

8π√
n

+

(
2

cn
+
γ
√

8√
n

)
z

with probability at least 1− (3e)e−z . After noting that 0 ≤ α ≤ γ is arbitrary and 3e ≤ 9, the proof
is complete.

Proof of Lemma E1. We have

sup
t∈T

{
Zt − cZ2

t

}
= sup

t∈T

{
(Zt − Zπ(t)) + ((c/4)Z2

π(t) − cZ
2
t )−

(
cZ2

t + Zπ(t) − (c/4)Z2
π(t)

)}
≤ sup

t∈T

{
Zt − Zπ(t)

}
+ sup
v∈V

{
Zv − (c/4)Z2

v

}
,

provided we can show that the middle term (c/4)Z2
π(t) − cZ

2
t is a.s. non-positive. To see this, note

that either ‖t‖2,Pn < γ, in which case by construction π(t) = 0 and Z2
π(t) = 0, so we are done, or

else we have

‖π(t)‖2,Pn ≤ ‖π(t)− t‖2,Pn + ‖t‖2,Pn ≤ ‖t‖2,Pn + γ ≤ 2 ‖t‖2,Pn ,

so that ‖π(t)‖22,Pn ≤ 4 ‖t‖22,Pn . But, after plugging in the definition of Zt, the middle term is
precisely

16c

n

(
‖π(t)‖22,Pn

4
− ‖t‖22,Pn

)
,

so we are done.

Proof of Lemma E2. Keeping in mind that ‖t− π(t)‖2,Pn ≤ γ and applying the chaining result in
Srebro et al. (2010, Lemma A.3) gives us

Eε sup
t∈T

{
Zt − Zπ(t)

}
≤ 4α+

10√
n

∫ γ

α

√
2H2(s) ds (30)

almost surely with respect to the data, where we used that

lnN(s, T, L2(Pn)) ≤ 2 lnN(s, ψ ◦ F ′, L2(Pn)) ≤ 2H2(s)

by definition of T and the fact that H2(−) is an almost-sure bound on the logarithm of the L2(Pn)
covering numbers. It follows by applying Ledoux and Talagrand (1991, Theorem 4.7) with σ2(X) =
γ2/n that

Pε
(

sup
t∈T

{
Zt − Zπ(t)

}
≥Mε + x

)
≤ 2e−nx

2/(8γ2), (31)

where Pε denotes the probability with respect to the multipliers ε conditional upon the data and Mε

is a conditional median of supt∈T
{
Zt − Zπ(t)

}
. Finally, we can deduce the upper bound

Eε sup
t∈T

{
Zt − Zπ(t)

}
−Mε

≤ Eε
[(

sup
t∈T

{
Zt − Zπ(t)

}
−Mε

)
1

{
sup
t∈T

{
Zt − Zπ(t)

}
> Mε

}]
=

∫ ∞
0

Pε
(

sup
t∈T

{
Zt − Zπ(t)

}
−Mε > t

)
dt

≤
∫ ∞
0

2e−nt
2/(8γ2)dt = γ

√
8π

n
(32)

Finally, putting together (30), (31) and (32) gives us

Pε

(
sup
t∈T

{
Zt − Zπ(t)

}
≥ 4α+

10√
n

∫ γ

α

√
2H2(s) ds+ γ

√
8π

n
+ x

)
≤ 2e−nx

2/(8γ2).

Since this conditional bound holds almost surely with respect to the data, we immediately deduce
(28).
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Proof of Lemma E3. Working conditionally upon the data, we can compute by applying Markov’s
inequality that

Pε
(

sup
v∈V

{
Zv − (c/4)Z2

v

}
> t

)
= Pε

(
exp

(
rn sup

v∈V

{
Zv − (c/4)Z2

v

})
> ernt

)
≤ Eε exp

(
rn sup

v∈V

{
Zv − (c/4)Z2

v

})
e−rnt.

We can further compute that

Eε exp

(
rn sup

v∈V

{
Zv − (c/4)Z2

v

})
= Eε sup

v∈V
exp

(
n∑
i=1

rε′ivi − (c/4)rv2i

)

≤
∑
v∈V

Eε exp

(
n∑
i=1

r2v2i
2
− crv2i

4

)
,

by applying Hoeffding’s lemma to each expectation with respect to the variables εi. Taking r = c/2,
this is precisely #V . Thus, we have that

Pε
(

sup
v∈V

{
Zv − (c/4)Z2

v

}
> t

)
≤ exp

(
ln(#V )− cnt

2

)
.

Since ln(#V ) ≤ 2H2(γ) almost surely, we can deduce the unconditional bound

P
(

sup
v∈V

{
Zv − (c/4)Z2

v

}
> t

)
≤ exp

(
2H2(γ)− cnt

2

)
.

Taking t = (4H2(γ) + 2x)/cn gives (29).

F Proofs of Section 5 Results

F.1 Proof of Corollary 16

We state Corollary 16.

Corollary 16 (cf. Mendelson (2002, Theorem 5.1)). Let ψ(f, y) = |f − y|p for p > 1 and let the
class F and response Y take values in [−B,B]. Then there exists a universal C(p,B) = O(p2pBp)

such that the star estimator f̃ has excess ψ-risk bounded as

P
(
E(f̃ ,F) ≥ ε+

C(p,B)(H2(ε/Cp,B ,F) + ln(1/ε) + ln(1/ρ))

n

)
≤ ρ, (20)

Proof. This follows as a result of the more general bound (19), which says that

P
(
E(f̃) ≥ ε+

(
36m ∨ 72

η

)(
H2(ε, ψ ◦ F ′) + ln(1/ρ)

n

))
≤ ρ.

In order to deduce (20), we need to bound the quantities m, 1/η, and H2(ψ ◦ F ′). For m, since
|f |, |y| ≤ B, it must hold that |f − y|p ≤ 2pBp. For η, we can compute that

(ψ′)2/ψ′′ =
p2z2p−2

p(p− 1)zp−2
≤ pzp

p− 1
≤ p2pBp

p− 1

for z = |f − y| ≤ 2B. Finally, we have ‖ψ‖lip ≤ p2pBp−1 by bounding the first derivative, so that
we have the entropy estimates

H2(ε, ψ ◦ F ′) ≤ H2

(
ε

p2pBp−1
,F ′
)
≤ 2H2

(
ε

p2p+1Bp−1
,F
)

+ ln

(
4B

ε

)
,

where the last step follows by applying Lemma G4 with R ≤ supf,y |f − y| ≤ 2B.
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F.2 Proof of Lemma 17

We recall Lemma 17.
Lemma 17 (Foster et al. (2018)). For all f and δ ∈ (0, 1/2], the excess risk relative to Lδ satisfies

E(f ;Lδ) ≤ E(f ;L) + 2δ

Proof. We can compute that

ln(f)− ln((1− δ)f + δ) = ln

(
f

(1− δ)f + δ

)
≤ ln

(
1

1− δ

)
≤ 2δ, (33)

since 0 ≤ − ln(1− δ) ≤ 2δ for 0 ≤ δ ≤ 1/2. Consequently, for any g,

E(g;Lδ) = E[− ln g]− inf
f∈Lδ

E[− ln f ]

= E[− ln g]− inf
f∈L

E[− ln f ] + inf
f∈L

E[− ln f ]− inf
f∈Lδ

E[− ln f ]

= E(g;L) +

(
inf
f∈L

E[− ln f ]− inf
f∈Lδ

E[− ln f ]

)
By separability of the two infima, this is the same as

= E(g;L) + sup
h∈Lδ

inf
f∈L

E[lnh− ln f ].

By choosing h = (1− δ)f + δ, the outer supremum may be bounded as

≥ E(g;L) + inf
f∈L

E[ln((1− δ)f + δ)− ln f ]

≥ E(g;L)− 2δ,

where the final step follows from negating (33).

F.3 Proof of Corollary 18

We recall Corollary 18.

Corollary 18. With probability at least 1− ρ, the star estimator f̃δ in Lδ satisfies

E(f̃δ;L) ≤ ε+ 2δ + C ln(1/δ)

(
H2(δε,L) + ln(1/εδ) + ln(1/ρ)

n

)
(21)

Let L be the generalized linear model corresponding to

FB =
{
x 7→Wx

∣∣W ∈ Rk×q, ‖W‖2→∞ ≤ B
}

with A-Lipschitz, surjective link ϕ and features X ∈ Rq that satisfy ‖X‖2 ≤ R
√
q. Then with

probability at least 1− ρ

E(ϕ† ◦ f̃δ;FB) ≤ ln(n)

n

{
Ckq ln(ABRn

√
k) + ln(1/ρ)

}
. (22)

Proof. By Lemma 17, it suffices for (21) to show instead that

P
(
E(f̃δ;Lδ) > ε+ C ln(1/δ)

(
H2(δε,L) + ln(1/εδ) + ln(1/ρ)

n

))
≤ ρ.

This in turn follows from the general inequality (19), which says in this context that

P
(
E(f̃δ,Lδ) ≥ ε+

(
36m ∨ 72

η

)(
H2(ε,− ln ◦L′δ) + ln(1/ρ)

n

))
≤ ρ.

Since L′δ takes values in [δ, 1], the log loss takes values in [0, ln(1/δ)], so we choose m = ln(1/δ).
Since the log loss is 1-exp-concave, we choose η = 1. Finally, the log loss in this domain is
(1/δ)-Lipschitz, so we have the estimates

H2(ε,− ln ◦L′δ) ≤ H2(δε,L′δ) ≤ 2H2(δε/2,Lδ) + ln(2 ln(1/δ)/δε),
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where the last step follows from Lemma G4 with R = ln(1/δ). Finally, use that H2(−,Lδ) ≤
H2(−,L) since Lδ is the image of L under a pointwise contraction, and simplify (for example
absorbing ln ln(1/δ) ≤ ln(1/δ)) into the constant C). For (18), we plug in the covering estimates

H2(δε,L) ≤ H2

(
δε

A
,FB

)
≤ ln

(
ABR

√
k

εδ

)kd
= kd ln

(
ABR

√
k

δε

)

for FB , which are standard. Finally, we take ε = δ = 1/n and simplify.

F.4 Proof of Corollary 20

We recall Corollary 20.

Corollary 20. Consider a generalized linear model with A-Lipschitz loss f 7→ − ln 〈ϕ(f), y〉.
Suppose the entropy numbers H2(ε;F) are of order ε−q . Then, the regularized star estimator ϕ† ◦ f̃δ
with δ = 1/n satisfies the rates appearing on the left.

On the other hand, for an arbitrary class L taking values in [0, 1] subject to the log loss, the
regularized star estimator f̃ ′δ′—for appropriately chosen δ′—attains the rates appearing on the right.

Here, the symbol .ρ denotes an upper bound that holds with probability 1 − ρ, hiding universal
constants and a multiplicative factor ln(1/ρ).

E(ϕ† ◦ f̃δ) .ρ


Aqn−2/(2+q) ln(n) q < 2

Aqn−1/2 ln(n) q = 2

Aqn−1/q q > 2

E(f̃ ′δ′) .ρ


n−1/(1+3q/2) q < 2

n−1/4 ln(n) q = 2

n−1/(2q) q > 2

(24)

Proof. These bounds are all derived by applying Theorem 19 under different assumptions on the
entropy function. In particular combining (23) with Lemma 17—using the fact that the log loss over
Lδ takes values in [0, ln(1/δ)] and is 1-exp-concave—gives us that with probability 1− ρ,

E(f̃) .ρ 2δ + inf
0≤α≤γ

{
4α+

10√
n

∫ γ

α

√
H2(s) ds+

H2(γ) ln(1/δ)

n
+

γ√
n

}
,

where the symbol .ρ hides universal constants and a multiplicative factor ln(1/ρ).

For the left-hand side results, the entropy numbers scale as (A/ε)q; choosing δ = 1
n , we get

2

n
+ 4α+

10Aq/2√
n

∫ γ

α

s−q/2 ds+
γ−qAq lnn

n
+

γ√
n
.

For the q < 2 case we take α = 0 and γ = n−1/(2+q). For the case q = 2 we take α = 1/n and
γ = 1. For the case q > 2 we take α = n−1/q and γ = 1. For the right-hand side results, the entropy
numbers scale as (1/δε)q , giving us the bound

2δ + 4α+
12δ−q/2√

n

∫ γ

α

s−q/2 ds+
γ−qδ−q

n
+

γ√
n
.

For q < 2, we take α = 0, δ = n−1/(1+3q/2), and γ = n−1/(2+3q). For q = 2 we take δ = n−1/4,
α = 1/n, and γ = 1. For q > 2 we take δ = α = n−1/2p and γ = 1.

G Technical Lemmas

Lemma G1 (Offset symmetrization). For every increasing and convex function Ψ,

EΨ

(
sup
t∈T

{
1

n

n∑
i=1

(1− E)Ai(t)− (1 + E)Bi(t)

})
≤ EΨ

(
2 sup
t∈T

{
1

n

n∑
i=1

ε′iAi(t)−Bi(t)

})
.
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Proof. Noting that EAi(t) = EA′i(t) and EBi(t) = EB′i(t), where A′i (respectively, Bi) is an
independent copy of Ai (resp. B′i), and finally moving the expectations outside by applying Jensen’s
inequality to the convex function Ψ(supt∈T (−)), we have

EΨ

(
sup
t∈T

{
1

n

n∑
i=1

(1− E)Ai(t)− (1 + E)Bi(t)

})

≤ EΨ

(
sup
t∈T

{
1

n

n∑
i=1

Ai(t)−A′i(t)−Bi(t)−B′i(t)

})
.

Since Ai − A′i is symmetric, it is equal in distribution to ε′i(Ai − A′i), where ε′i is a symmetric
Rademacher r.v. independent of (A,A′, B,B′), hence we can write

= EΨ

(
sup
t∈T

{
1

n

n∑
i=1

ε′i(Ai(t)−A′i(t))−Bi(t)−B′i(t)

})

= EΨ

(
sup
t∈T

{
1

n

n∑
i=1

ε′iAi(t)−Bi(t) +
1

n

n∑
i=1

(−ε′i)A′i(t)−B′i(t)

})
.

= EΨ

(
sup
t∈T

{
2Eσ

[
σ

n

n∑
i=1

ε′iAi(t)−Bi(t) +
1− σ
n

n∑
i=1

(−ε′i)A′i(t)−B′i(t)

]})
,

where σ is an independent symmetric Bernoulli r.v. By a final application of Jensen’s inequality and
equality of the distributions of (σε′i)

n
i=1 and ((1− σ)(−ε′i))ni=1, this is

≤ EΨ

(
2 sup
t∈T

{
σ

n

n∑
i=1

ε′iAi(t)−Bi(t) +
1− σ
n

n∑
i=1

(−ε′i)A′i(t)−B′i(t)

})
,

= EΨ

(
2 sup
t∈T

{
1

n

n∑
i=1

ε′iAi(t)−Bi(t))

})
, (34)

which is what we aimed to show.

Lemma G2 (Offset contraction). Suppose that |Ai(s)− Ai(t)| ≤ |Ci(s)− Ci(t)| for all s, t ∈ T .
Then, for all increasing and convex Ψ, we have

EΨ

(
2 sup
t∈T

{
1

n

n∑
i=1

ε′iAi(t)−Bi(t)

})
≤ EΨ

(
2 sup
t∈T

{
1

n

n∑
i=1

ε′iCi(t)−Bi(t)

})
, (35)

whenever the ε′i are symmetric Rademacher variables that are independent of A, B and C.

Proof. To simplify notation, put

Sm(t) =

m∑
i=1

ε′iAi(t)−Bi(t).

Writing out the expectation with respect to ε′n gives

EΨ

(
2 sup
t∈T

{
1

n

n∑
i=1

ε′iAi(t)−Bi(t)

})

= EΨ

 1

n

2∑
j=1

sup
t∈T

{
(−1)jAn(t) + Sn−1(t)−Bn(t)

}
= EΨ

(
1

n
sup
s,t∈T

{
An(s)−An(t) + (Sn−1(s)−Bn(s))− (Sn−1(t)−Bn(t))

})
.

Applying our assumption that |Ai(s)−Ai(t)| ≤ |Ci(s)− Ci(t)|, this is

≤ EΨ

(
1

n
sup
s,t∈T

{
|Cn(s)− Cn(t)|+ (Sn−1(s)−Bn(s))− (Sn−1(t)−Bn(t))

})
.
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Since the argument of the supremum is symmetric in (s, t), we can remove the absolute value,
yielding

≤ EΨ

(
1

n
sup
s,t∈T

{
Cn(s)− Cn(t) + (Sn−1(s)−Bn(s)) + (Sn−1(t)−Bn(t))

})
.

Since the supremum is now separable in (s, t), we further have

= EΨ

 1

n

2∑
j=1

sup
t∈T

{
(−1)jCn(t)−Bn(t) + Sn−1(t)

}
= EΨ

(
2

n
sup
t∈T

{
εnCn(t)−Bn(t) + Sn−1(t)

})
.

Applying these manipulations to each summand r from n− 1 down to 1 gives us

≤ EΨ

(
sup
t∈T

{
2

n

n∑
i=r

εiCi(t)−Bi(t) + Sr−1(t)

})

≤ EΨ

(
2 sup
t∈T

{
1

n

n∑
i=1

εiCi(t)−Bi(t)

})
,

which is what we aimed to show.

Lemma G3 (Log margin computation). For |z| ≤ c,

e−z + z − 1 ≥ z2

2c ∨ 4
.

Proof. Note that z − 1 ≥ z/2 ≥ z2/(2c) for z ≥ 2. So it suffices to check the inequality for z < 2.
On the other hand, one can check by minimizing the left-hand side that

e−z + z − 1

z2
≥ 1

4

for 0 < z < 2 (the derivative of the left-hand side is negative, and the inequality holds at z = 2).
Finally, the inequality for z ≤ 0 follows by noting that

e−z − 1 + z =
z2

2
+

∞∑
k=3

(−z)k

k!
,

by the series expansion for e−z and the remainder term must be non-negative for z ≤ 0.

Lemma G4 (cf. Mendelson (2002, Lemma 4.5)). Put F ′ = ∪λ∈[0,1]λF + (1 − λ)F and Rµ =

supf∈F ‖f‖L2(µ). Let N2(ε, S, µ) denote the ε-covering number of the set S in L2(µ). Then

N2(ε,F ′, µ) ≤
(

2Rµ
ε

)
N2(ε/2,F , µ)2. (36)

Consequently, if R = supµRµ where the supremum is over probability measures,

H2(ε,F ′) ≤ 2H2(ε/2,F) + ln

(
2R

ε

)
. (37)

Proof. Let S denote a minimal covering of F in L2(µ) at resolution ε/2. Given some (s, t) ∈ S2,
let T (s, t) denote an ε/2 covering of the line segment interpolating s and t. This line segment has
length at most 2Rµ in L2(µ), hence #T (s, t) ≤ 2Rµ

ε . We are therefore done if we can show that⋃
(s,t)∈S2

T (s, t)

is an ε covering of F ′.
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To this end, let f ∈ F ′ be given. By definition, we may write f = λf1 + (1− λ)f2 for f1, f2 ∈ F ,
and we can choose s1, s2 ∈ S such that

‖s1 − f1‖L2(µ) , ‖s2 − f2‖L2(µ) ≤ ε/2.

Due to convexity of the norm, we must have that

‖(λs1 + (1− λ)s2)− f‖L2(µ) ≤ ε/2.

By construction, there exists some h ∈ T (s1, s2) such that

‖(λs1 + (1− λ)s2)− h‖L2(µ) ≤ ε/2.

Using the triangle inequality, we deduce ‖f − h‖L2(µ) ≤ ε and the proof of (36) is complete; (37)
then follows by first taking logarithms, then taking the supremum over probability measures µ.
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