
10 Supplementary Material for the paper LeadCache: Regret-Optimal
Caching in Networks by Debjit Paria and Abhishek Sinha

10.1 Proof of Lemma 1

From equation (4), we have that for any file request vector x and virtual caching configuration z ∶

r(x,z) = ⟨x,z⟩ ≤ q(x, ψ(z)).

Thus for any file request sequence {xt}t≥1, we have:

T

∑
t=1

r(xt,zt) ≤
T

∑
t=1

q(xt, ψ(zt)). (20)

On the other hand, let y∗ ∈ arg maxy∈Y ∑
T
t=1 q(xt,y) be an optimal static offline cache configu-

ration vector corresponding to the file requests {xt}
T
t=1. Consider a candidate static virtual cache

configuration vector z∗ ∈ Z defined as:

zi∗ ≡ min{1N×1, (∑
j∈∂+(i)

yj∗)}, 1 ≤ i ≤ n.

We have

max
z∈Z

T

∑
t=1

r(xt,z) ≥ ⟨
T

∑
t=1

xt,z∗⟩ = max
y∈Y

T

∑
t=1

q(xt,y). (21)

Combining Eqns. (20) and (21), we conclude that

max
y∈Y

T

∑
t=1

q(xt,y) −
T

∑
t=1

q(xt, ψ(zt)) ≤ max
z∈Z

T

∑
t=1

r(xt,z) −
T

∑
t=1

r(xt,zt). (22)

Taking supremum of both sides of inequality (22) over all possible file request sequences {xt}t≥1

yields the result. ∎

10.2 Proof of Theorem 1

Keeping Lemma 1 in view, to prove the desired regret upper bound for the LeadCache policy, it is
enough to bound the regret for the virtual policy πvirtual only. Following Cohen and Hazan [2015] we
derive a general expression for the regret upper bound applicable to any linear reward function under
an anytime FTPL policy. This is accomplished in the following steps. First, we extend the argument
of Cohen and Hazan [2015] to the anytime setting. Then, we specialize this bound to our problem
setting.

Recall the notations used in the paper - the aggregate file-request sequence from all users is denoted
by {xt}t≥1 and the virtual cache configuration sequence is denoted by {zt}t≥1. Define the cumulative
requests up to time t as:

Xt =
t−1

∑
τ=1

xτ .

Note that the LeadCache policy chooses the virtual cache configuration at time slot t by solving the
following optimization problem at time slot t:

zt = arg max
z∈Z

⟨z,Xt + ηtγ⟩, (23)

where each of theNn components of the random vector γ is sampled independently from the standard
Gaussian distribution, and Z denotes the set of all feasible virtual cache configurations as defined
earlier in the paper. Next, we define the following potential function:

Φηt(x) ≡ Eγ[max
z∈Z

⟨z,x + ηtγ⟩]. (24)

Since the perturbation r.v. γ is Gaussian, it follows that the potential function φηt(x) is twice
continuously differentiable [Abernethy et al., 2016, Lemma 1.5]. Furthermore, since the max function

14

is convex, we may interchange the expectation and gradient to obtain ∇Φηt(Xt) = E(zt) [Bertsekas,
1973, Proposition 2.2]. Thus we have:

⟨∇Φηt(Xt),xt⟩ = E⟨zt,xt⟩. (25)

To upper bound the regret of the LeadCache policy, we expand Φηt(Xt+1) in second-order Taylor’s
series as follows:

Φηt(Xt+1)

= Φηt(Xt +xt)

= Φηt(Xt) + ⟨∇Φηt(Xt),xt⟩ +
1

2
xTt ∇

2Φηt(X̃t)xt, (26)

where X̃t lies on the line segment joining Xt and Xt+1. Plugging in the expression of the inner
product from Eqn. (25) in expression (26), we obtain:

E⟨zt,xt⟩ = Φηt(Xt+1) −Φηt(Xt) −
1

2
xTt ∇

2Φηt(X̃t)xt. (27)

Summing up Eqn. (27) from t = 1 to T , the total expected reward accrued by the LeadCache policy
may be computed to be:

E(QLeadCache
(T))

=
T

∑
t=1

E⟨zt,xt⟩

=
T

∑
t=1

(Φηt(Xt+1) −Φηt(Xt)) −
1

2

T

∑
t=1

xTt ∇
2Φηt(X̃t)xt

=
T

∑
t=1

(Φηt(Xt+1) −Φηt+1(Xt+1) +Φηt+1(Xt+1) −Φηt(Xt)) −
1

2

T

∑
t=1

xTt ∇
2Φηt(X̃t)xt

=
T

∑
t=1

(Φηt(Xt+1) −Φηt+1(Xt+1)) +ΦηT+1(XT+1) −Φη1(X1) −
1

2

T

∑
t=1

xTt ∇
2Φηt(X̃t)xt.

Next, note that

ΦηT+1(XT+1) = Eγ[max
z∈Z

⟨z,XT+1 + ηT+1γ⟩]

(Jensen’s ineq.)
≥ max

z∈Z
[Eγ⟨z,XT+1 + ηT+1γ⟩]

= max
z∈Z

⟨z,XT+1⟩

= Q∗
(T),

where recall that Q∗(T) denotes the optimal cumulative reward up to time T obtained by the best
static policy in hindsight. Hence, from the above, we can upper bound the expected regret (2) of the
LeadCache policy as:

E(RLeadCache
T)

= Q∗
(T) −E(QLeadCache

(T))

≤ Φη1(X1) +
T

∑
t=1

(Φηt+1(Xt+1) −Φηt(Xt+1))

´¹¹¹¸¹¹¶
(a)

+
1

2

T

∑
t=1

xTt ∇
2Φηt(X̃t)xt. (28)

Bounding the term (a): Next, to upper bound the expected regret, we control term (a) in inequality
(28). From Eqns. (23) and (24), we can write:

Φηt+1(Xt+1) = E[⟨zt+1,Xt+1 + ηt+1γ⟩],

and

Φηt(Xt+1) ≥ E[⟨zt+1,Xt+1 + ηtγ⟩].

15

Hence, each term in the summation (a) may be upper bounded as follows:

Φηt+1(Xt+1) −Φηt(Xt+1) ≤ E[⟨zt+1,Xt+1 + ηt+1γ⟩] −E[⟨zt+1,Xt+1 + ηtγ⟩]

= E[⟨zt+1, (ηt+1 − ηt)γ)⟩]

= (ηt+1 − ηt)E[⟨zt+1,γ⟩]

≤ (ηt+1 − ηt)E[max
z∈Z

⟨z,γ⟩]

= (ηt+1 − ηt)G(Z),

where the quantity G(Z) is known as the Gaussian complexity of the set Z of virtual configurations
Wainwright [2019]. Since the Gaussian perturbation γ has zero mean, G(Z) is non-negative due
to Jensen’s inequality. Substituting the above upper bound back in Eqn. (28), we notice that the
summation in part (a) telescopes, yielding the following bound for the expected regret:

E(RLeadCache
T) ≤ ηT+1 G(Z)

²
(b)

+
1

2

T

∑
t=1

xTt ∇
2Φηt(X̃t)xt

´¹¹¸¹¹¶
(c)

. (29)

We now upper bound each of the terms (b) and (c) as defined in the above regret bound.

Bounding term (b) in Eqn. (29): In the following, we upper bound the Gaussian complexity of
the set Z:

G(Z) ≡ Eγ[max
z∈Z

⟨z,γ⟩].

From equation (4), we have for any feasible z ∈ Z:

∑
i∈I,f∈[N]

zif ≤ ∑
i∈I,f∈[N]

∑
j∈∂+(i)

yjf

= ∑
j∈J

∑
f∈[N]

∑
i∈∂−(j)

yjf

(a)
≤ d∑

j∈J

∑
f∈[N]

yjf

(b)
≤ dmC. (30)

where, in step (a), we have used our assumption that the right-degree of the bipartite graph G is upper
bounded by d, and in (b), we have used the fact that the capacity of each cache is bounded by C.

For any fixed z ∈ Z , the random inner-product ⟨z,γ⟩ follows a normal distribution with mean zero
and variance σ2 where

σ2
≡ E⟨z,γ⟩2

(a)
= ∑

i∈I,f∈[N]

(zif)
2 (b)
= ∑
i∈I,f∈[N]

zif
(c)
≤ dmC.

In the above, equality (a) follows from the fact that γ is a standard normal r.v., equality (b) follows
from the fact that the components zif ’s are binary-valued (hence, (zif)

2 = zif), and equality (c) follows
from the upper bound given in Eqn. (30).

Next, observe that since the feasible set Z is downward closed, if z∗ ∈ arg maxz∈Z⟨z,γ⟩, then
γif < 0 implies zi∗f = 0. Hence, we can simplify the expression for the Gaussian complexity of the set
Z as

G(Z) ≡ Eγ[max
z∈Z

⟨z,γ⟩] = Eγ[max
z∈Z

∑
(i,f)∶γi

f
>0

zifγ
i
f].

Since all coefficients γif in the above summation are positive, we conclude that there exists an optimal
vector z∗ ∈ Z such that the inequality in Eqn. (4) is met with an equality for other components of z,
i.e., ∀(i, f) ∶ γif > 0, we have

zi∗f = min(1, ∑
j∈∂+(i)

yj
∗f), (31)

16

for some y∗ ∈ Y. Let Z∗ be the set of all feasible virtual caching vectors satisfying (31) for some
feasible y∗ ∈ Y . Since the optimal virtual caching vector z∗ ∈ Z∗ is completely determined by the
corresponding physical caching vector y∗ ∈ Y, we have that ∣Z∗∣ ≤ ∣Y ∣. Furthermore, since any of the
m caches can be loaded with any C files, we have the bound:

∣Y ∣ ≤ (
N

C
)

m

≤ (
Ne

C
)

mC

, (32)

where the last inequality is a standard upper bound for binomial coefficients. Finally, using Massart
[2007]’s lemma for Gaussian variables, we have

G(Z) ≡ Eγ[max
z∈Z

⟨z,γ⟩] = Eγ[max
z∈Z∗

∑
(i,f)∶γi

f
>0

zifγ
i
f] ≤

√
dmC

√
2 log ∣Z∗∣

≤ mC

¿
Á
ÁÀ2d(log

N

C
+ 1). (33)

Bounding term (c) in Eqn. (29): Let us denote the file requested by the ith user at time t by fi.
Using Abernethy et al. [2016, Lemma 1.5], we have

(∇
2Φηt(X̃t))pq

=
1

ηt
E[ẑpγq], (34)

where ẑ ∈ arg maxz∈Z⟨z, X̃t + ηtγ⟩, and each of the indices p,q is a (user, file) tuple. Hence, using
Eqn. (34), and noting that each user requests only one file at a time, we have:

xTt ∇
2Φηt(X̃t)xt =

1

ηt
∑
i,j∈I

E[ẑifiγ
j
fj
]

=
1

ηt
E(∑

i∈I

ẑifi)(∑
j∈I

γjfj)

(a)
≤

1

ηt

√

E(∑
i∈I

ẑifi)
2E(∑

j∈I

γjfj)
2

(b)
≤

1

ηt

√
n2 × n

=
1

ηt
n3/2, (35)

where the inequality (a) follows from the Cauchy-Schwartz inequality and the inequality (b) follows
from the facts that z are binary variables and that the components of the random vector γ are i.i.d.
Finally, substituting the upper bounds from Eqns. (33) and (35) in the regret upper bound in Eqn.
(29), we may upper bound the expected regret of the LeadCache policy as:

E(RLeadCache
T) ≤ ηT+1G(Z) +

n3/2

2

T

∑
t=1

1

ηt

≤ ηT+1mC

¿
Á
ÁÀ2d(log

N

C
+ 1) +

n3/2

2

T

∑
t=1

1

ηt
,

where the bound in the last inequality follows from Eqn. (33). Choosing the learning rates ηt = β
√
t

with an appropriate constant β > 0 yields the following regret upper bound:

E(RLeadCache
T) ≤ kn3/4d1/4

√
mCT,

for some k = O(poly-log(N/C)). ∎

11 Proof of Theorem 2

Denote the objective function of Problem (8) by L(y) ≡ ∑i,f θ
i
f min(1,∑j∈∂+(i) y

j
f), where, to

simplify the notations, we have not explicitly shown the dependence of the θ coefficients on the time

17

index t. Recall the definition of surrogate objective function φ(y) given in Eqn. (15):

φ(y) =∑
i,f

(θif)
+(1 − ∏

j∈∂+(i)
(1 − yjf)), (36)

From Ageev and Sviridenko [2004, Eqn. (16)], we have the following algebraic inequality:

L(y)
(a)
≥ φ(y) ≥ (1 − (1 −

1

∆
)
∆
)L(y), (37)

where ∆ ≡ maxi∈I ∣∂
+(i)∣. Note that inequality (a) holds with equality for binary vectors y ∈

{0,1}mN .
Let y∗ be a solution of the relaxed LP (9), and OPT be the optimal value of the problem (8).
Obviously, L(y∗) ≥ OPT, which, combined with the estimate in Eqn. (37), yields:

φ(y∗) ≥ (1 − (1 −
1

∆
)
∆
)OPT. (38)

Since y∗ is a solution to the relaxed LP, it may possibly contain fractional coordinates. In the
following, we show that the Pipage rounding procedure, described in Algorithm 2, rounds at least
one fractional variable of a cache at a round without decreasing the value of the surrogate objective
function φ(⋅) (Steps 3-6).
For a given fractional allocation vector y, and another vector vy of our choice depending on y, define
a one-dimensional function gy(⋅) as:

gy(s) = φ(y + svy). (39)

The vector vy denotes the direction along which the fractional allocation vector y is rounded in
the current step. The Pipage rounding procedure, Algorithm 2, chooses the vector vy as follows:
consider any cache j that has at least two fractional coordinates yjf1 and yjf2 in the current allocation
y (Step 3 of Algorithm 2) 2. Take vy = ej,f1 − ej,f2 , where ej,l denotes the standard unit vector with
1 in the coordinate corresponding to the lth file of the jth cache, l = f1, f2. We now claim that the
function gy(s) = φ(y + svy) is linear in s. To see this, consider any one of the constituent terms of
gy(s) as given in Eqn. (36). Examining each term, we arrive at the following two cases:

1. If both f ≠ f1 and f ≠ f2 then that term is independent of s.

2. If either f = f1, or f = f2, the variables yjf1 or yjf2 may appear in each product term in (36)
at most once. Since the product terms contain exactly one variable corresponding to each
file, the variables yjf1 and yjf2 can not appear in the same product term together.

The above two cases imply that the function gy(s) is linear in s. By increasing and decreasing the
variable s to the maximum extent possible, so that the candidate allocation y + svy does not violate
the constraint (12), we construct two new candidate allocation vectorsα = y−ε1vy and β = y+ε2vy,
where the constants ε1 and ε2 are chosen in such a way that at least one of the fractional variables of
y becomes integral (Steps 4-5). It is easy to see that, by design, all cache capacity constraints in Eqn.
(11) continue to hold in both of these two candidate allocations. In step 6, we choose the best of the
candidate allocations α and β, corresponding to the surrogate function φ(⋅). Let ynew denote the new
candidate allocation vector. Since the maximum of a linear function over an interval is achieved on
one of its two boundaries, we conclude that φ(ynew) ≥ φ(y). As argued above, the rounded solution
is feasible and has at least one less fractional coordinate. Hence, by repeated application of the above
procedure, we finally arrive at a feasible integral allocation ŷ such that:

L(ŷ) = φ(ŷ) ≥ φ(y∗) ≥ (1 − (1 −
1

∆
)
∆
)OPT,

where the first equality follows from that fact that the functions φ(y) = L(y) on integral points. ∎

2Since the cache capacities are integers, there cannot be a cache with only one fractional allocation variable.

18

12 Madow’s Sampling Scheme

Madow’s sampling scheme is a simple statistical procedure for randomly sampling a subset of items
without replacement from a larger universe with a specified set of inclusion probabilities [Madow
et al., 1949]. The pseudocode for Madow’s sampling scheme is given in Algorithm 4. It samples
C items without replacement from a universe with N items such that the item i is included in the
sampled set with probability pi,1 ≤ i ≤ N. The inclusion probabilities satisfy the feasibility constraint
given by Eqn. (18).

Algorithm 4 Madow’s Systematic Sampling Scheme without Replacement
Input: A universe [N] of size N , cardinality of the sampled set C, marginal inclusion probability

vector p = (p1, p2, . . . , pN) satisfying the feasibility condition (18),
Output: A random set S with ∣S∣ = C such that, P(i ∈ S) = pi,∀i ∈ [N]

1: Define Π0 = 0, and Πi = Πi−1 + pi,∀1 ≤ i ≤ N.
2: Sample a uniformly distributed random variable U from the interval [0,1].
3: S ← φ
4: for i← 0 to C − 1 do
5: Select element j if Πj−1 ≤ U + i < Πj .
6: S ← S ∪ {j}.
7: end for
8: Return S

Correctness: The correctness of Madow’s sampling scheme is easy to verify. Due to the feasibility
condition (18), Algorithm 4 selects exactly C elements. Furthermore, the element j is selected if the
random variable U falls in the interval ⊔Ni=1[Πj−1 − i,Πj − i). Since U is uniformly distributed in
[0,1], the probability that the element j is selected is equal to Πj −Πj−1 = pj ,∀j ∈ [N].

13 Proof of Proposition 1

The proof of the regret bound with the relaxed action set Zrel follows the same line of arguments as
the proof of Theorem 1 with integral cache allocations. In particular, we decompose the regret bound
as in Eqn. (29), with the difference that we now replace the feasible set Z in term (b) with the relaxed
feasible set Zrel. Observe that, for bounding the term (c), we did not exploit the fact that the variables
are integral. Hence, the bound (35) holds in the case of the relaxed feasible set as well. However, for
bounding the Gaussian complexity in term (b) in the proof of Theorem 1, we explicitly used the fact
that the cache allocations (and hence, the virtual actions) are integral (viz. the counting argument in
Eqn. (32)). To get around this issue, we now give a different argument for bounding the Gaussian
complexity in term (b) for the relaxed action set Zrel. Note that for any feasible (z,y) ∈ Zrel, we have

∣∣z∣∣1 =∑
i,f

zif ≤∑
i

∑
j∈∂+(i),f

yjf ≤ d∑
j

∑
f

yjf ≤mCd, (40)

where we have used the fact that each cache is connected to at most d users and that each cache can
hold C files at a time. Hence, we have

G(Zrel) = Eγ[max
z∈Zrel

⟨z,γ⟩]
(Hölder’s ineq.)

≤ Eγ[max
z∈Zrel

∣∣z∣∣1∣∣γ∣∣∞] ≤mCd
√

4 ln(Nn), (41)

where, in the last inequality, we have used the `1-norm bound (40) along with a standard upper bound
on the expectation of the maximum of the absolute value of a set of i.i.d. standard Gaussian random
variables [Wainwright, 2019]. Now proceeding similarly as in the proof of the regret bound for the
action set Z , we conclude that with an appropriate learning rate sequence, we have the following
regret upper bound for the relaxed action set Zrel ∶

E(R̃LeadCache
T) ≤ κ1n

3/4
√
dmCT,

for some polylogarithmic factor κ1. ∎

19

14 Proof of Theorem 4

Discussion: To intuitively understand why the total number of fetches is expected to be small under
the LeadCache policy, consider the simplest case of a single cache with a single user [Bhattacharjee
et al., 2020]. At every slot, the LeadCache policy populates the cache with a set of C files having
the highest perturbed cumulative count of requests Θ(t). For the sake of argument, assume that the
learning rate ηt is time-invariant. Since at most one file is requested by the user per slot, only one
component of Θ(t) changes at a slot, and hence, the LeadCache policy fetches at most one new file
at any time slot. Surprisingly, the following rigorous argument proves a far stronger result: the total
number of fetches over an infinite time interval remains almost surely finite, even with a time-varying
learning rate in the network caching setting.

Proof: Recall that, under the LeadCache policy, the optimal virtual caching configuration zt for the
tth slot is obtained by solving the optimization problem P:

max
z∈Z

∑
i∈I

⟨θi(t),zi⟩, (42)

where we assume that the ties (if any) are broken according to some fixed tie-breaking rule. As
discussed before, the corresponding physical cache configuration yt may be obtained using the
mapping ψ(⋅). Now consider a static virtual cache configuration z̃ obtained by replacing the
perturbed-count vectors θi(t) in the objective function (42) with the vectors pi,∀i ∈ I, where
p = (pi, i ∈ I) is defined to be the vector of long-term file-request probabilities, given by Eqn. (19).
In other words,

z̃ ∈ arg max
z∈Z

∑
i∈I

⟨pi,zi⟩. (43)

Since the set of all possible virtual caching configurationsZ is finite, the objective value corresponding
to any other non-optimal caching configuration must be some non-zero gap δ > 0 away from that of
an optimal configuration. Let us denote the set of all sub-optimal virtual cache configuration vectors
by B. Hence, for any z ∈ B, we must have:

∑
i∈I

⟨pi, z̃i⟩ ≥∑
i∈I

⟨pi,zi⟩ + δ. (44)

Let us define an “error" event E(t) to be event such that the LeadCache policy yields a sub-optimal
virtual cache configuration (and possibly, a sub-optimal physical cache configuration (4)) at time
t. Let G be a zero-mean Gaussian random variable with variance 2Nn. We now upper bound the
probability of the error event E(t) as below:

P(E(t))
(a)
≤ P(∑

i∈I

⟨θi(t),zi(t)⟩ >∑
i∈I

⟨θi(t), z̃i⟩,z(t) ∈ B)

(b)
≤ P(ηtG ≥∑

i∈I

⟨Xi
(t), z̃i⟩ −∑

i∈I

⟨Xi
(t),zi(t)⟩,z(t) ∈ B)

(c)
= P(ηtG ≥∑

i∈I

⟨Xi
(t), z̃i⟩ −∑

i∈I

⟨Xi
(t),zi(t)⟩,∑

i∈I

⟨Xi
(t), z̃i⟩ −∑

i∈I

⟨Xi
(t),zi(t)⟩ >

δt

2
,z(t) ∈ B)

+P(ηtG ≥∑
i∈I

⟨Xi
(t), z̃i⟩ −∑

i∈I

⟨Xi
(t),zi(t)⟩,∑

i∈I

⟨Xi
(t), z̃i⟩ −∑

i∈I

⟨Xi
(t),zi(t)⟩ ≤

δt

2
,z(t) ∈ B)

(d)
≤ P(ηtG ≥

δt

2
) + P(

1

t
∑
i∈I

⟨Xi
(t), z̃i − zi(t)⟩ ≤

δ

2
,z(t) ∈ B)

= P(ηtG ≥
δt

2
) + P(∑

i∈I

⟨
Xi(t)

t
− pi, z̃i − zi(t)⟩ +∑

i∈I

⟨pi, z̃i − zi(t)⟩ ≤
δ

2
,z(t) ∈ B)

(e)
≤ P(ηtG ≥

δt

2
) + P(∑

i∈I

⟨
Xi(t)

t
− pi, z̃i − zi(t)⟩ ≤ −

δ

2
)

(f)
≤ P(ηtG ≥

δt

2
) + P(∑

i∈I

∑
f∈[N]

∣
Xi
f(t)

t
− pif ∣ ≥

δ

2
)

20

(g)
≤ P(ηtG ≥

δt

2
) + P(⋃

i,f

∣
Xi
f(t)

t
− pif ∣ ≥

δ

2Nn
)

(h)
≤ P(ηtG ≥

δt

2
) +∑

i,f

P(∣
Xi
f(t)

t
− pif ∣ ≥

δ

2Nn
)

(i)
≤ exp(−ct) +Nnαε(t).

for some positive constants c and ε, which depend on the problem parameters.

In the above chain of inequalities:

(a) follows from the fact that on the error event E(t), the virtual cache configuration vector z(t) must
be in the sub-optimal set B and, by definition, it must yield more objective value in (42) than the
optimal virtual cache configuration vector z̃,
(b) follows by writing Θ(t) =X(t) + ηtγ, and observing that the virtual configurations z(t) ∈ B
and z̃(t) may differ in at most Nn coordinates, and that the normal random variables are increasing
(in the convex ordering sense) with their variances,
(c) follows from the law of total probability,
(d) follows from the monotonicity of the probability measures,
(e) follows from Eqn. (44),
(f) follows from the fact that for any two equal-length vectors a,b, triangle inequality yields:

⟨a,b⟩ ≥ −∑
k

∣ak ∣∣bk ∣,

and that ∣z̃if − z
i
f(t)∣ ≤ 1,∀i, f,

(g) follows from the simple observation that at least one number in a set of some numbers must be at
least as large as the average,
(h) follows from the union bound,
and finally, the inequality (i) follows from the concentration inequality for Gaussian variables and the
concentration inequality for the request process {X(t)}t≥1, as given by Eqn. (19). Using the above
bound and the assumptions on the request sequence, we have

∑
t≥1

P(E(t)) ≤∑
t≥1

exp(−ct) +Nn∑
t≥1

αε(t) <∞.

Hence, the first Borel-Cantelli Lemma implies that

P(E(t) i.o) = 0.

Hence, almost surely, the error events stop after a finite time. Thus, with a fixed tie-breaking rule, the
new file fetches stop after a finite time w.p. 1. ∎

15 Renewal Processes satisfies the Regularity Condition (A)

Suppose that, for any i ∈ I, f ∈ [N], the cumulative request process {Xi
f(t)}t≥1 constitutes a

renewal process such that the renewal intervals have a common expectation 1/pif and a finite fourth
moment. Let Sk be the time of the kth renewal, k ≥ 1 [Ross, 1996]. In other words, the ith user
requests file f for the kth time at time Sk, k ≥ 1. Then we have

P(
Xi
f(t)

t
− pif ≤ −ε) = P(Xi

f(t) ≤ t(p
i
f − ε))

≤ P(S⌊t(pi
f
−ε)⌋ ≥ t)

≤ P((S⌊t(pi
f
−ε)⌋ − ⌊t(pif − ε)⌋)

4
≥ (t(1 − pif + ε))

4
)

(a)
≤ O(

1

t2
),

21

where, in (a), we have used the Markov Inequality along with a standard upper bound on the fourth
moment of a centered random walk. Using a similar line of arguments, we can show that

P(
Xi
f(t)

t
− pif ≥ ε) ≤ O(

1

t2
).

Combining the above two bounds, we conclude that

∑
t≥1

P(∣
Xi
f(t)

t
− pif ∣ ≥ ε) <∞.

The above derivation verifies the regularity condition A for renewal request processes. ∎

16 Proof of Theorem 5

We establish a slightly stronger result by proving the announced lower bound for a regular bipartite
network with uniform left-degree dL and uniform right-degree d. Counting the total number of edges
in two different ways, we have ndL =md. Hence, dL = md

n
. For pedagogical reasons, we divide the

entire proof into several logically connected parts.

(A) Some Observations and Preliminary Lemmas: To facilitate the analysis, we introduce the
following surrogate linear reward function:

qlinear(x,y) ≡∑
i∈I

xit ⋅ (∑
j∈∂+(i)

yjt). (45)

We begin our analysis with the following two observations:

1. Upper Bound: From the definition (1) of the rewards, we clearly have:

q(x,y) ≤ qlinear(x,y), ∀x,y. (46)

2. Local Exclusivity implies Linearity: In the case when all caches connected to each user
host different files, i.e., the cached files are locally exclusive in the sense that they are not
duplicated from each user’s local point-of-view, i.e.,

yj1 ⋅ yj2 = 0, ∀j1 ≠ j2 ∶ j1, j2 ∈ ∂
+
(i),∀i ∈ I, (47)

the reward function (1) reduces to a linear one:

q(x,y) = qlinear(x,y), ∀x,y. (48)

The equation (48) follows from the fact that with the local exclusivity constraint, we have

∑
j∈∂+(i)

yjt ≤ 1, ∀i ∈ I,

where the inequality holds component wise. Hence, the ‘min’ operator in the definition of the reward
function (Eqn. (1)) is vacuous in this case. To make use of the linearity of the rewards as in Eqn.
(48), the caches need to store items in such a way that the local exclusivity condition (47) holds.
Towards this, we now define a special coloring of the nodes in the set J for a given bipartite graph
G(I ⊍J ,E).

Definition 2 (Valid χ-coloring of the caches). Let χ be a positive integer. A valid χ-coloring of the
caches of a bipartite network G(I ⊍J ,E) is an assignment of colors from the set {1,2, . . . , χ} to
the vertices in J (i.e., the caches) in such a way that all neighboring caches ∂+(i) to every node
i ∈ I (i.e., the users) are assigned different colors.

Obviously, for a given bipartite graph G, a valid χ-coloring of the caches exists only if the number of
possible colors χ is large enough. The following lemma gives an upper bound to the value of χ so
that a valid χ-coloring of the caches exists.

22

Lemma 2. Consider a bipartite network G(I ⊍J ,E), where each user i ∈ I is connected to at
most dL caches, and each cache j ∈ J is connected to at most d users. Then there exists a valid
χ-coloring of the caches where χ ≤ dLd.

Proof. From the given bipartite network G(V,E), construct another graph H(V ′,E′), where the
caches form the vertices of H , i.e., V ′ ≡ J . For any two vertices in u, v ∈ V ′, there is an edge
(u, v) ∈ E′ if and only if a user i ∈ I is connected to both the caches u and v in the bipartite network
G. Next, consider any cache j ∈ J . By our assumption, it is connected to at most d users. On the
other hand, each of the users is connected to at most dL − 1 caches other than j. Hence, the degree of
any node j in the graph H is upper bounded as:

∆′
≤ d(dL − 1) ≤ dLd − 1.

Finally, using Brook’s theorem Diestel [2005], we conclude that the vertices of the graph H may be
colored using at most 1 +∆′ ≤ dLd different colors.

(B) Probabilistic Method for Regret Lower Bounds: With the above results at our disposal,
we now employ the well-known probabilistic method for proving the regret lower bound [Alon
and Spencer, 2004]. The basic principle of the probabilistic method is quite simple. We compute
a lower bound to the expected regret for any online network caching policy π for a chosen joint
probability distribution p(x1,x2, . . . ,xT) over an ensemble of incoming file request sequence. Since
the maximum of a set of numbers is at least as large as the expectation, the above quantity also gives
a lower bound to the regret for the worst-case file request sequence. Clearly, the tightness of the
resulting bound largely depends on our ability to identify a suitable input distribution p(⋅) that is
amenable to analysis and, at the same time, yields a good bound. In the following, we show how this
program can be elegantly carried out for the network caching problem.

Fix a valid χ-coloring of the caches, and let k = χC. Consider a library consisting ofN = 2k different
files. We now choose a randomized file request sequence {xit ≡ αt}

T
t=1 where each user i requests

the same (random) file αt at slot t such that the common file request vector αt is sampled uniformly
at random from the set of the first 2k unit vectors {ei ∈ R2k,1 ≤ i ≤ 2k} independently at each slot 3.
Formally, we choose:

p(x1,x2, . . . ,xT) ∶=
T

∏
t=1

(
1

2k
1(xi1t = xi2t , ∀i1, i2 ∈ I)).

(C) Upper-bounding the Total Reward accrued by any Online Policy: Making use of observa-
tion (46), the expected total reward GπT accrued by any online network caching policy π may be
upper bounded as follows:

GπT ≤ E(
T

∑
t=1
∑
i∈I

xit ⋅ ∑
j∈∂+(i)

yjt)

(a)
=

T

∑
t=1

∑
(i,j)∈E

E(xit ⋅ y
j
t)

(b)
=

T

∑
t=1

∑
(i,j)∈E

E(xit) ⋅E(yjt)

(c)
=

1

2k

T

∑
t=1

E(∑
(i,j)∈E

∑
f∈[N]

yjtf)

(d)
≤

d

2k

T

∑
t=1

E(∑
j∈J

∑
f∈[N]

yjtf)

(e)
≤

dmCT

2k
, (49)

3Recall that, according to our one-hot encoding convention, a request for a file f by any user corresponds to
the unit vector ef .

23

where the eqn. (a) follows from the linearity of expectation, eqn. (b) follows from the fact that the
cache configuration vector yt is independent of the file request vector xt at the same slot, as the
policy is online, the eqn. (c) follows from the fact that each of the N = 2k components of the vector
E(xit) is equal to 1

2k
, the inequality (d) follows from the fact that each cache is connected to at most

d users, and finally, the inequality (e) follows from the cache capacity constraints.

(D) Lower-bounding the Total Reward Accrued by the Static Oracle: We now lower bound
the total expected reward accrued by the optimal static offline policy (i.e., the first term in the regret
definition (2)). Note that, due to the presence of the ‘min’ operator in (1), obtaining an exactly optimal
static cache configuration vector y∗ is non-trivial, as it requires solving an NP-hard optimization
problem (8) (with the vector θ(t) in the objective replaced by the cumulative file request vector
X(T) ≡ ∑

T
t=1 xt). However, since we only require a good lower bound to the total expected reward,

a suitably constructed sub-optimal caching configuration will serve our purpose, provided that we
can compute a lower bound to its expected reward. Towards this end, in the following, we construct a
joint cache configuration vector y⊥ that satisfies the local exclusivity constraint (47).

D.1 Construction of a “good" cache configuration vector y⊥: Let X be a valid χ-coloring of
the caches. Let the color c appear in fc different caches in the coloring X . To simplify the notations,
we relabel the colors in non-increasing order of their frequency of appearance in the coloring X , i.e.,

f1 ≥ f2 ≥ . . . ≥ fχ. (50)

Let the vector v be obtained by sorting the components of the vector ∑Tt=1αt in non-increasing order.
Partition the vector v into 2k

C
= 2χ segments by sequentially merging C contiguous coordinates of

v at a time. Let cj denote the color of the cache j ∈ J in the coloring X . The cache configuration
vector y⊥ is constructed by loading each cache j ∈ J with the set of all C files in the cj th segment of
the vector v. See Figure 4 for an illustration.

1 32 4 5 ... χ

fred(1) ≥ fblue(2) ≥ fgreen(3) ≥ fyellow(4)
≥ . . . ≥ fpink(χ)

v =
∑T
t=1 αt =

1

2

...

C

C + 1

...

2C

(J − 1)C + 1

...

JC

...

2k

1

2

χ

Cache 1

Cache 2

Cache J

...

Most popular half

Figure 4: Construction of the caching configuration y⊥.

D.2 Observation: Since the vector v has 2χ segments (each containing C different files) and the
number of possible colors in the coloring X is χ, it follows that only the most popular half of the files
get mapped to some caches under y⊥. Moreover, it can be easily verified that the cache configuration
vector y⊥ satisfies the local exclusivity property (47).

D.3 Analysis: Let Sv(m) denote the sum of the frequency counts in the mth segment of the vector
v. In other words, Sv(m) gives the aggregate frequency of requests of the files in the mth segment of
the vector v. By construction, we have

Sv(1) ≥ Sv(2) ≥ . . . ≥ Sv(χ). (51)

24

Since under the distribution p, all users request the same file at each time slot (i.e., xit = αt,∀i), and
since the linearity in rewards holds due to the local exclusivity property of the cache configuration
y⊥, the reward obtained by the files in the jth cache under the caching configuration y⊥ is given by:

yj⊥ ⋅ (∑
i∈∂−(j)

T

∑
t=1

xit) = yj⊥ ⋅ (∑
i∈∂−(j)

T

∑
t=1

αt)

(a)
= dyj⊥ ⋅ (

T

∑
t=1

αt)

(b)
= dSv(cj), (52)

where the equation (a) follows from the fact that, in this converse proof, we are investigating a regular
bipartite network where each cache is connected to exactly d users, and the equation (b) follows from
the construction of the cache configuration vector y⊥. Hence, the expected aggregate reward accrued
by the optimal stationary configuration y∗ may be lower-bounded by that of the configuration y⊥ as
follows:

Gπ
∗
T

(a)
≥ E(∑

j∈J

yj⊥ ⋅ (∑
i∈∂−(j)

T

∑
t=1

xit))

(b)
= dE(∑

j∈J

Sv(cj))

(c)
= dE(

χ

∑
c=1

fcSv(c))

(d)
≥

d

χ
(

χ

∑
c=1

fc)E(

χ

∑
c=1

Sv(c)),

where
(a) follows from the local exclusivity property of the configuration y⊥,
(b) follows from Eqn. (52),
(c) follows after noting that the color c appears on fc different caches in the coloring X ,
(d) follows from an algebraic inequality presented in Lemma 3 below, used in conjunction with the
conditions (50) and (51).

Next, we lower bound the quantity E(∑
χ
c=1 Sv(c)) appearing on the right hand side of the equation

(53). Conceptually, identify the catalog with N = 2k “bins", and the random file requests {αt}
T
t=1 as

“balls" thrown uniformly into one of the “bins." With this correspondence in mind, a little thought
reveals that the random variable ∑χc=1 Sv(c) is distributed identically as the total load in the most
popular k = χC bins when T balls are thrown uniformly at random into 2k bins. Continuing with the
above chain of inequalities, we have

Gπ
∗
T

(e)
≥

dmC

k
E(load in the most popular half of 2k bins with T balls thrown u.a.r.)

(f)
≥

dmC

k
(
T

2
+

√
kT

2π
) −Θ(

1
√
T
)

=
dmCT

2k
+ dmC

√
T

2πk
−Θ(

1
√
T
), (53)

where, in the inequality (e), we have used the fact that ∑χc=1 fc =m, and the inequality (f) follows
from Lemma 4 stated below. Hence, combining Eqns. (49) and (53), and noting that k = χC ≤

dLdC = mCd2

n
from Lemma 2, we conclude that for any caching policy π ∶

RπT ≥ Gπ
∗
T −GπT ≥

√
mnCT

2π
−Θ(

1
√
T
). (54)

Moreover, making use of a Globally exclusive configuration (where all caches store different files), in
Theorem 7 of their paper, Bhattacharjee et al. [2020] proved the following regret lower bound for any

25

online caching policy π:

RπT ≥ d

√
mCT

2π
−Θ(

1
√
T
). (55)

Hence, combining the bounds from Eqns. (54) and (55), we conclude that

RπT ≥ max(

√
mnCT

2π
, d

√
mCT

2π
) −Θ(

1
√
T
).

∎

Lemma 3. Let f1 ≥ f2 ≥ . . . ≥ fn and s1 ≥ s2 ≥ . . . ≥ sn be two non-increasing sequences of n
real numbers each. Then

n

∑
i=1

fisi ≥
1

n
(
n

∑
i=1

fi)(
n

∑
i=1

si).

Proof. From the rearrangement inequality (Hardy et al. [1952]), we have for each 0 ≤ j ≤ n − 1 ∶

n

∑
i=1

fisi ≥
n

∑
i=1

sif(i+j)(mod n)+1, (56)

where the modulo operator is used to cyclically shift the indices. Summing over the inequalities (56)
for all 0 ≤ j ≤ n − 1, we have

n
n

∑
i=1

fisi ≥ (
n

∑
i=1

fi)(
n

∑
i=1

si),

which yields the result.

Lemma 4 (Bhattacharjee et al. [2020]). Suppose that T balls are thrown independently and
uniformly at random into 2C bins. Let the random variable MC(T) denote the number of balls
in the most populated C bins. Then

E(MC(T)) ≥
T

2
+

√
CT

2π
−Θ(

1
√
T
).

17 Additional Experimental Results

In this section, we compare the performance of the LeadCache policy (with Pipage rounding) with
other standard caching policies on two datasets taken from two different application domains. We
observe that the relative performance of the algorithms remains qualitatively the same across the
datasets, with the LeadCache policy consistently maintaining the highest hit rate. In our experiments,
we instantiated a randomly generated bipartite network with n = 30 users and m = 10 caches. Each
cache is connected to d = 8 randomly chosen users. The capacity of each cache is taken to be 10%
of the library size. Our experiments are run on HPE Apollo XL170rGen10 Servers with Dual Intel
Xeon Gold 6248 20-core and 192 GB RAM.

17.1 Experiments with the CMU dataset [Berger et al., 2018]

Dataset description: This dataset is obtained from the production trace of a commercial content
distribution network. It consists of 500M requests for a total of 18M objects. The popularity
distribution of the requests follows approximately a Zipf distribution with the parameter α between
0.85 and 1. Since we are interested only in the order in which the requests arrive, we ignore the size

26

Table 1: Performance Evaluation with the CMU dataset [Berger et al., 2018]

Policies Hit Rate Fetch Rate

LeadCache (with Pipage rounding) 0.864 1.754
LRU 0.472 13.375
LFU 0.504 13.643
Belady (offline) 0.581 5.128

Figure 5: Plot showing the popularity distribution of the files in the CMU dataset

of the objects in our experiments. Due to the massive volume of the original dataset, we consider
only the first ∼ 375K requests in our experiments.

Figure 5 shows the sorted overall popularity distribution of the most popular files in the dataset. It is
easy to see that the popularity distribution has a light tail - a small fraction of the files are extremely
popular, while others are rarely requested. The Recall distance measures the number of file requests
between two successive requests of the same file. Figure 8 shows a plot of the empirical Recall
distance distribution for this dataset.

Experimental Results: Figure 6 compares the dynamics of the caching policies for a particular
file request pattern. It shows that the proposed LeadCache policy maintains a high cache hit rate
right from the beginning. In other words, the proposed policy quickly learns the file request pattern
from all users and distributes the files near-optimally on different caches. This plot also shows that
the fetch rate of the LeadCache policy remains small compared to the other three caching policies.
Figure 7 gives a bivariate plot of the cache hits and downloads by the LeadCache policy. From the
plots, it is clear that the LeadCache policy outperforms the benchmarks on this dataset in terms of

0 100 200 300 400 500

0.5

0.6

0.7

0.8

0.9

Belady (offline)
LRU
LFU
LeadCache

In
st

an
ta

ne
ou

s
C

ac
he

H
it

ra
te

Time

0 100 200 300 400 500

2

4

6

8

10

12

14

Belady (offline)
LRU
LFU
LeadCache

In
st

an
ta

ne
ou

s
fe

tc
h

ra
te

Time

Figure 6: Temporal dynamics of instantaneous (a) cache hit rates and (b) fetch rates of different caching policies
for a given file request sequence taken from the CMU dataset [Berger et al., 2018]

27

0.4 0.5 0.6 0.7 0.8
Hits

2

4

6

8

10

12

14

D
ow

nl
oa

ds

Algorithm

Belady

LRU

LFU

LeadCache

Figure 7: Bivariate plot of cache hit rates and the Fetch rates of different caching policies for the
CMU dataset [Berger et al., 2018]

N
or

m
al

iz
ed

Fr
eq

ue
nc

y

Figure 8: Distribution of time between two successive request of the same file on the CMU Dataset

both Hit rate and Fetch rate. The average values of the performance indices are summarized in Table
1.

17.2 Experiments with the MovieLens Dataset [Harper and Konstan, 2015]

Dataset Description: MovieLens 4 is a popular dataset containing ∼ 20M ratings for N ∼ 27278
movies along with the timestamps of the ratings [Harper and Konstan, 2015]. The ratings were
assigned by 138493 users over a period of approximately twenty years. Our working assumption is
that a user rates a movie in the same sequence as she requests the movie file for download from the
Content Distribution Network. Due to the sheer size of the dataset, in our experiments, we consider
the first 1M ratings only. Figure 9 shows the empirical distribution of the number of times the movies
have been rated (and hence, downloaded) by the users. Figure 10 shows the empirical distribution of
time between two successive requests of the same file (i.e., the Recall distance).

4This dataset is freely available from https://www.kaggle.com/grouplens/
movielens-20m-dataset

28

https://www.kaggle.com/grouplens/movielens-20m-dataset
https://www.kaggle.com/grouplens/movielens-20m-dataset

Figure 9: Empirical Popularity distribution of the number of ratings for the MovieLens Dataset
[Harper and Konstan, 2015]

Figure 10: Distribution of time between two successive request of the same file on the MovieLens
Dataset

0.2 0.4 0.6 0.8
0

5

10

15

20

25

30

35 Belady (offline)
LRU
LFU
LeadCache
Bhattacharjee et al. [2020]

N
or

m
al

iz
ed

fr
eq

ue
nc

y

Average cache hit rate

0 1 2 3 4
0

2

4

6

8 Belady (offline)
LRU
LFU
LeadCache
Bhattacharjee et al. [2020]

N
or

m
al

iz
ed

fr
eq

ue
nc

y

Average download rate per cache

Figure 11: Empirical distributions of (a) Cache hit rates and (b) Fetch rates of different caching policies on the
MovieLens Dataset.

29

Table 2: Performance Evaluation with the MovieLens dataset [Harper and Konstan, 2015]

Policies Hit Rate Fetch Rate

LeadCache (with Pipage rounding) 0.991 1.509
Heuristic [Bhattacharjee et al., 2020] 0.694 0.297
LRU 0.312 3.234
LFU 0.595 2.028
Belady (offline) 0.560 1.589

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Hits

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
ow

nl
oa

ds

Algorithm

Belady

LRU

LFU

LeadCache

Bhattacharjee et al.

Figure 12: Bivariate plot of cache hit rates and the fetch rates of different caching policies for the
MovieLens dataset [Harper and Konstan, 2015]

Experimental Results Figure 11 compares the performance of different policies in terms of the
hit rates and fetch rates. The average values of the key performance indicators are shown in Table 2.
From the plots and the table, we see that the LeadCache policy achieves the highest hit rate among all
other policies, which is about 32% more than that of the Heuristic policy proposed by Bhattacharjee
et al. [2020]. On the other hand, it incurs more file fetches compared to only the heuristic policy
proposed by Bhattacharjee et al. [2020]. Figure 12 gives a joint plot of the hit rate and the fetch
rate of different policies. It is clear from the plots that the LeadCache policy robustly learns the file
request patterns and caches them on the caches near-optimally.

30

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 8.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] See the supplementary

material.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] The code is
available at https://github.com/AbhishekMITIITM/LeadCache-NeurIPS21.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Please see Figure 3.

(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [Yes] See Section 17 in the supplementary.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Included the full

reference to the dataset used [Berger et al., 2018, Berger, 2018].
(b) Did you mention the license of the assets? [Yes] In Section 7, we mentioned that the

dataset is available under a BSD 2-Clause License.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [Yes] Mentioned that we used an anonymized
production trace. See Section 7.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

31

https://github.com/AbhishekMITIITM/LeadCache-NeurIPS21

