
A Additional background about cutting planes

Integral support [40]. Let Z be the set of all indices ` ∈ [n] such that α[`] 6= 0. Let Z̄ be the
set of all indices ` ∈ Z such that the `th variable is constrained to be integral. This scoring rule is
defined as

score4(αTx ≤ β) =

∣∣Z̄∣∣
|Z|

.

Wesselmann and Suhl [40] write that “one may argue that a cut having non-zero coefficients on
many (possibly fractional) integer variables is preferable to a cut which consists mostly of continuous
variables.”

B Constraint ordering

Integer programs are typically automatically generated and the generation code typically generates
constraints in the same order for all instances. More formally, if we fix an ordering over the
variables, we can simply assume without loss of generality that the constraints and cuts are ordered
lexicographically, so the constraints cannot be permuted across instances. (In a bit more detail, given
constraints with coefficients [a1, . . . , an, b] and [a′1, . . . , a

′
n, b
′], the first constraint would come first

in the lexicographic order if a1 > a′1 and second if a1 < a′1. If a1 = a′1 it would come first in the
order if a2 > a′2 and second if a2 < a′2, and so on.)

C Omitted results and proofs from Section 3

Proof of Theorem 3.1. Without loss of generality, we assume that n is odd. We define the integer
program

maximize 0
subject to 2x[1] + · · ·+ 2x[n] = n

x ∈ {0, 1}n,
(2)

which is infeasible because n is odd. Jeroslow [22] proved that without the use of cutting planes
or heuristics, B&C will build a tree of size 2(n−1)/2 before it terminates. Rewriting the equality
constraint as 2x[1] + · · · + 2x[n] ≤ n and −2 (x[1] + · · ·+ x[n]) ≤ −n, a CG cut defined by the
vector u ∈ R2

≥0 will have the form b2(u[1]− u[2])c (x[1] + · · ·+ x[n]) ≤ bn (u[1]− u[2])c .

Suppose that 1
2 ≤ u[1]− u[2] < n+1

2n . On the left-hand-side of the constraint, b2(u[1]− u[2])c = 1.
On the right-hand-side of the constraint, n (u[1]− u[2]) < n+1

2 . Since n is odd, n+1
2 is an integer,

which means that bn (u[1]− u[2])c ≤ n−1
2 . Therefore, the CG cut defined by u satisfies the

inequality x[1] + · · · + x[n] ≤ n−1
2 , as illustrated in Figure 3a. The intersection of this halfspace

with the feasible region of the original integer program (Equation (2)) is empty, so applying this CG
cut at the root will cause B&C to terminate immediately.

(a) Cut produced when 1
2
≤ u[1] − u[2] < 2

3
. The

grey solid region is the set of points x such that
x[1] + x[2] ≤ 1.

(b) Cut produced when 2
3
≤ u[1] − u[2] < 1. The

grey solid region is the set of points x such that
x[1] + x[2] ≤ 2.

Figure 3: Illustration of Theorem 3.1 when n = 3, projected onto the x[3] = 0 plane. The blue solid
line is the feasible region 2x[1] + 2x[2] = 3. The black dotted lines are the cut.

Meanwhile, suppose that n+1
2n ≤ u[1]− u[2] < 1. Then it is still the case that b2(u[1]− u[2])c = 1.

Also, n (u[1]− u[2]) ≥ n+1
2 , which means that bn (u[1]− u[2])c ≥ n+1

2 . Therefore, the CG cut
defined by u dominates the inequality x[1] + · · · + x[n] ≤ n+1

2 , as illustrated in Figure 3b. The
intersection of this halfspace with the feasible region of the original integer program is equal to the

14

integer program’s feasible region, so by Jeroslow’s result [22], applying this CG cut at the root will
cause B&C to build a tree of size at least 2(n−1)/2 before it terminates.

Proof of Lemma 3.4. Let a1, . . . ,an ∈ Rm be the columns of A. For u1 ∈ [0, 1]m, . . . ,uw ∈
[0, 1]m+w−1, define ã1

i ∈ [0, 1]m, . . . , ãwi ∈ [0, 1]m+w−1 for each i = 1, . . . , n such that ãsi is
the ith column of the constraint matrix after applying cuts u1, . . . ,us−1. More precisely, ã1

i ∈
[0, 1]m, . . . , ãwi ∈ [0, 1]m+w−1 are defined recursively as

ã1
i = ai

ãsi =

[
ãs−1i

uTs−1ã
s−1
i

]
for s = 2, . . . , w. Similarly, define b̃s to be the constraint vector after applying the first s− 1 cuts:

b̃1 = b

b̃s =

[
b̃s−1

uTs−1b̃
s−1

]
for s = 2, . . . , w. (These vectors depend on the cut vectors, but we will suppress this dependence for
the sake of readability).

We prove this lemma by showing that there are O(w2w ‖A‖1,1 + 2w ‖b‖1 + nw) hypersurfaces
determined by polynomials that partition [0, 1]m × · · · × [0, 1]m+w−1 into regions where in any one
region R, the w cuts

n∑
i=1

⌊
uT1 ã

1
i

⌋
x[i] ≤

⌊
uT1 b̃

1
⌋

...
n∑
i=1

⌊
uTwã

w
i

⌋
x[i] ≤

⌊
uTwb̃

w
⌋

are invariant across all (u1, . . . ,uw) ∈ R. To this end, let Ai = ‖ai‖1 and B = ‖b‖1. For each
s ∈ {1, . . . , w}, we claim that ⌊

uTs ã
s
i

⌋
∈
[
−2s−1Ai, 2

s−1Ai
]
.

We prove this by induction. The base case of s = 1 is immediate since ã1
i = ai and u ∈ [0, 1]m.

Suppose now that the claim holds for s. By the induction hypothesis,∥∥ãs+1
i

∥∥
1

=

∥∥∥∥[ãsi
uTs ã

s
i

]∥∥∥∥
1

= ‖ãsi‖1 +
∣∣uTs ãsi ∣∣ ≤ 2 ‖ãsi‖1 ≤ 2sAi,

so ⌊
uTs+1ã

s+1
i

⌋
∈
[
−
∥∥ãs+1

i

∥∥
1
,
∥∥ãs+1

i

∥∥
1

]
⊆ [−2sAi, 2

sAi],

as desired. Now, for each integer ki ∈ [−2s−1Ai, 2
s−1Ai], we have⌊

uTs ã
s
i

⌋
= ki ⇐⇒ ki ≤ uTs ãsi < ki + 1.

uTs ã
s
i is a polynomial in variables u1[1], . . . ,u1[m], u2[1], . . . ,u2[m+ 1], . . . , us[1], . . . ,us[m+

s− 1], for a total of ≤ ms+ s2 variables. Its degree is at most s. There are thus a total of
w∑
s=1

n∑
i=1

(2 · 2s−1Ai + 1) = O
(
w2w ‖A‖1,1 + nw

)
polynomials each of degree at most w plus an additional

∑w
s=1(2 · 2s−1B + 1) = O(2wB + w)

polynomials of degree at most w corresponding to the hypersurfaces of the form

kn+1 ≤ uTs b̃s < kn+1 + 1

for each s and each kn+1 ∈ {−2s−1B, . . . , 2s−1B}. This yields a total ofO(w2w ‖A‖1,1+2w ‖b‖1+

nw) polynomials in ≤ mw + w2 variables of degree ≤ w.

15

Proof of Theorem 3.5. The space of polynomials induced by the sth cut, that is, {k + uTs ã
s
i : ai ∈

Rm, k ∈ R}, is a vector space of dimension ≤ 1 +m. This is because for every j = 1, . . . ,m, all
monomials that contain a variable us[j] for some s have the same coefficient (equal to ai[j] for some
1 ≤ i ≤ n). Explicit spanning sets are given by the following recursion. For each j = 1, . . . ,m
define ũ1[j], . . . , ũw[j] recursively as

ũ1[j] = u1[j]

ũs[j] = us[j] +

s−1∑
`=1

us[m+ `]ũ`[j]

for s = 2, . . . , w. Then, {k + uTs ã
s
i : ai ∈ Rm, k ∈ R} is contained in span{1, ũs[1], . . . , ũs[m]}.

It follows that

dim

(
w⋃
s=1

{k + uTs ã
s
i : ai ∈ Rm, k ∈ R}

)
≤ 1 +mw.

The dual space thus also has dimension≤ 1+mw. The VC dimension of the family of 0/1 classifiers
induced by a finite-dimensional vector space of functions is at most the dimension of the vector
space. Thus, the VC dimension of the set of classifiers induced by the dual space is ≤ 1 + mw.
Finally, applying the main result of Balcan et al. [8] in conjunction with Lemma 3.4 gives the desired
pseudo-dimension bound.

Proof of Theorem 3.6. Applying cuts u1, . . . ,uk ∈ [0, 1]m simultaneously is equivalent to sequen-
tially applying the cuts

u1 ∈ [0, 1]m,

[
u2

0

]
∈ [0, 1]m+1,

u3

0
0

 ∈ [0, 1]m+2, . . . ,

uk

0
...
0

 ∈ [0, 1]m+k−1.

Thus, the set in question is a subset of
{
fu1,...,ukw

: u1 ∈ [0, 1]m, . . . ,ukw ∈ [0, 1]m+kw−1} and
has pseudo-dimension O(mk2w2 log(mkw(α+ β + n))) by Theorem 3.5.

C.1 Data-dependent guarantees

The empirical Rademacher complexity [28] of a function class F ⊆ RY with respect to y1, . . . , yN ∈
Y is the quantity

RF (N ; y1, . . . , yN) = E
σ∼{−1,1}N

[
sup
f∈F

1

N

N∑
i=1

σif(yi)

]
.

The expected Rademacher complexity RF (N) of F with respect to a distribution D on Y is the
quantity

RF (N) = E
y1,...,yN∼D

[RF (N ; y1, . . . , yN)].

Rademacher complexity, like pseudo-dimension, is another measure of the intrinsic complexity of
the function class F . Roughly, it measures how well functions in F can correlate to random labels.
The following uniform convergence guarantee in terms of Rademacher complexity is standard: Let
[−κ, κ] be the range of the functions in F . Then, for all distributions D on Y , with probability
at least 1 − δ over the draw of y1, . . . , yN ∼ D, for all f ∈ F , Ey∼D[f(y)] − 1

N

∑N
i=1 f(yi) ≤

2RF (N) + κ
√

ln(1/δ)
N .

The following result bounds the Rademacher complexity of the class of tree-size functions corre-
sponding to w waves of k CG cuts. The resulting generalization guarantee is more refined than the
pseudo-dimension bounds in the main body of the paper. It is in terms of distribution-dependent
quantities, and unlike the pseudo-dimension-based guarantees requires no boundedness assumptions
on the distributions’s support.

16

Theorem C.1. Let D be a distribution over integer programs (c, A, b). Let

αN = E
A1,...,AN∼D

[
max

1≤i≤N
‖Ai‖1,1

]
and βN = E

b1,...,bN∼D

[
max

1≤i≤N
‖b‖1

]
.

The expected Rademacher complexityR(N) of the class of tree-size functions corresponding to w
waves of k Chvátal-Gomory cuts with respect to D satisfies

R(N) ≤ O

(
κ

√
mk2w2 log(mkw(αN + βN + n))

N

)
where κ is a cap on the size of the tree B&C is allowed to build.

Proof of Theorem C.1. LetFα,β denote the class of tree-size functions corresponding tow waves of k
CG cuts defined on the domain of integer programs with ‖A‖1,1 ≤ α and ‖b‖1 ≤ β, and let F denote
the same class of functions without any restrictions on the domain. Applying a classical result due to
Dudley [14], the empirical Rademacher complexity of F with respect to (c1, A, b), . . . , (cN , A, bN)
satisfies the bound

RF (N ; (c1, A, b1), . . . , (cN , A, bN)) ≤ 60κ

√
Pdim

(
Fmaxi‖Ai‖1,1,maxi‖bi‖1

)
N

.

Here, κ is a bound on the tree-size function as is common in the algorithm configuration literature [5,
26, 27]. Taking expectation over the sample, we get

RF (N) ≤ 60κ

√
E
[
Pdim

(
Fmaxi‖Ai‖1,1,maxi‖b‖1,1

)]
N

≤ 60κ

√
E
[
mk2w2 log(mkw(maxi ‖Ai‖1,1 + maxi ‖b‖1 + n))

]
N

≤ 60κ

√
mk2w2 log(mkw(αN + βN + n))

N

by Theorem 3.6 and Jensen’s inequality.

D Omitted proofs from Section 5

Proof of Theorem 5.2. Fix an arbitrary problem instance x. In Claim D.1, we prove that for any
sequence of actions σ ∈

(
×tj=1 [Tj]

)κ
, there is a set of at most κ

∑t
j=1 T

2
j halfspaces in Rd such

that Algorithm 1 when parameterized by µ ∈ Rd will follow the action sequence σ if and only if µ
lies in the intersection of those halfspaces. LetHσ be the set of hyperplanes corresponding to those
halfspaces, and letH =

⋃
σHσ . Since there are at most

∏t
j=1 T

κ
j action sequences in

(
×tj=1 [Tj]

)κ
,

we know that |H| ≤ κ
(∏t

j=1 T
κ
j

)∑t
j=1 T

2
j . Moreover, by definition of these halfspaces, we know

that for any connected component C of Rd \H, across all µ ∈ C, the sequence of actions Algorithm 1
follows is invariant. Since the state transitions are deterministic functions of the algorithm’s actions,
this means that the algorithm’s final state is also invariant across all µ ∈ C. Since the utility function
is final-state-constant, this means that fµ(x) is constant across all µ ∈ C. Therefore, the sample
complexity guarantee follows from Balcan et al. [8].

Claim D.1. Let σ ∈
(
×tj=1 [Tj]

)κ
be an arbitrary sequence of actions. There are at most κ

∑t
j=1 T

2
j

halfspaces in Rd such that Algorithm 1 when parameterized byµ ∈ Rd will follow the action sequence
σ if and only if µ lies in the intersection of those halfspaces.

Proof. For each type of action j ∈ [t], let kj,1, . . . , kj,κ ∈ [Tj] be the sequence of action indices
taken over all κ rounds. We will prove the claim by induction on the step of B&C. Let Tτ be the state
of the B&C tree after τ steps. For ease of notation, let T =

∑t
j=1 T

2
j be the total number of possible

actions squared.

17

Induction hypothesis. For a given step τ ∈ [κt], let κ0 ∈ [κ] be the index of the current round and
t0 ∈ [t] be the index of the current action. There are at most (κ0 − 1)T +

∑t0
j=1 T

2
j halfspaces in Rd

such that B&C using the scoring rules
∑dj
i=1 µj [i]scorej,i for each action j ∈ [t] builds the partial

search tree Tτ if and only if (µ1, . . . ,µt) ∈ Rd lies in the intersection of those halfspaces.

Base case. In the base case, before the first iteration, the set of parameters that will produce the
partial search tree consisting of just the root is the entire set of parameters, which vacuously is the
intersection of zero hyperplanes.

Inductive step. For a given step τ ∈ [κt], let κ0 ∈ [κ] be the index of the current round and t0 ∈ [t]
be the index of the current action. Let sτ be the state of B&C at the end of step τ . By the inductive
hypothesis, we know that there exists a setH of at most (κ0 − 1)T +

∑t0
j=1 T

2
j halfspaces such that

B&C using the scoring rules
∑dj
i=1 µj [i]scorej,i for each action j ∈ [t] will be in state sτ if and

only if (µ1, . . . ,µt) ∈ Rd lies in the intersection of those halfspaces. Let κ′0 ∈ [κ] be the index of
the round in step τ + 1 and t′0 ∈ [t] be the index of the action in step τ + 1, so

(κ′0, t
′
0) =

{
(κ0, t0 + 1) if t0 < t

(κ0 + 1, 1) if t0 = t.

We know B&C will choose the action k∗ ∈
[
Tt′0
]

if and only if

dt′0∑
i=1

µt′0 [i]scoret′0,i (k∗, sτ) > max
k 6=k∗

dt′0∑
i=1

µt′0 [i]scoret′0,i (k, sτ) .

Since these functions are linear in µt′0 , there are at most T 2
t′0

halfspaces defining the region where

kt′0,κ′0 = argmax
∑dt′0
i=1 µt′0 [i]scoret′0,i (k, sτ). Let H′ be this set of halfspaces. B&C using the

scoring rule
∑dt′0
i=1 µt′0 [i]scoret′0,i arrives at state sτ+1 after τ + 1 iterations if and only if µt′0 lies in

the intersection of the (κ′0 − 1)T +
∑t′0
j=1 T

2
j halfspaces in the setH ∪H′.

18

	Introduction
	Summary of main contributions and overview of techniques
	Related work

	Problem formulation
	Branch-and-cut
	Learning theory background and notation

	Learning Chvátal-Gomory cuts
	Learning a single cut
	Learning a sequence of cuts
	Learning waves of simultaneous cuts
	Data-dependent guarantees

	Learning cut selection policies
	Sample complexity of generic tree search
	Conclusions and future research
	Additional background about cutting planes
	Constraint ordering
	Omitted results and proofs from Section 3
	Data-dependent guarantees

	Omitted proofs from Section 5

