Checklist

- 1. For all authors...
 - (a) Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope? [Yes]
 - (b) Did you describe the limitations of your work? [Yes] We mention that we cannot scale to the same cache sizes as prior work as we do not use a CPU based nearest neighbor task and are thus bounded by accelerator memory.
 - (c) Did you discuss any potential negative societal impacts of your work? [No]
 - (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]
- 2. If you are including theoretical results...
 - (a) Did you state the full set of assumptions of all theoretical results? [Yes]
 - (b) Did you include complete proofs of all theoretical results? [Yes]
- 3. If you ran experiments...
 - (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes]
 - (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes]
 - (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [No] It would take too long to run each experiment multiple times.
 - (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes] We mention that we use 8 V2 TPUs, the number of steps, and the steps / second.
- 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 - (a) If your work uses existing assets, did you cite the creators? [Yes]
 - (b) Did you mention the license of the assets? [No]
 - (c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
 - (d) Did you discuss whether and how consent was obtained from people whose data you're using/curating? [N/A]
 - (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]
- 5. If you used crowdsourcing or conducted research with human subjects...
 - (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 - (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 - (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]

Appendix

7 Proof of Theorem 2

Proof. Let $e_{q_i} = \phi_Q(q_i; \theta_t)$ be the query embedding, $e_{z_i} = \phi_D(z_i; \theta_t)$ be the document embedding, and $e_{z_J} = \phi_D(z_J; \theta_t)$. Recall that $\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_m$ be the (potentially stale) embeddings in the cache. Let $s^+ = e_{q_i} \cdot e_{z_i}$, $s_j = e_{q_i} \cdot \phi_D(z_j; \theta_t)$, $\tilde{s}_j = e_{q_i} \cdot \mathcal{E}_j$.

Recall that

$$\mathcal{L}_{CE_i}(\theta_t) = -\log\left(\frac{\exp(\beta s^+)}{\exp(\beta s^+) + \sum_{j \neq y_i} \exp(\beta s_j)}\right).$$

For simplicity, we use ∇ and $\tilde{\nabla}$ to denote $\nabla \mathcal{L}_{CE_i}(\theta_t)$ and $\nabla \tilde{\mathcal{L}}_{CE_i}(\theta_t)$ respectively. We first observe that

$$\tilde{\nabla} = \mathbb{E}_J[g_t] = -\beta \nabla s^+ + \sum_j \tilde{p}_j \beta \nabla s_j.$$

This follows as simple consequence of the Gumbel-Max sampling. Furthermore, we have

$$\nabla = -\beta \nabla s^+ + \sum_j p_j \beta \nabla s_j.$$

From the above expression, we have that

$$\begin{split} \|\nabla - \tilde{\nabla}\|_2 &= \beta \|\sum_j (p_j - \tilde{p}_j) \nabla s_j\|_2 \\ &\leq \beta \sum_j |p_j - \tilde{p}_j| \|\nabla s_j\|_2 \\ &\leq \beta M \|p - \tilde{p}\|_1. \end{split}$$

The last inequality follows from bounded nature of the score $\|\nabla s_j\| \leq M$. Consider a term $p_j - \tilde{p_j}$. We have that

$$p_j - \tilde{p}_j = \frac{\exp(\beta s_j)}{\sum_l \exp(\beta s_l)} - \frac{\exp(\beta \tilde{s}_j)}{\sum_l \exp(\beta \tilde{s}_l)}$$
$$= \frac{\exp(\beta s_j)}{\sum_l \exp(\beta s_l)} - \frac{\exp(\beta (s_j + (\tilde{s}_j - s_j)))}{\sum_l \exp(\beta (s_l + (\tilde{s}_l - s_l)))}$$
$$\leq \frac{\exp(\beta s_j)}{\sum_l \exp(\beta s_l)} (1 - \exp(-\beta \|\tilde{s} - s\|_{\infty}))$$
$$= p_j (1 - \exp(-2\beta \|\tilde{s} - s\|_{\infty}))$$
$$\leq 2p_j \beta \|\tilde{s} - s\|_{\infty}$$

Similarly, we have that

$$\tilde{p}_j - p_j \le 2\tilde{p}_j\beta \|\tilde{s} - s\|_{\infty}.$$

Thus we have that $|p_i - \tilde{p}_i| \le 2\beta \|\tilde{s} - s\|_{\infty} (p_i + \tilde{p}_i)$ and thus $\|p - \tilde{p}\|_1 \le 4\beta \|\tilde{s} - s\|_{\infty}$

We bound $\|\tilde{s} - s\|_{\infty}$ as follows. Suppose it is at most k updates since any embedding in \mathcal{E} has been updated. In particular, let t_j denote the time step when j was last updated in \mathcal{E} . Then, we have

$$\begin{split} \tilde{s}_j - s_j &|= \left| e_{q_i} \cdot \mathcal{E}_j - e_{q_i} \cdot e_{z_j} \right| \\ &\leq \left\| e_{q_i} \right\|_2 \left\| \mathcal{E}_j - e_{z_j} \right\|_2 \\ &\leq \left\| \mathcal{E}_j - e_{z_j} \right\|_2 \\ &= \left\| \phi_D(z_j; \theta_t) - \phi_D(z_j; \theta_{t_j}) \right\| \\ &\leq L \left\| \theta_t - \theta_{t_j} \right\| \leq \eta \beta L M(t - t_j) \end{split}$$

Thus we have that $\|\nabla - \tilde{\nabla}\|_2 \le 4\eta \beta^3 L M^2 k$. When using the refresh fraction of ρ , it can be shown the k is in expectation of the order $\frac{1}{\rho} - 1$, which completes the proof.

8 Proof of Theorem 3

To prove Theorem 3, we start with the following result.

Lemma 6. Let $\mathcal{L} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}_{CE_i}$. Assume that a loss function $\mathcal{L}_{CE_i}(\theta)$ satisfies:

- (Bounded Gradients) We have that $\|\mathcal{L}_{CE_i}(\theta)\| \leq 2M$ for all parameters $\theta \in \mathbb{R}^p$.
- (Smoothness) We have that $\|\nabla \mathcal{L}_{CE_i}(\theta) \nabla \mathcal{L}_{CE_i}(\theta')\|_2 \le S \|\theta \theta'\|_2$.

Furthermore, suppose we run an approximate stochastic gradient descent with stochastic gradient with bounded bias, $\|\mathbb{E}[g_t \mid \theta_t] - \nabla \mathcal{L}(\theta_t)\|_2 \leq \Delta_t$, and additionally $\|g_t\| \leq M$ for all $t \in [T]$. If we update our parameters with a stepsize η , we have that

$$\frac{1}{T}\sum_{t=0}^{T} \mathbb{E}[\|\nabla \mathcal{L}(\theta_t)\|_2^2] \le \frac{\mathcal{L}(\theta_0) - \mathcal{L}(\theta^*)}{\eta T} + \frac{1}{2T}\sum_{t=0}^{T} \Delta_t^2 + 2\eta SM^2.$$

Proof. From the Lipschitz continuous nature of the function \mathcal{L} , we have

$$\mathbb{E}[\mathcal{L}(\theta_{t+1})] \leq \mathbb{E}\left[\mathcal{L}(\theta_t) + \nabla \mathcal{L}(\theta_t) \cdot (\theta_{t+1} - \theta_t) + \frac{S}{2} \|\theta_{t+1} - \theta_t\|_2^2\right]$$
$$= \mathbb{E}\left[\mathcal{L}(\theta_t) - \eta \nabla \mathcal{L}(\theta_t) \cdot g_t + \frac{\eta^2 S}{2} \|g_t\|_2^2\right]$$
$$\leq \mathbb{E}\left[\mathcal{L}(\theta_t) - \eta \|\nabla \mathcal{L}(\theta_t)\|_2^2 - \eta \nabla \mathcal{L}(\theta_t) \cdot \Delta_t\right] + \frac{4\eta^2 S M^2}{2}$$
$$\leq \mathbb{E}\left[\mathcal{L}(\theta_t) - \eta \|\nabla \mathcal{L}(\theta_t)\|_2^2 + \eta \Delta_t \|\nabla \mathcal{L}(\theta_t)\|_2\right] + 2\eta^2 S M^2$$

The second inequality follows from bounded nature of g_t . The above inequality can be further bounded in the following manner:

$$\mathbb{E}[\mathcal{L}(\theta_{t+1})] \leq \mathbb{E}\left[\mathcal{L}(\theta_t) - \eta \|\nabla \mathcal{L}(\theta_t)\|_2^2 + \eta \Delta_t \|\nabla \mathcal{L}(\theta_t)\|_2\right] + 2\eta^2 S M^2$$

$$\leq \mathbb{E}[\mathcal{L}(\theta_t)] - \frac{\eta}{2} \mathbb{E}[\|\nabla \mathcal{L}(\theta_t)\|_2^2] + \frac{\eta}{2} \Delta_t^2 + 2\eta^2 S M^2.$$

The second inequality follows from the fact that $ab \le (a^2 + b^2)/2$. Summing over all $t \in [0, T]$ and using telescoping sum, we have

$$\frac{1}{T}\sum_{t=0}^{T} \mathbb{E}[\|\nabla \mathcal{L}(\theta_t)\|_2^2] \le \frac{\mathcal{L}(\theta_0) - \mathcal{L}(\theta_T)}{\eta T} + \frac{1}{2T}\sum_{t=0}^{T} \Delta_t^2 + 2\eta S M^2.$$
(3)

This completes the proof of the lemma.

We now focus on the proof of Theorem 3..

Proof. We first note that under the assumptions of Theorem 3, $\|\nabla \mathcal{L}_{CE}(\theta_t)\| \le 2M$ and $\|g_t\| \le 2M$. This simply follows from the structure of $\nabla \mathcal{L}_{CE}$. Using the above lemma, we have the following:

$$\frac{1}{T}\sum_{t=0}^{T} \mathbb{E}[\|\nabla \mathcal{L}_{\mathrm{CE}}(\theta_t)\|_2^2] \le \frac{\mathcal{L}_{\mathrm{CE}}(\theta_0) - \mathcal{L}_{\mathrm{CE}}(\theta^*)}{\eta T} + 8\eta^2 \beta^6 L^2 M^4 \left(\frac{1}{\rho} - 1\right)^2 + 2\eta S M^2.$$

This follows simply from the bias bounded obtained in Theorem 2. Using $\eta = \frac{\sqrt{\mathcal{L}_{CE}(\theta_0) - \mathcal{L}_{CE}(\theta^*)}}{\sqrt{2TSM}}$ specified in the theorem, we obtain

$$\frac{1}{T}\sum_{t=0}^{T}\mathbb{E}[\|\nabla\mathcal{L}_{\mathrm{CE}}(\theta_t)\|_2^2] \le 4M\sqrt{\frac{S(\mathcal{L}_{\mathrm{CE}}(\theta_0) - \mathcal{L}_{\mathrm{CE}}(\theta^*))}{T}} + \frac{4\beta^6 L^2 M^2 (\mathcal{L}_{\mathrm{CE}}(\theta_0) - \mathcal{L}_{\mathrm{CE}}(\theta^*))}{ST} \left(\frac{1}{\rho} - 1\right)^2$$

This completes the proof of Theorem 3.

9 Proof of Lemma 4 and Theorem 5

We use the following lemma in the proof of Lemma 4.

Lemma 7 (Lemma 5 in [30]). *Given a random variable* $V \ge a > 0$, we have that

$$\frac{1}{E[V]} \le E\left[\frac{1}{V}\right] \le \frac{1}{E[V]} + \frac{\operatorname{Var}(V)}{a^3}.$$

We now prove Lemma 4.

Proof. Our proof follows the proof approach in Theorem 1 in [30], modified to work with an ℓ_2 bound on the score gradients and simplified for our sampling scheme.

Assume that the positive element is z_1 and thus the negative elements are z_2, \ldots, z_m .

Let $U = \exp(\beta s_1)\beta \nabla s_1 + \frac{1}{\alpha} \sum_{j \in S} \exp(\beta s_j)\beta \nabla s_j$ and $V = \exp(\beta s^+) + \frac{1}{\alpha} \sum_{j \in S} \exp(\beta s_j)$. We have that $-\beta \nabla s_1 + \frac{E[U]}{E[V]} = \nabla \mathcal{L}_{CSi}$ and $E[g] = -\beta \nabla s_1 + E\left[\frac{U}{V}\right]$ We thus want to show that $E\left[\frac{U}{V}\right] \approx \frac{E[U]}{E[V]}$.

Let k_1, k_2, \ldots, k_c be the *c* elements of S. We have that

$$E\left[\frac{U}{V}\right] = E\left[\frac{\exp(\beta s_1)\beta\nabla s_1 + \frac{1}{\alpha}\sum_{j=1}^c \exp(\beta s_{k_j})\beta\nabla s_{k_j}}{\exp(\beta s_1) + \frac{1}{\alpha}\sum_{j=1}^c \exp(\beta s_{k_j})}\right]$$
$$= \exp(\beta s_1)\beta\nabla s_1 E\left[\frac{1}{V}\right] + E\left[\frac{\frac{1}{\alpha}\sum_{j=1}^c \exp(\beta s_{k_j})\beta\nabla s_{k_j}}{\exp(\beta s_1) + \frac{1}{\alpha}\sum_{j=1}^c \exp(\beta s_{k_j})}\right]$$
(4)

We first bound the first term in Equation (4) from above and below.

We have that $V \ge m \exp(-\beta)$ and $\operatorname{Var}(V) \le c \frac{\exp(2\beta)}{\alpha^2}$. Thus by Lemma 7 we have that

$$\frac{1}{E[V]} \le E\left[\frac{1}{V}\right] \le \frac{1}{E[V]} + \frac{c\frac{\exp(2\beta)}{\alpha^2}}{m^3\exp(-3\beta)} = \frac{1}{E[V]} + \frac{\exp(5\beta)}{\alpha m^2}.$$

This implies that

$$\frac{\exp(\beta s_1)\beta\nabla s_1}{Z} \le \exp(\beta s_1)\beta\nabla s_1 E\left[\frac{1}{V}\right] \le \frac{\exp(\beta s_1)\beta\nabla s_1}{Z} + \frac{\exp(6\beta)\beta|\nabla s_1|}{\alpha m^2} \tag{5}$$

We now bound the second equation in Equation (4).

Let
$$S_{c-1} = \sum_{j=1}^{c-1} \exp(\beta s_{k_j})$$
. We have that

$$E\left[\frac{\frac{1}{\alpha}\sum_{j=1}^{c}\exp(\beta s_{k_j})\beta\nabla s_{k_j}}{\exp(\beta s_1) + \frac{1}{\alpha}\sum_{j=1}^{c}\exp(\beta s_{k_j})}\right] = \frac{c}{\alpha}E\left[\frac{\exp(\beta s_{k_c})\beta\nabla s_{k_c}}{\exp(\beta s_1) + \frac{1}{\alpha}S_{c-1} + \frac{1}{\alpha}\exp(\beta s_{k_c})}\right]$$

$$= \frac{c}{\alpha m}\sum_{i=2}^{m}\exp(\beta s_i)\beta\nabla s_iE\left[\frac{1}{\exp(\beta s_1) + \frac{1}{\alpha}S_{c-1} + \frac{1}{\alpha}\exp(\beta s_i)}\right]$$

$$= \sum_{i=2}^{m}\exp(\beta s_i)\beta\nabla s_iE\left[\frac{1}{\exp(\beta s_1) + \frac{1}{\alpha}S_{c-1} + \frac{1}{\alpha}\exp(\beta s_i)}\right]$$
(6)

Now we have that

$$E\left[\exp(\beta s_1) + \frac{1}{\alpha}S_{c-1} + \frac{1}{\alpha}\exp(\beta s_i)\right] = \exp(\beta s_1) + \frac{c-1}{c}Z^- + \frac{1}{\alpha}\exp(\beta s_i)$$
$$= Z - \frac{1}{c}Z^- + \frac{1}{\alpha}\exp(\beta s_i),$$

where Z^- is the partition function restricted to just the negatives.

Using $Z\geq Z^-$ and $m\exp(-\beta)\leq Z\leq m\exp(\beta),$ we have that

$$Z\left(1-\frac{1}{c}\right) \le Z - \frac{1}{c}Z^{-} + \frac{1}{\alpha}\exp(\beta s_i) \le Z\left(1+\frac{\exp(2\beta)}{c}\right),$$

and thus by Lemma 7 we have that

$$\frac{1}{Z} \left(1 - \frac{\exp(2\beta)}{c} \right) \leq E \left[\frac{1}{\exp(\beta s_1) + \frac{1}{\alpha} S_{c-1} + \frac{1}{\alpha} \exp(\beta s_i)} \right]$$
$$\leq \frac{1}{Z(1 - \frac{1}{c})} + \frac{1}{\alpha^2} \frac{\operatorname{Var}(S_{c-1})}{m^3 \exp(-3\beta)}$$
$$\leq \frac{1}{Z(1 - \frac{1}{c})} + \frac{\exp(5\beta)}{\alpha m^2}$$
$$\leq \frac{1}{Z} \left(1 + O\left(\frac{1}{c}\right) \right) + \frac{\exp(5\beta)}{\alpha m^2}$$
$$= \frac{1}{Z} + \frac{\exp(O(\beta))}{\alpha m^2}.$$

We conclude that

$$E\left[\frac{1}{\exp(\beta s_1) + \frac{1}{\alpha}S_{c-1} + \frac{1}{\alpha}\exp(\beta s_i)}\right] = \frac{1}{Z} \pm \frac{\exp(O(\beta))}{\alpha m^2}$$
(7)

Continuing Equation (6) by applying Inequality (7), we have that

$$E\left[\frac{\frac{1}{\alpha}\sum_{j=1}^{c}\exp(\beta s_{k_{j}})\beta\nabla s_{k_{j}}}{\exp(\beta s^{+})+\frac{1}{\alpha}\sum_{j=1}^{c}\exp(\beta s_{k_{j}})}\right] = \sum_{i=2}^{m} \left(\frac{\exp(\beta s_{i})\beta\nabla s_{i}}{Z} \pm \frac{\exp(\beta s_{k_{j}})\beta\nabla s_{k_{j}}\exp(O(\beta))}{\alpha m^{2}}\right)$$
$$= \left(\sum_{i=2}^{m}\frac{\exp(\beta s_{i})\beta\nabla s_{i}}{Z}\right) \pm \frac{\exp(O(\beta))}{\alpha m^{2}}\sum_{i=2}^{m}\exp(\beta s_{i})\nabla s_{i}$$
$$= \left(\sum_{i=2}^{m}\frac{\exp(\beta s_{i})\beta\nabla s_{i}}{Z}\right) \pm \frac{\exp(O(\beta))}{\alpha m^{2}}\sum_{i=2}^{m}\nabla s_{i}.$$
(8)

Combining Inequalities (5) and (8), we have that

$$E\left[\frac{U}{V}\right] - \frac{E[U]}{E[V]} = \pm \frac{\exp(O(\beta))}{\alpha m^2} \sum_{i=1}^{m} \nabla s_i,$$

and thus

$$\left\| E\left[\frac{U}{V}\right] - \frac{E[U]}{E[V]} \right\|_{2} = \frac{\exp(O(\beta))}{\alpha m^{2}} \sum_{i=1}^{m} \|\nabla s_{i}\|$$
$$= \frac{\exp(O(\beta))M}{\alpha m}.$$

We can now prove Theorem 5.

Proof. We use Theorem 2 to bound the bias due to the staleness of the cache and Lemma 4 to bound the bias due to using a sampled cache. We can then apply Lemma 6 to finish the proof. \Box