
Appendices for “Pruning Randomly Initialized Neural
Networks with Iterative Randomization”

Contents
A Proof of main theorem (Theorem 4.1) 1

A.1 Settings and main theorem . 1
A.2 Proof of Theorem A.1 . 2

B Details for our experiments 6
B.1 Network architectures . 6
B.2 Hyperparameters . 6
B.3 Experimental results in table forms . 7

C Additional experiments 8
C.1 Ablation study on hyperparameters: Kper and r . 8
C.2 Computational overhead of iterative randomization 9
C.3 Experiments with varying sparsity . 9
C.4 Detailed empirical analysis on the parameter efficiency 10
C.5 Experiments with large-scale networks . 10
C.6 Experiments with a text classification task . 10

A Proof of main theorem (Theorem 4.1)

A.1 Settings and main theorem
Let d0, · · · , dl ∈ N≥1. We consider a target neural network f : Rd0 → Rdl of depth l, which is
described as follows.

f(x) = Flσ(Fl−1σ(· · ·F1(x) · · ·)), (1)

where x is a d0-dimensional real vector, σ is the ReLU activation, and Fi is a di × di−1 matrix. Our
objective is to approximate the target network f(x) by pruning a randomly initialized neural network
g(x), which tends to be larger than the target network.

Similar to the previous works [6, 7], we assume that g(x) is twice as deep as the target network
f(x). Thus, g(x) can be described as

g(x) = G2lσ(G2l−1σ(· · ·G1(x) · · ·)), (2)

where Gj is a d̃j × d̃j−1 matrix (d̃j ∈ N≥1 for j = 1, · · · , 2l) with d̃2i = di. Each element of the
matrix Gj is assumed to be drawn from the uniform distribution U [−1, 1]. Since there is a one-to-one
correspondence between pruned networks of g(x) and sequences of binary matricesM = {Mj}j=1,··· ,2l

with Mj ∈ {0, 1}d̃j×d̃j−1 , every pruned network of g(x) can be described as

gM (x) = (G2l �M2l)σ((G2l−1 �M2l−1)σ(· · · (G1 �M1)(x) · · ·)). (3)

We introduce an idealized assumption on g(x) for a given number R ∈ N≥1: each element of
the weight matrix Gj can be re-sampled with replacement from the uniform distribution U [−1, 1]
up to R − 1 times, for all j = 1, · · · , 2l (re-sampling assumption for R). Here, re-sampling with
replacement means that we sample a new value for an element of Gj and replace the old value of the
element by the new one.

Under this re-sampling assumption, we describe our main theorem as follows.

1

Theorem A.1 (Main Theorem) Fix ε, δ > 0, and we assume that ‖Fi‖Frob ≤ 1. Let R ∈ N and
we assume that each element of Gi can be re-sampled with replacement from the uniform distribution
U [−1, 1] up to R− 1 times.

If d̃2i−1 ≥ 2di−1d
64l2d2i−1di
ε2R2 log(2ldi−1di

δ)e holds for all i = 1, · · · , l, then with probability at least
1− δ, there exist binary matrices M = {Mj}1≤j≤2l such that

‖f(x)− gM (x)‖2 ≤ ε, for ‖x‖∞ ≤ 1. (4)

In particular, if R is larger than 8ldi−1

ε

√
di log(

2ldi−1di
δ), then d̃2i−1 = 2di−1 is enough.

A.2 Proof of Theorem A.1
Our proof is based on the following simple observation, similar to the arguments in Malach et al. [6].

Lemma A.2 Fix some n ∈ N, α ∈ [−1, 1] and ε, δ ∈ (0, 1). Let X1, · · · , Xn ∼ U [−1, 1]. If
n ≥ 2

ε log(
1
δ) holds, then with probability at least 1− δ, we have

|α−Xi| ≤ ε, (5)

for some i ∈ {1, · · · , n}.

Proof: We can assume α ≥ 0 without loss of generality. By considering half ε-ball of α, we have

PX∼U [−1,1]

[∣∣α−X∣∣ ≤ ε] ≥ ε

2
.

Thus it follows that

PX1,··· ,Xn∼U [−1,1]

[∣∣α−Xi

∣∣ > ε for all i
]
≤ (1− ε

2
)n ≤ e−nε2 ≤ δ.

�

First, we consider to approximate a single variable linear function f(x) = wx : R→ R, w ∈ R by
some subnetwork of 2-layered neural network g(x) with d hidden neurons, without the re-sampling
assumption. Note that this is the same setting as in Malach et al. [6], but we give another proof so
that we can later extend it to the one with the resumpling assumption.

Lemma A.3 Fix ε, δ ∈ (0, 1), w ∈ [−1, 1], d ∈ N. Let u,v ∼ U [−1, 1]d be uniformly random weights
of a 2-layered neural network g(x) := vTσ(u · x). If d ≥ 2d 16ε2 log(2δ)e holds, then with probability at
least 1− δ, ∣∣wx− gm(x)

∣∣ ≤ ε, for all x ∈ R, |x| ≤ 1, (6)

where gm(x) := (v �m)Tσ(u · x) for some m ∈ {0, 1}d.

Proof: The core idea is to decompose wx as

wx = w(σ(x)− σ(−x)) = wσ(x)− wσ(−x). (7)

We assume that d is an even number as d = 2d′ so that we can split an index set {1, · · · , d} of hidden
neurons of g(x) into I = {1, · · · , d′} and J = {d′ + 1, · · · , d}. Then we have the corresponding
subnetworks gI(x) and gJ(x) given by gI(x) :=

∑
k∈I vkσ(ukx), gJ(x) :=

∑
k∈J vkσ(ukx), which

satisfy the equation g(x) = gI(x) + gJ(x).
From Eq. (7), it is enough to consider the probabilities for approximating wσ(x) by a subnetwork

of gI(x) and for approximating −wσ(−x) by a subnetwork of gJ(x). Now we have

P
(
6 ∃i ∈ I s.t. |ui − 1| ≤ ε

2
, |vi − w| ≤

ε

2

)
≤
(
1− ε2

16

)d′
≤ δ

2
, (8)

P
(
6 ∃j ∈ J s.t. |uj + 1| ≤ ε

2
, |vj + w| ≤ ε

2

)
≤
(
1− ε2

16

)d′
≤ δ

2
, (9)

2

for d′ ≥ 16
ε2 log

(
2
δ

)
as well as in the proof of Lemma A.2. By using the union bound, with probability

at least 1− δ, we have i ∈ I and j ∈ J such that∣∣wσ(x)− viσ(uix)∣∣ ≤ ε

2
,∣∣− wσ(−x)− vjσ(ujx)∣∣ ≤ ε

2
.

Combining these inequalities and Eq. (7), we finish the proof. �

Now we extend Lemma A.3 to the one with the re-sampling assumption.

Lemma A.4 Fix ε, δ ∈ (0, 1), w ∈ [−1, 1], d ∈ N. Let u,v ∼ U [−1, 1]d be uniformly random weights
of a 2-layered neural network g(x) := vTσ(u · x). Let R ∈ N and we assume that each elements of u
and v can be re-sampled with replacement up to R− 1 times. If d ≥ 2d 16

ε2R2 log(
2
δ)e holds, then with

probability at least 1− δ, ∣∣wx− gm(x)
∣∣ ≤ ε, for all x ∈ R, |x| ≤ 1, (10)

where gm(x) := (v �m)Tσ(u · x) for some m ∈ {0, 1}d.

Proof: As in the proof of Lemma A.3, we assume that d = 2d′ and let I = {1, · · · , d′}, J =

{d′ + 1, · · · , d}. Now we consider Ĩ = {1, · · · , d′R} and a projection π : Ĩ → I defined by π(k) =
b(k − 1)/Rc+ 1. Since we assumed that each elements of u and v can be re-sampled up to R− 1
times, we can replace the probability Eq. (8) in the proof of Lemma A.3 by

P
(
6 ∃i1, i2 ∈ Ĩ s.t. π(i1) = π(i2), |ũi1 − 1| ≤ ε

2
, |ṽi2 − w| ≤

ε

2

)
, (11)

where ũ1, · · · , ũd′R, ṽ1, · · · , ṽd′R ∼ U [−1, 1]. Since we have

#{(i1, i2) ∈ Ĩ × Ĩ : π(i1) = π(i2)} = d′R2, (12)

we can evaluate the probability Eq. (11) as

Eq. (11) ≤
(
1− ε2

16

)d′R2

≤ δ

2
,

for d′ ≥ 16
ε2R2 log

(
δ
2

)
. The rest of the proof is same as Lemma A.3. �

Then, we generalize the above lemma to the case which the target function f(x) is a single-variable
linear map with higher output dimensions.

Lemma A.5 Fix ε, δ ∈ (0, 1), d1, d2 ∈ N,w ∈ [−1, 1]d2 . Let u ∼ U [−1, 1]d1 , V ∼ U [−1, 1]d2×d1 be
uniformly random weights of a 2-layered neural network g(x) := V σ(u ·x). Let R ∈ N and we assume
that each elements of u and V can be re-sampled with replacement up to R− 1 times.

If d ≥ 2d 16d2ε2R2 log(
2d2
δ)e holds, then with probability at least 1− δ,

‖w · x− gM (x)‖2 ≤ ε, for all x ∈ R, |x| ≤ 1, (13)

where gM (x) := (V �M)Tσ(u · x) for some M ∈ {0, 1}d.

Proof: We denote V = (Vki)1≤k≤d2,1≤i≤d1 . As in the proof of Lemma A.3, we assume d1 = 2d′1
and split the index set {1, · · · , d1} into I = {1, · · · , d′1}, J = {d′1 + 1, · · · , d1}. Also we consider the
corresponding subnetworks of g(x):

gI(x) :=

(∑
i∈I

Vkiσ(uix)

)
1≤k≤d2

, gJ(x) :=

(∑
i∈J

Vkiσ(uix)

)
1≤k≤d2

.

Similar as the proof of Lemma A.3 and Lemma A.4, it is enough to show that there probably exists
a subnetwork of gI(x) which approximates w · σ(x) , and also that there simultaneously exists a
subnetwork of gJ(x) which approximates −w · σ(−x).

3

For simplicity, we focus on gI(x) in the following argument, but same conclusion holds for gJ (x)
as well. Fix k ∈ {1, · · · , d2}. Then we consider the following probability,

P
(
6 ∃i1, i2 ∈ Ĩ s.t. π(i1) = π(i2), |ũi1 − 1| ≤ ε

2
√
d2
, |Ṽk,i2 − w| ≤

ε

2
√
d2

)
, (14)

where ũi, Ṽki ∼ U [−1, 1] for i = 1, · · · , d′R. By using Eq. (12), if d′ ≥ 16d2
ε2R2 log

(
2d2
δ

)
, we have

Eq. (14) ≤
(
1− ε2

16d2

)d′R2

≤ δ

2d2

Therefore, by the union bound over k = 1, · · · , d2, we have i1, i2 ∈ Ĩ for each k such that i := π(i1) =

π(i2), |ũi1 − 1| ≤ ε
2
√
d2
, |Ṽk,i2 − wk| ≤ ε

2
√
d2
, with probability at least 1− δ, and thus∣∣wkσ(x)− Vkiσ(uix)∣∣ ≤ ε

2
√
d2
, for x ∈ R, |x| ≤ 1, (15)

if we substitute ũi1 for ui, and Ṽk,i2 for Vki. We note that the choice of ũi1 and Ṽk,i2 may not be
unique, but Eq. (15) does not depend on these choice.

Therefore, by taking M appropriately, we have

‖wx− gM (x)‖2 ≤ ‖wσ(x)− gI(x)‖2 + ‖−wσ(−x)− gJ(x)‖2
≤ ε

2
+
ε

2
= ε.

for all x ∈ R with |x| ≤ 1. �

Subsequently, we can generalize Lemma A.5 to multiple variables version:

Lemma A.6 Fix ε, δ ∈ (0, 1), d0, d1, d2 ∈ N, W ∈ [−1, 1]d2×d0 . Let U ∼ U [−1, 1]d1×d0 , V ∼
U [−1, 1]d2×d1 be uniformly random weights of a 2-layered neural network g(x) := V σ(Ux). Let
R ∈ N and we assume that each elements of U and V can be re-sampled with replacement up to
R− 1 times.

If d1 ≥ 2d0d 16d
2
0d2

ε2R2 log(2d0d2δ)e holds, then with probability at least 1− δ,

‖Wx− gM,N (x)‖2 ≤ ε, for all x ∈ Rd0 , ‖x‖∞ ≤ 1, (16)

where gM,N (x) := (V �M)Tσ((U �N) · x) for some M ∈ {0, 1}d2×d1 , N ∈ {0, 1}d1×d0 .

Proof: Let d′1 = d1/d0, and we assume d′1 ∈ N. We take N as the following binary matrix:

N =

1 0
. . .

0 1

 , where 1 =

1
...
1

 ∈ Rd
′
1×1

By the decomposition U �N = u1 ⊕ · · · ⊕ ud0 , where each ui is a d′1 × 1-matrix, we have

gM,N (x) = (V �M)T
(
σ(u1x1)⊕ · · · ⊕ σ(ud0xd0)

)
. (17)

Here, we denote M as follows:

M =

M1 · · · Md0

 ,

where each Mi is a d2 × d′1-matrix with binary coefficients. Then we have

V �M = (V1 �M1) + · · ·+ (Vd0 �Md0), Vi ∈ Rd2×d
′
1 . (18)

By combining Eq. (17) and Eq. (18), we have

gM,N (x) =
∑

1≤i≤d0

(Vi �Mi)σ(uixi). (19)

4

Applying Lemma A.5 to each independent summands in Eq. (19), with probability at least 1− δ
d0
,

there exists Mi for fixed i ∈ {1, · · · , d0} such that

‖wixi − (Vi �Mi)σ(uixi)‖2 ≤
ε

d0
, for xi ∈ R, |xi| ≤ 1, (20)

where wi is the i-th column vector of W .
Using the union bound, we have M1, · · · ,Md0 satisfying Eq. (20) simultaneously with probability

at least 1− δ. Therefore, by combining Eq. (19), Eq. (20) and the decomposition Wx =
∑
j wjxj ,

we obtain Eq. (16). �

Finally, by using Lemma A.6, we prove Theorem A.1. The outline of the proof is same as prior
works [6][7].

Proof of Theorem A.1: By Lemma A.6, for each fixed k ∈ {1, · · · , l}, we know that there exists
binary matrices M2k−1,M2k such that

‖Fkx− (G2k �M2k)σ
(
(G2k−1 �M2k−1)x

)
‖2 ≤

ε

2l
, (21)

for all x ∈ Rd0 with ‖x‖∞ ≤ 1, with probability at least 1− δ
l . Taking the union bound, we can get

M = (M1, · · · ,M2l) satisfying Eq. (21) for all k = 1, · · · , l with probability at least 1− δ.
For the above M and any x0 ∈ Rd0 with ‖x0‖∞ ≤ 1, we define sequences {xk}0≤k≤l and

{x̃k}0≤k≤l as

xk := fk(xk−1),

x̃0 := x0, x̃k := gM,k(x̃k−1),

where fk(x) and gM,k(x) are given by

fk(x) :=

{
σ
(
Fkx

)
, (1 ≤ k ≤ l − 1)

Flx, (k = l)

gM,k(x) :=

{
σ
(
(G2k �M2k)σ

(
(G2k−1 �M2k−1)x

))
, (1 ≤ k ≤ l − 1)

(G2l �M2l)σ
(
(G2l−1 �M2l−1)x

)
. (k = l)

By induction on k ∈ {0, · · · , l}, we can show that

‖xk − x̃k‖2 ≤
kε

l
, ‖x̃k‖∞ ≤ 2. (22)

For k = 1, this is trivial by definition. Consider the k > 1 case. First of all, we remark that the
following inequality is obtained by Eq. (21) and the 1-Lipschitz property of ReLU function σ:

‖fk(x)− gM,k(x)‖2 ≤
ε

2l
, for x ∈ Rd0 , ‖x‖∞ ≤ 1.

By scaling x, the above inequality can be rewritten as follows:

‖fk(x)− gM,k(x)‖2 ≤
ε

l
, for x ∈ Rd0 , ‖x‖∞ ≤ 2.

Then, we have

‖xk − x̃k‖2 = ‖fk(xk−1)− gM,k(x̃k−1)‖2
≤ ‖fk(xk−1)− fk(x̃k−1) + fk(x̃k−1)− gM,k(x̃k−1)‖2
≤ ‖fk(xk−1)− fk(x̃k−1)‖2 + ‖fk(x̃k−1)− gM,k(x̃k−1)‖2
≤ ‖Fk‖Frob · ‖xk−1 − x̃k−1‖2 +

ε

l

≤ kε

l
(by the induction hypothesis),

and ‖x̃k‖∞ ≤ ‖x̃k‖2 ≤ ‖xk‖2 + ‖xk − x̃k‖2 ≤ 1 + kε
l ≤ 2.

In particular, for k = l, Eq. (22) is nothing but Eq. (4). �

5

B Details for our experiments

B.1 Network architectures
In our experiments on CIFAR-10 and ImageNet, we used the following network architectures: Conv6,
ResNet18, ResNet34, ResNet50, and ResNet101. In Table 1 (for CIFAR-10) and Table 2 (for
ImageNet), we describe their configurations with a width factor ρ ∈ R>0. When ρ = 1.0, the
architectures are standard ones.

For each ResNet network, the bracket [· · ·] represents the basic block for ResNet18 and ResNet34,
and the bottleneck block for ResNet50 and ResNet101, following the original settings by He et al.
[3]. We have a batch normalization layer right after each convolution operation as well. Note that,
when we train and evaluate these networks with IteRand or edge-popup [8], we replace the batch
normalization to the non-affine one, which fixes its all learnable multipliers to 1 and all learnable
bias terms to 0 following the design by Ramanujan et al. [8].

Table 1: Network Architectures for CIFAR-10. (ρ: a width factor)

Layer
Network Conv6 ResNet18 ResNet34

3× 3 Convolution

64ρ, 64ρ, max-pool 64, [64ρ, 64ρ]× 2 64, [64ρ, 64ρ]× 3

& Pooling Layers

128ρ, 128ρ, max-pool [128ρ, 128ρ]× 2 [128ρ, 128ρ]× 4
256ρ, 256ρ, max-pool [256ρ, 256ρ]× 2 [256ρ, 256ρ]× 6

[512ρ, 512ρ]× 2 [512ρ, 512ρ]× 3
avg-pool avg-pool

Linear Layers 256ρ, 256ρ, 10 10 10

Table 2: Network Architectures for ImageNet. (ρ: a width factor)

Layer
Network ResNet18 ResNet34 ResNet50 ResNet101

Convolution 64 (7× 7, stride 2)

Pooling max-pool (3× 3, stride 2, padding 1)

Convolution
[64ρ, 64ρ]× 2 [64ρ, 64ρ]× 3 [64ρ, 64ρ, 256ρ]× 3 [64ρ, 64ρ, 256ρ]× 3

Blocks
[128ρ, 128ρ]× 2 [128ρ, 128ρ]× 4 [128ρ, 128ρ, 512ρ]× 4 [128ρ, 128ρ, 512ρ]× 4
[256ρ, 256ρ]× 2 [256ρ, 256ρ]× 6 [256ρ, 256ρ, 1024ρ]× 6 [256ρ, 256ρ, 1024ρ]× 23
[512ρ, 512ρ]× 2 [512ρ, 512ρ]× 3 [512ρ, 512ρ, 2048ρ]× 3 [512ρ, 512ρ, 2048ρ]× 3

Pooling avg-pool (7× 7)

Linear 1000

B.2 Hyperparameters
In our experiments, we trained several neural networks by three methods (SGD, edge-popup [8],
and IteRand) on two datasets (CIFAR-10 and ImageNet). For each dataset, we adopted different
hyperparameters as follows.

CIFAR-10 experiments.

• SGD: We used SGD with momentum for the optimization. It has the following hyperpa-
rameters: a total epoch number E, batch size B, learning rate η, weight decay λ, momentum
coefficient µ. For all network architectures, we used common values except for the learning rate
and weight decay: E = 100, B = 128, and µ = 0.9. For the learning rate and weight decay, we
used η = 0.01, λ = 1.0× 10−4 for Conv6, η = 0.1, λ = 5.0× 10−4 for ResNet18 and ResNet34,
following Ramanujan et al. [8]. Moreover, we decayed the learning rate by cosine annealing [4].

6

• edge-popup: With the same notation in Section 2, edge-popup has the same hyperparameters
as SGD and an additional one, a sparsity rate p. We used the same values as SGD for each
network except for the learning rate and the sparsity rate. For the learning rate, we used
η = 0.2 for Conv6, and η = 0.1 for ResNet18 and ResNet34. We decayed the learning rate by
cosine annealing, same as SGD. For the sparsity rate, we used p = 0.5 for Conv6, and p = 0.6
for ResNet18 and ResNet34.

• IteRand: With the notation in Section 3, IteRand has the same hypeparameters as edge-
popup and the following additional ones: a randomization period Kper ∈ N≥1 and a sampling
rate r ∈ [0, 1] for partial randomization. We used the same values as edge-popup for the former
hyperparameters, and Kper = 300, r = 0.1 for the latter ones.

ImageNet experiments.

• SGD: For all network architectures, we used the following hyperparameters (except for the
learning rate): E = 105, B = 128, λ = 1.0 × 10−4, and µ = 0.9. For the first 5 epochs, we
gradually increased the learning rate as η = 0.1× (i/5) for each i-th epoch (i = 1, · · · , 5). For
the next 95 epochs, we decayed the learning rate by cosine annealing starting from η = 0.1. For
the final 5 epochs, we set the learning rate η = 1.0× 10−5 to ensure the optimization converges.

• edge-popup: For all network architectures, we used the same hyperparameters as SGD and
the sparsity rate p = 0.7.

• IteRand: For all network architectures, we used the same hyperparameters as edge-popup
and Kper = 1000, r = 0.1.

B.3 Experimental results in table forms
Figure 2 in Section 5: In Table 3, we give means ± one standard deviations which are plotted
in Figure 2 in Section 5.

Table 3: Results for Figure 2 in Section 5

Network Method Dparam ρ = 0.25 ρ = 0.5 ρ = 1.0 ρ = 2.0

Conv6

IteRand SC 75.16± 0.23 84.31± 0.13 88.80± 0.20 90.89± 0.17
KU 73.90± 0.47 83.18± 0.38 88.20± 0.38 90.53± 0.28

edge-popup SC 70.35± 1.16 81.54± 0.11 87.60± 0.11 90.25± 0.06
KU 67.02± 1.14 79.37± 0.23 86.14± 0.37 89.91± 0.23

SGD KU 79.51± 0.88 84.46± 0.34 87.69± 0.36 89.63± 0.22

ResNet18

IteRand SC 86.09± 0.24 90.50± 0.36 92.61± 0.17 93.82± 0.15
KU 84.71± 0.42 89.96± 0.06 92.47± 0.16 93.52± 0.16

edge-popup SC 84.23± 0.33 89.61± 0.06 92.29± 0.04 93.57± 0.13
KU 81.13± 0.09 88.45± 0.53 91.79± 0.19 93.25± 0.06

SGD KU 90.99± 0.29 93.10± 0.14 94.43± 0.05 95.02± 0.23

ResNet34

IteRand SC 88.26± 0.35 91.87± 0.17 93.54± 0.27 94.25± 0.15
KU 87.36± 0.14 91.58± 0.16 93.27± 0.19 94.05± 0.10

edge-popup SC 87.37± 0.30 91.41± 0.26 93.27± 0.09 94.25± 0.13
KU 85.31± 0.66 90.85± 0.11 93.00± 0.11 93.96± 0.10

SGD KU 92.26± 0.12 94.20± 0.25 94.66± 0.18 95.33± 0.10

Figure 3 in Section 5: In Table 4, we give means ± one standard deviations which are plotted
in Figure 3 in Section 5.

7

Table 4: Results for Figure 3 in Section 5

Network Method Dparam Accuracy (Top-1) Sparsity (%) # of Params

ResNet18 SGD KU 69.89 0% 11.16M

ResNet34 SGD KU 73.82 0% 21.26M

ResNet34 IteRand SC 65.86 70% 6.38M
edge-popup SC 62.14 70% 6.38M

ResNet50 IteRand SC 69.19 70% 7.04M
edge-popup SC 67.11 70% 7.04M

ResNet101 IteRand SC 72.99 70% 12.72M
edge-popup SC 71.85 70% 12.72M

C Additional experiments

C.1 Ablation study on hyperparameters: Kper and r

IteRand has two hyperparameters: Kper (see line 5 in Algorithm 3) and r (see Eq. (3) in Section 3).
Kper controls the frequency of randomizing operations during the optimization. Note that, in

our experiments in Section 5, we fixed it to Kper = 300 on CIFAR-10, which is nearly 1 epoch
(= 351 iterations) when the batch size is 128. As we discussed in Section 3, too small Kper may
degrade the performance because it may randomize even the important weights before their scores
are well-optimized. In contrast, too large Kper makes IteRand almost same as edge-popup, and
thus the effect of the randomization disappears. Figure 1 shows this phenomenon with varying
Kper in {1, 30, 300, 3000, 30000}. In relation to our theoretical results (Theorem A.1), we note that
the expected number (here we denote R′) of randomizing operations for each weight is in inverse
proportion to Kper. The theoretical results imply that greater R′ leads to better approximation
ability of IteRand. We observe that the results in Figure 1 are consistent with this implication, in
the region where Kper is not too small (Kper ≥ 300).

(a) Conv6 (b) ResNet18

(c) ResNet34

Figure 1: We train and validate Conv6, ResNet18 and ResNet34 on CIFAR-10 with various Kper ∈
{1, 30, 300, 3000, 30000}. The x-axis is Kper in a log scale, and the y-axis is validation accuracy.

Also, we investigate the relationship between Kper and r. Figure 2 shows how test accuracy
changes when both Kper and r vary. From this result, we find that the accuracies seem to depend on
r/Kper. This may be because each pruned parameter in the neural network is randomized Nr/Kper

times in expectation during the optimization. On the other hand, when we use larger r ∈ [0, 1],

8

we have to explore Kper in longer period (e.g. 3000 iterations when r = 1.0). Thus appropriately
choosing r leads to shrink the search space of Kper.

Figure 2: Test accuracies on CIFAR-10 with ResNet18. The x-axis is Kper ∈ {1, 30, 300, 3000} and
the y-axis is r ∈ {0.001, 0.01, 0.1, 1.0}.

C.2 Computational overhead of iterative randomization
IteRand introduces additional computational cost to the base method, edge-popup, by iterative
randomization. However, the additional computational cost is negligibly small in all our experiments.
We measured the average overhead of a single randomizing operation, which is the only difference
from edge-popup, as follows: 97.10 ms for ResNet18 (11.2M params), 200.55 ms for ResNet50 (23.5M
params). Thus, the total additional cost should be about 10 seconds in the whole training (1.5 hours)
for ResNet18 on CIFAR-10 and 200–300 seconds in the whole training (one week) for ResNet50 on
ImageNet.

Also, we measured the total training times of our expriments for ResNet-18 on CIFAR-10 (Table
5). The additional computational cost of IteRand over edge-popup is tens of seconds, which is quite
consistent with the above estimates.

Table 5: Training times for ResNet18 on CIFAR-10.

IteRand 6253.69 (secs)

edge-popup 6231.80 (secs)

SGD 6388.61 (secs)

C.3 Experiments with varying sparsity
Table 6 shows the comparison of IteRand and edge-popup when varying the sparsity parameter
p ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 0.99}. We can see that IteRand is effective for almost all the sparsities
p.

Table 6: Test accuracies with various sparsities on CIFAR-10.

Networks Methods p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9 p = 0.95 p = 0.99

Conv6 IteRand (SC) 87.17± 0.21 89.08± 0.14 89.19± 0.13 87.67± 0.07 76.09± 0.23 59.03± 1.55 12.04± 3.40
edge-popup (SC) 80.31± 0.27 86.55± 0.22 87.57± 0.03 86.40± 0.13 73.25± 0.79 55.23± 1.48 12.13± 3.46

ResNet18 IteRand (SC) 91.79± 0.20 92.67± 0.11 92.66± 0.22 92.61± 0.15 91.82± 0.15 90.40± 0.42 76.31± 2.56
edge-popup (SC) 87.37± 0.18 91.43± 0.16 92.25± 0.18 92.32± 0.10 91.64± 0.18 90.28± 0.30 75.21± 2.71

Moreover, we compared the pruning-only approach (IteRand and edge-popup) and the iterative
magnitude pruning (IMP) approach [2] with various sparsity rates. We employed the OpenLTH
framework [1], which contains the implementation of IMP, as a codebase for this experiment and
implemented both edge-popup and IteRand in this framework. The results are shown in Table 7.

9

Overall, the IMP outperforms the pruning-only methods. However, there is still room for improvement
in the pruning-only approach such as introducing scheduled sparsities or an adaptive threshold,
which is left to future work.

Table 7: Comparison of the pruning-only approach and magnituide-based one.

Networks Methods p = 0.5 p = 0.7 p = 0.9 p = 0.95 p = 0.99

VGG11
IteRand (SC) 88.46± 0.22 88.29± 0.42 87.05± 0.07 84.37± 0.59 64.93± 4.81

edge-popup (SC) 87.09± 0.31 87.34± 0.21 85.11± 0.55 81.06± 0.84 61.71± 6.05
IMP with 3 retraining [2] 91.47± 0.15 91.48± 0.16 90.89± 0.08 90.39± 0.27 88.076± 0.17

ResNet20
IteRand (SC) 84.17± 0.78 82.31± 0.52 70.96± 0.55 55.60± 0.70 24.45± 0.67

edge-popup (SC) 76.57± 0.91 75.83± 2.75 49.25± 6.33 42.96± 3.91 20.11± 3.43
IMP with 3 retraining [2] 90.70± 0.37 89.79± 0.14 86.87± 0.26 84.28± 0.08 71.78± 1.66

C.4 Detailed empirical analysis on the parameter efficiency
We conducted experiments to see how much more network width edge-popup requires than IteRand
to achieve the same accuracy (Table 8). Here we use ResNet18 with various width factors ρ ∈ R>0.
We first computed the test accuracies of IteRand with ρ = 0.5, 1.0 as target values. Next we explored
the width factors for which edge-popup achieves the same accuracy as the target values. Table 8
shows that edge-popup requires 1.3 times wider networks than IteRand in this specific setting.

Table 8: Test accuracies for ResNet18 with various width factors.

ρ = 0.5 ρ = 0.65 ρ = 1.0 ρ = 1.3

IteRand (KU) 89.96± 0.06 - 92.47± 0.16 -

edge-popup (KU) 88.45± 0.53 89.99± 0.08 91.79± 0.19 92.54± 0.19

C.5 Experiments with large-scale networks
In addition to the experiments in Section 5, we conducted experiments to see the effectiveness
of IteRand with large-scale networks: WideResNet-50-2 [10] and ResNet50 with the width factor
ρ = 2.0. Table 9 shows that the iterative randomization is still effective for these networks to improve
the performance of weight-pruning optimization.

Table 9: Experiments with large-scale networks.

IteRand (SC) edge-popup (SC) # of parameters

WideResNet-50-2 73.57% 71.59% 68.8 M

ResNet50 (ρ = 2.0) 74.05% 72.96% 97.8 M

C.6 Experiments with a text classification task
Although our main theorem (Theorem 4.1) indicates that the effectiveness of IteRand does not
depend on any specific tasks, we only presented the results on image classification datasets in the
body of this paper. In Table 10, we present experimental results on a text classification dataset,
IMDB [5], with recurrent neural networks (see Table 11 for the network architectures). For this
experiment, we implemented both edge-popup and IteRand on the Jupyter notebook originally
written by Trevett [9]. All models are trained for 15 epochs and the learning rate η we used is η = 1.0
for SGD and η = 2.5 for edge-popup and IteRand. Note that the learning rate η = 2.5 does not work
well for SGD, thus we employed the different value from the one for edge-popup and IteRand. Also
we set the hyperparameters for IteRand as p = 0.5, Kper = b270/6c (≈ 1/6 epochs) and r = 1.0.

10

Table 10: Test accuracies on the IMDB dataset over 5 runs.

Networks
Methods IteRand (SC) edge-popup (SC) SGD

LSTM 88.44± 0.28% 88.16± 0.12% 87.39± 0.37%

BiLSTM 88.51± 0.24% 88.34± 0.19% 87.62± 0.22%

Table 11: The network architectures for IMDB.

Layer
Network (Bi)LSTM

Embedding Layer dim = 100

LSTM Layer hidden_dim = 256,num_layers = 1,
(bidirectional = True for BiLSTM)

Dropout Layer p = 0.2

Linear Layer output_dim = 1

Output Layer sigmoid

References
[1] Facebook. facebookresearch/open_lth. https://github.com/facebookresearch/open_lth.

Accessed: 2021-10-21.

[2] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778. IEEE Computer Society, 2016.

[4] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In
International Conference on Learning Representations, 2017.

[5] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies, pages 142–
150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.

[6] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery
ticket hypothesis: Pruning is all you need. In International Conference on Machine Learning,
pages 6682–6691. PMLR, 2020.

[7] Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris Papailiopoulos.
Optimal lottery tickets via subset sum: Logarithmic over-parameterization is sufficient. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 2599–2610. Curran Associates, Inc., 2020.

[8] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad
Rastegari. What’s hidden in a randomly weighted neural network? In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 11890–11899. IEEE
Computer Society, 2020.

[9] Ben Trevett. bentrevett/pytorch-sentiment-analysis. https://github.com/bentrevett/
pytorch-sentiment-analysis. Accessed: 2021-10-21.

11

https://github.com/facebookresearch/open_lth
https://github.com/bentrevett/pytorch-sentiment-analysis
https://github.com/bentrevett/pytorch-sentiment-analysis

[10] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock
Richard C. Wilson and William A. P. Smith, editors, Proceedings of the British Machine Vision
Conference (BMVC), pages 87.1–87.12. BMVA Press, September 2016.

12

	Proof of main theorem (Theorem 4.1)
	Settings and main theorem
	Proof of Theorem A.1

	Details for our experiments
	Network architectures
	Hyperparameters
	Experimental results in table forms

	Additional experiments
	Ablation study on hyperparameters: Kper and r
	Computational overhead of iterative randomization
	Experiments with varying sparsity
	Detailed empirical analysis on the parameter efficiency
	Experiments with large-scale networks
	Experiments with a text classification task

