
Appendix

A Further details of the proposed AdaQN method

Figure 5: The interplay between superlinear convergence of BFGS and statistical accuracy in AdaQN.

In this section, we provide further intuition about the proposed AdaQN method. As shown in
Figure 5, in AdaQN we need to ensure that the approximate solution of the ERM problem with m
samples denoted by wm is within the superlinear convergence neighborhood of BFGS for the ERM
problem with n = 2m samples. Here, w∗m and w∗n are the optimal solutions of the risks Rm and
Rn corresponding to the sets Sm and Sn with m and n samples, respectively, where Sm ⊂ Sn. The
statistical accuracy region of Rm is denoted by a blue circle, the statistical accuracy region of Rn is
denoted by a red circle, and the superlinear convergence neighborhood of BFGS for Rn is denoted by
a dotted purple circle. As we observe, any point within the statistical accuracy of w∗m is within the
superlinear convergence neighborhood of BFGS for Rn. Therefore, after a few steps (at most three
steps) of BFGS, we find a new solution wn that is within the statistical accuracy of Rn.

Figure 6: The phases of AdaQN.

In Figure 6, we illustrate the sequential steps of AdaQN moving from one stage to another stage. Note
that in the initialization step we solve the first ERM problem with m0 up to its statistical accuracy
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to find an approximate solution wm0 . Then, we compute the Hessian ∇2Rm0(wm0) and its inverse
∇2Rm0(wm0)−1. Once the initialization step is done, we perform BFGS updates on the loss of
ERM problem with 2m0 samples starting from the point wm0 and using the initial Hessian inverse
approximation ∇2Rm0

(wm0
)−1. Then, after three BFGS updates we find w2m0

that is within the
statistical accuracy of R2m0

. In the next stage, with 4m0 samples, we use the original Hessian
inverse approximation ∇2Rm0

(wm0
)−1 and the new variable w2m0

for the BFGS updates. We
keep doing this procedure until the size of the training set becomes N . As we observe, we only
perform m0 Hessian computations to find∇2Rm0

(wm0
) and one matrix inversion to find its inverse

∇2Rm0
(wm0

)−1.

B Proof of propositions and the main theorem

We start the proof by providing the following lemmas. These lemmas play fundamental roles in the
proof of all our propositions and Theorem 1.
Lemma 1. Matrix Bernstein Inequality. Consider a finite sequence {Sk}nk=1 of independent random
symmetric matrix of dimension d. Suppose that E [Sk] = 0 and ‖Sk‖ ≤ B for all k. Define that
Z =

∑n
k=1 Sk and we can bound the expectation,

E [‖Z‖] ≤
√

2V [Z] log d+
B

3
log d, (14)

where V [Z] = ‖E
[
Z2
]
‖ is the matrix variance statistic of Z.

Proof. Check Theorem 6.6.1 of [36].

Lemma 2. Suppose Assumptions 1-2 hold and the sample size n = Ω(log d). Then the expectation
of the difference between Hessian of the empirical risk Rn and expected risk R is bounded above by

O
(
L
√

s log d
n

)
in terms of the Frobenius norm for any w, i.e,

E
[
‖∇2Rn(w)−∇2R(w)‖F

]
= O

(
L

√
s log d

n

)
, (15)

where s = supw,n

(
E[‖∇2Rn(w)−∇2R(w)‖F ]
E[‖∇2Rn(w)−∇2R(w)‖]

)2

.

Proof. We use Lemma 1 and define that Sk = 1
n [∇2f(w; zk)−∇2R(w)] and thus Z =

∑n
k=1 Sk =

∇2Rn(w)−∇2R(w). Notice that E [Sk] = 0 and ‖Sk‖ ≤ 2L
n for all k so we know that B = 2L

n .
Since each sample is drawn independently we get

V [Z] = ‖
n∑
k=1

E
[
S2
k

]
‖ ≤

n∑
k=1

‖E
[
S2
k

]
‖ ≤

n∑
k=1

E
[
‖Sk‖2

]
≤

n∑
k=1

4L2

n2
=

4L2

n
.

By the Matrix Bernstein Inequality of (14) we know,

E
[
‖∇2Rn(w)−∇2R(w)‖

]
≤
√

8L2 log d

n
+

2L

3n
log d = (2

√
2L+

2L

3

√
log d

n
)

√
log d

n
.

Notice that the sample size n = Ω(log d), thus we have that

2
√

2L+
2L

3

√
log d

n
= O(L),

E
[
‖∇2Rn(w)−∇2R(w)‖

]
= O

(
L

√
log d

n

)
.

By the definition of s = supw,n

(
E[‖∇2Rn(w)−∇2R(w)‖F ]
E[‖∇2Rn(w)−∇2R(w)‖]

)2

we know

E
[
‖∇2Rn(w)−∇2R(w)‖F

]
≤
√
sE
[
‖∇2Rn(w)−∇2R(w)‖

]
,
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thus we have

E
[
‖∇2Rn(w)−∇2R(w)‖F

]
= O

(
L

√
s log d

n

)
.

This is correct for all w so we prove the conclusion (15).

Lemma 3. Suppose Sm and Sn are two datasets and Sm ⊂ Sn ⊂ T . Assume that there are m
samples in Sm and n samples in Sn and n ≥ m = Ω(log d). Consider the corresponding empirical
risk loss function Rm and Rn defined on Sm and Sn, respectively. Then for any w the expectation of
the difference between their Hessians is bounded above by

E
[
‖∇2Rn(w)−∇2Rm(w)‖F

]
= O

(
L

√
s log d

m

)
, (16)

where s = supw,n

(
E[‖∇2Rn(w)−∇2R(w)‖F ]
E[‖∇2Rn(w)−∇2R(w)‖]

)2

.

Proof. Using triangle inequality we have that

‖∇2Rn(w)−∇2Rm(w)‖F ≤ ‖∇2Rn(w)−∇2R(w)‖F + ‖∇2Rm(w)−∇2R(w)‖F .

By (15) of Lemma 2 and n ≥ m = Ω(log d), we have

E
[
‖∇2Rm(w)−∇2R(w)‖F

]
= O

(
L

√
s log d

m

)
.

E
[
‖∇2Rn(w)−∇2R(w)‖F

]
= O

(
L

√
s log d

n

)
= O

(
L

√
s log d

m

)
.

Leveraging the above three inequalities we prove the conclusion (16).

Lemma 4. Assume that f(x) is a strictly convex and self-concordant function. Suppose that x, y ∈
dom(f), then we have

f(y) ≥ f(x) +∇f(x)
>

(y − x) + w(‖∇2f(x)
1
2 (y − x)‖), (17)

where w(t) := t− ln (1 + t) and for t ≥ 0 we have

w(t) ≥ t2

2(1 + t)
. (18)

Moreover, if x, y ∈ dom(f) satisfy that ‖∇2f(x)
1
2 (y − x)‖ ≤ 1

2 , then we have:

1

1 + 6‖∇2f(x)
1
2 (y − x)‖

∇2f(x) � ∇2f(y) � (1 + 6‖∇2f(x)
1
2 (y − x)‖)∇2f(x). (19)

Proof. Check Theorem 4.1.7 and Lemma 5.1.5 of [37] for (17) and (18). If x, y ∈ dom(f) satisfy
that ‖∇2f(x)

1
2 (y − x)‖ ≤ 1

2 < 1, by Theorem 4.1.6 of [37] we obtain that

(1− ‖∇2f(x)
1
2 (y − x)‖)2∇2f(x) � ∇2f(y) � 1

(1− ‖∇2f(x)
1
2 (y − x)‖)2

∇2f(x). (20)

Notice that for a ∈ [0, 12 ] we have

1

(1− a)2
= 1 +

2− a
(1− a)2

a ≤ 1 + 6a. (21)

Combining (20) and (21) we can obtain that (19) holds.
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Lemma 5. Suppose t > 0 satisfies the following condition

t ≥ C1 + ln
1

C2
, (22)

where C1 and C2 are two positive constants. Then we can obtain the following inequality(
C1

t

)t
≤ C2. (23)

Proof. Denote s = t
C1

and based on (23) we have the following inequality(
1

s

)C1s

≤ C2.

This is equivalent to

sC1s ≥ 1

C2
.

Take the nature logarithm on both sides we get

C1s ln s ≥ ln
1

C2
. (24)

This shows that condition (24) is equivalent to condition (23). Notice that for any x > 0 we have the
following inequality

lnx ≥ 1− 1

x
.

So if s satisfies
C1s(1−

1

s
) ≥ ln

1

C2
, (25)

we can derive that
C1s ln s ≥ C1s(1−

1

s
) ≥ ln

1

C2
.

And since t = C1s the condition (25) is equivalent to

C1s− C1 ≥ ln
1

C2
,

t ≥ C1 + ln
1

C2
.

This is just the condition (22). So if t satisfies the condition (22) which is equivalent to condition
(25), condition (24) will be satisfied which is equivalent to condition (23).

Now we present the proof of Propositions 1-4.

B.1 Proof of Proposition 1

Note that the difference Rn(wm)−Rn(w∗n) can be written as

Rn(wm)−Rn(w∗n) = Rn(wm)−Rm(wm) +Rm(wm)−Rm(w∗m)

+Rm(w∗m)−R(w∗) +R(w∗)−Rn(w∗n).
(26)

Notice that all samples are drawn independently in our algorithm and all the expectations are with
respect to the corresponding training set. Therefore, for the training sets Sm, Sn with m < n, where
Sm ⊂ Sn, and their corresponding objective functions are Rm(w) and Rn(w), we have

ESn [Rn(w)] = R(w),

ESn [Rm(w)] = ESn−m [ESm [Rm(w)]] = ESm [Rm(w)] = R(w),

where R(w) is the expected loss function. Computing the expectation of both sides in (26) and
dismissing the notations of the corresponding training set implies that

E[Rn(wm)−Rn(w∗n)] = E[Rn(wm)−Rm(wm)] + E[Rm(wm)−Rm(w∗m)]

+ E[Rm(w∗m)−R(w∗)] + E[R(w∗)−Rn(w∗n)].
(27)
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Now note that
E [Rn(wm)−Rm(wm)] = R(wm)−R(wm) = 0.

Moreover, since wm solves the ERM problem Rm within its statistical accuracy, we have

E [Rm(wm)−Rm(w∗m)] ≤ Vm.

Using (3) and the fact that n ≥ m we can show that

E [Rm(w∗m)−R(w∗)] ≤ E [|Rm(w∗m)−R(w∗)|] ≤ Vm,

E [R(w∗)−Rn(w∗n)] ≤ E [|Rn(w∗n)−R(w∗)|] ≤ Vn ≤ Vm.

Leveraging all the above inequalities and replacing the terms in (27) by their upper bounds implies

E[Rn(wm)−Rn(w∗n)] ≤ 3Vm

and the claim in (7) of Proposition 1 follows.

B.2 Proof of Proposition 2

Check Corollary 5.5 of [24].

B.3 Proof of Proposition 3

Recall that Rn is strongly convex with µ and its gradient is smooth with L, Hence, we have

‖∇2Rn(w∗n)
1
2 (wm −w∗n)‖ ≤ ‖∇2Rn(w∗n)‖ 1

2 ‖wm −w∗n‖ ≤

√
2L

µ
[Rn(wm)−Rn(w∗n)].

By Proposition 1 we know that

E [Rn(wm)−Rn(w∗n)] ≤ 3Vm.

Using Jensen’s inequality (notice that function f(x) =
√
x is concave) we obtain

E
[
‖∇2Rn(w∗n)

1
2 (wm −w∗n)‖

]
≤

√
2L

µ
E [Rn(wm)−Rn(w∗n)] ≤

√
6κVm.

Moreover, we assume that Vm = O( 1
m ) under the condition that m = Ω(κ2 log d). So when m is

lower bounded by

m = Ω

(
max{ 6κ

( 1
300 )2

, κ2 log d}
)

= Ω
(
max{κ, κ2 log d}

)
= Ω(κ2 log d),

we can ensure that

E
[
‖∇2Rn(w∗n)

1
2 (wm −w∗n)‖

]
≤
√

6κVm ≤
1

300
.

B.4 Proof of Proposition 4

Notice that by triangle inequality we have

‖∇2Rn(w∗n)−
1
2

[
∇2Rm0

(wm0
)−∇2Rn(w∗n)

]
∇2Rn(w∗n)−

1
2 ‖F

≤‖∇2Rn(w∗n)−
1
2

[
∇2Rm0

(wm0
)−∇2Rn(wm0

)
]
∇2Rn(w∗n)−

1
2 ‖F +

‖∇2Rn(w∗n)−
1
2

[
∇2Rn(wm0

)−∇2Rn(w∗n)
]
∇2Rn(w∗n)−

1
2 ‖F .

(28)
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Recall that Rn is strongly convex with µ and thus ‖∇2Rn(w∗n)−
1
2 ‖ ≤

√
1
µ . By (16) of Lemma 3

we derive that when m0 = Ω(log d),

E
[
‖∇2Rn(w∗n)−

1
2

[
∇2Rm0

(wm0
)−∇2Rn(wm0

)
]
∇2Rn(w∗n)−

1
2 ‖F

]
≤E

[
‖∇2Rn(w∗n)−

1
2 ‖2‖∇2Rm0

(wm0
)−∇2Rn(wm0

)‖F
]

≤ 1

µ
E
[
‖∇2Rn(wm0

)−∇2Rm0
(wm0

)‖F
]

=O

(
L

µ

√
s log d

m0

)

=O

(
κ

√
s log d

m0

)
.

So when m0 is lower bounded by

m0 = Ω

(
max{κ

2s log d

( 1
14 )2

, log d}
)

= Ω
(
max{κ2s log d, log d}

)
= Ω(κ2s log d), (29)

we can ensure that,

E
[
‖∇2Rn(w∗n)−

1
2

[
∇2Rm0

(wm0
)−∇2Rn(wm0

)
]
∇2Rn(w∗n)−

1
2 ‖F

]
= O

(
κ

√
s log d

m0

)
≤ 1

14
.

(30)
Using the same techniques in the proof of Proposition 3 we know that when m0 is lower bounded by

m0 = Ω(κ2 log d), (31)

we can ensure that
E
[
‖∇2Rn(w∗n)

1
2 (wm0

−w∗n)‖
]
≤ 1

300
.

By Markov’s inequality we know that

P
(
‖∇2Rn(w∗n)

1
2 (wm0

−w∗n)‖ ≤ 1

2

)
= 1− P

(
‖∇2Rn(w∗n)

1
2 (wm0

−w∗n)‖ ≥ 1

2

)

≥ 1−
E
[
‖∇2Rn(w∗n)

1
2 (wm0 −w∗n)‖

]
1/2

≥ 1− 1/300

1/2
=

149

150
.

This indicates that with high probability(w.h.p) of at least 149/150 we get that

‖∇2Rn(w∗n)
1
2 (wm0

−w∗n)‖ ≤ 1

2
.

Using (19) of Lemma 4 we have that with high probability

∇2Rn(w∗n)

1 + 6‖∇2Rn(w∗n)
1
2 (wm0

−w∗n)‖
� ∇2Rn(wm0) � (1+6‖∇2Rn(w∗n)

1
2 (wm0−w∗n)‖)∇2Rn(w∗n).

Times the matrix∇2Rn(w∗n)−
1
2 on both sides we get that

1

1 + 6‖∇2Rn(w∗n)
1
2 (wm0 −w∗n)‖

I � ∇2Rn(w∗n)−
1
2∇2Rn(wm0

)∇2Rn(w∗n)−
1
2 , w.h.p,

∇2Rn(w∗n)−
1
2∇2Rn(wm0

)∇2Rn(w∗n)−
1
2 � (1 + 6‖∇2Rn(w∗n)

1
2 (wm0

−w∗n)‖)I, w.h.p.
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So we achieve that

‖∇2Rn(w∗n)−
1
2 [∇2Rn(wm0

)−∇2Rn(w∗n)]∇2Rn(w∗n)−
1
2 ‖

=‖∇2Rn(w∗n)−
1
2∇2Rn(wm0)∇2Rn(w∗n)−

1
2 − I‖

≤max{6‖∇2Rn(w∗n)
1
2 (wm0 −w∗n)‖, 1− 1

1 + 6‖∇2Rn(w∗n)
1
2 (wm0

−w∗n)‖
}

=6‖∇2Rn(w∗n)
1
2 (wm0 −w∗n)‖, w.h.p.

Hence we obtain that

‖∇2Rn(w∗n)−
1
2 [∇2Rn(wm0)−∇2Rn(w∗n)]∇2Rn(w∗n)−

1
2 ‖F

≤
√
d‖∇2Rn(w∗n)−

1
2 [∇2Rn(wm0

)−∇2Rn(w∗n)]∇2Rn(w∗n)−
1
2 ‖

≤6
√
d‖∇2Rn(w∗n)

1
2 (wm0

−w∗n)‖, w.h.p,

(32)

where we use the fact that ‖A‖F ≤
√
d‖A‖ for any matrix A ∈ Rd×d. Because w∗n is the optimal

solution of the function Rn(w) we know that ∇Rn(w∗n) = 0. Recall that w(t) = t− ln (1 + t) and
by (17) of Lemma 4 we get that

w(‖∇2Rn(w∗n)
1
2 (wm0

−w∗n)‖) ≤ Rn(wm0
)−Rn(w∗n). (33)

By (18) of Lemma 4 and ‖∇2Rn(w∗n)
1
2 (wm0

−w∗n)‖ ≤ 1
2 w.h.p, we obtain that with high probability

w(‖∇2Rn(w∗n)
1
2 (wm0

−w∗n)‖) ≥ ‖∇2Rn(w∗n)
1
2 (wm0

−w∗n)‖2

2(1 + ‖∇2Rn(w∗n)
1
2 (wm0

−w∗n)‖)
≥ ‖∇

2Rn(w∗n)
1
2 (wm0

−w∗n)‖2

3
.

(34)
Combining (32), (33) and (34) we have that

‖∇2Rn(w∗n)−
1
2 [∇2Rn(wm0

)−∇2Rn(w∗n)]∇2Rn(w∗n)−
1
2 ‖F

≤6
√
d‖∇2Rn(w∗n)

1
2 (wm0

−w∗n)‖

≤6
√

3
√
d

√
w(‖∇2Rn(w∗n)

1
2 (wm0

−w∗n)‖)

≤6
√

3
√
d
√
Rn(wm0)−Rn(w∗n), w.h.p.

By proposition 1 we know that

E [Rn(wm0
)−Rn(w∗n)] ≤ 3Vm0

.

Using Jensen’s inequality (notice that function f(x) =
√
x is concave) we get that

E
[
‖∇2Rn(w∗n)−

1
2 [∇2Rn(wm0

)−∇2Rn(w∗n)]∇2Rn(w∗n)−
1
2 ‖F

]
≤6
√

3
√
d
√
E[Rn(wm0)−Rn(w∗n)]

≤18
√
dVm0

.

We assume that Vm0
= O( 1

m0
) under the condition that m0 = Ω(κ2 log d). So when m0 is lower

bounded by

m0 = Ω

(
max{ 182d

( 1
14 )2

, κ2 log d}
)

= Ω
(
max{d, κ2 log d}

)
, (35)

we can ensure that

E
[
‖∇2Rn(w∗n)−

1
2 [∇2Rn(wm0)−∇2Rn(w∗n)]∇2Rn(w∗n)−

1
2 ‖F

]
≤ 18

√
dVm0 ≤

1

14
. (36)

Leveraging (28), (29), (30), (31), (35) and (36) and using the fact that s ≥ 1 we know that when the
initial sample size m0 is lower bounded by

m0 = Ω
(
max

{
d, κ2 log d, κ2s log d

})
= Ω

(
max

{
d, κ2s log d

})
,
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we have that

E
[
‖∇2Rn(w∗n)−

1
2

[
∇2Rm0

(wm0
)−∇2Rn(w∗n)

]
∇2Rn(w∗n)−

1
2 ‖F

]
≤E[

[
‖∇2Rn(w∗n)−

1
2

[
∇2Rm0

(wm0
)−∇2Rn(wm0

)
]
∇2Rn(w∗n)−

1
2 ‖F

]
+

E[
[
‖∇2Rn(w∗n)−

1
2

[
∇2Rn(wm0

)−∇2Rn(w∗n)
]
∇2Rn(w∗n)−

1
2 ‖F

]
≤ 1

14
+

1

14

=
1

7
.

So the proof of Proposition 4 is complete.

Finally we present the proof of the main theorem of the paper.

B.5 Proof of Theorem 1

Suppose we are at the stage with n = 2m samples and the initial iterate wm is within the statistical
accuracy of Rm. Further, suppose the size of initial set m0 satisfies (12) and by s ≥ 1 we have

m0 = Ω(κ2 log d),

hence by Proposition 3 and 4 the conditions in (8) are satisfied in expectation. If we define wn as the
output of the process after running tn updates of BFGS on Rn with step size 1, then Proposition 2
implies that

E[Rn(wn)−Rn(w∗n)] ≤ 1.1 (1/tn)
tn E[Rn(wm)−Rn(w∗n)].

Moreover, if we set n = 2m by Proposition 1 we obtain E[Rn(wm)−Rn(w∗n)] ≤ 3Vm. Combining
these two inequalities implies that

E[Rn(wn)−Rn(w∗n)] ≤ 3.3 Vm (1/tn)
tn . (37)

Our goal is to ensure that the output iterate wn reaches the statistical accuracy of Rn and satisfies
E[Rn(wn)−Rn(w∗n)] ≤ Vn. This condition is indeed satisfied if the upper bound in (37) is smaller
than Vn and we have

3.3 Vm (1/tn)
tn ≤ Vn. (38)

As Vn = O(1/n)(since n ≥ m0 = Ω(κ2 log d)) and n = 2m, condition (38) is equivalent to
(1/tn)

tn ≤ (1/6.6). It can be easily verified that this condition holds if tn satisfies (see Lemma 5):

tn ≥ 1 + ln (6.6). (39)

The expression in (39) shows that, in the stage that the number of active samples is n, we need to run
BFGS for at most tn = 3 iterations (since 3 ≥ 1 + ln(6.6)). Note that this threshold is independent
of n or any other parameters. Hence, the cost of running BFGS updates at the phase that we have n
samples in the training set is

ntnτgrad + tnτprod = 3(nτgrad + τprod),

where the first term corresponds to the cost of computing n gradients for tn iterations and the second
term corresponds to the cost of computing tn matrix-vector products for updating the Hessian inverse
approximation. To compute the overall cost of AdaQN, we must sum up the cost of each phase from
the initial training set with m0 samples up to the last phase that we have N samples in the active
training set. For simplicity we assume that the total number of samples N and the initial sample set
m0 satisfy the condition N = 2qm0 where q ∈ Z. Hence, the computational cost of solving ERM
problems from m0 samples to N samples is

q∑
k=0

[3(2km0τgrad + τprod)]

≤3
[(
m0τgrad2

q+1
)

+ (q + 1)τprod
]

= 6Nτgrad + 3

(
1 + log

(
N

m0

))
τprod

Further, we need to compute m0 Hessians and one matrix inversion at the first stage, when we
compute Hm0

= ∇2Rm0
(wm0

)
−1. By combining these costs, the claim in Theorem 1 follows.
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C Analysis of parameter s

As we discussed in the paper, the lower bound on the size of initial training set m0, depends on the
parameter s which is formally defined as

s = sup
w,n

(
E
[
‖∇2Rn(w)−∇2R(w)‖F

]
E [‖∇2Rn(w)−∇2R(w)‖]

)2

.

This parameter could be as small as 1 in the best case scenario, and as large as d in the worst
case scenario. This parameter depends heavily on the variation/variance of the input features for
linear models. To better illustrate this point, we consider a simple case where the input vectors are
x = [x1, . . . , xd] and we use a linear regression model for our prediction function and a quadratic
loss function.2 In this case, the empirical risk Rn(w) defined by the samples {x(k), y(k)}nk=1 and the
expected risk are given by

Rn(w) =
1

2n

n∑
k=1

(y(k) −w>x(k))2, R(w) =
1

2
E(x,y)[(y −w>x)2].

And the Hessians ∇2Rn(w) and ∇2R(w) are given by

∇2Rn(w) =
1

n

n∑
k=1

x(k)x(k)>, ∇2R(w) = E(x,y)[xx
>].

To understand the behavior of the ratio s we need to study the gap between these two matrices. Note
that the (i, j) element of these matrices are given by

∇2Rn(w)[i, j] =
1

n

n∑
k=1

x
(k)
i x

(k)
j , ∇2R(w)[i, j] = E[xixj ],

where x(k)i denotes the i-th element of the k-th sample point. Without loss of generality we assume
that the correlation between two different features, i.e., E[xixj ] for i 6= j, is much smaller than
the second moment of each feature E[x2i ]. Thus, we can focus on the diagonal components of
these two matrices only. In that case, the i-th component on the diagonal of the difference matrix
∇2Rn(w)−∇2R(w) is given by

ei :=
1

n

n∑
k=1

(x
(k)
i )2 − E[x2i ],

which is equivalent to the concentration error of the random variable x2i . By the definition of
Frobenius norm and l2 norm we know that s is approximately

s ≈
∑d
i=1 e

2
i

maxi=1,...,d e2i
.

Now if different features of the input vector x have similar range and second moments, we would
expect the parameters ei to be close to each other. In this case, the Frobenius norm of the difference
matrix ∇2Rn(w)−∇2R(w) is almost

√
d of its operator norm and hence s ≈ d. However, if the

variance and range of different elements of the feature vector x are substantially different from each
other, s would be much smaller than d. For instance, when all the e2i coordinate in the same range,
except that maxi e

2
i is much larger than the rest then the Frobenius norm and operator norm of the

difference matrix∇2Rn(w)−∇2R(w) are very close to each other and therefore s = O(1). In this
case, s does not scale with d. For many datasets, the second scenario holds, since we often observe
that the matrix of difference∇2Rn(w)−∇2R(w) has several eigenvalues with small absolute value
and a few eigenvalues with large absolute value.

To better quantify the parameter s, we conduct the following numerical experiment. We generate the
feature vector randomly x = [x1, . . . , xd] where xi are independent random variables from normal
distribution. We generate n = 1000 samples to compute the empirical risk Hessian ∇2Rn(w) =

2Case of the logistic regression is similar.
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Figure 7: Parameter s versus dimension d. The left plot corresponds to the case that all features have
the same variance and the right plot corresponds to the case that the variance of one feature is much
larger than the rest of the features.

Table 3: Parameter s for different datasets.
Dataset MNIST GISETTE Orange Epsilon

Dimension d 784 5000 14000 2000
Parameter s 1.6 4.43 6.49 2.56

1
n

∑n
k=1 x

(k)x(k)>. We consider two cases. In the first case, we generate all the features according
to the distribution xi ∼ N (0, 1), and thus the expected risk Hessian is ∇2R(w) = I . In the second
case, we generate the first coordinate according to x1 ∼ N (0, 100) and the rest of the coordinates
are generated based on xi ∼ N (0, 1). In this case, we have ∇2R(w) = D where D ∈ Rd×d is a
diagonal matrix with D(1, 1) = 100 and D(i, i) = 1 for 2 ≤ i ≤ d.

We plot the results in Figure 7 to present how parameter s behaves as the dimension d grows for these
two scenarios. As shown in the right plot of the Figure 7, the parameter s always stays very small, in
the second scenario, no matter how large the dimension d is. This case corresponds to the second
scenario where the variance of one of the features is much larger than the rest of the features and
therefore, the Frobenius norm and operator norm of the difference matrix ∇2Rn(w)−∇2R(w) are
very close to each other. So in the best case, s is almost independent of the scale of dimension d.
Note that in this case for d = 10, 000, the parameter s is 14, which shows that s = O(1).

The left plot of Figure 7 shows that even in the worst case, where all features have similar vari-
ances/variations (the first scenario), the parameter s could still be much smaller than the problem
dimension d. Indeed, in this case, s is larger than the previous studied case. However, it is still much
smaller than dimension d and it does not grow linearly with the dimension. In fact, for d = 10, 000,
the value of s is s = 380 which is much smaller than d.

The above toy example showed that often parameter s is much smaller than the problem dimension
d. Next, we try to numerically identify the value of s for the four datasets that we considered in our
numerical experiments. Note that, in this case, we are not able to compute the Hessian of expected
risk exactly as the underlying probability distribution is unknown. Instead, we approximate that by
the Hessian of an empirical risk that is defined by a very large number of samples. Specifically, for
each dataset, we use the Hessian of the ERM problem computed by all available samples ∇2RN (w)
in the training set as an approximation of the expected risk Hessian∇2R(w). Hence, we compute the
parameter s by looking at the ratio of the Frobenius norm and operator norm of the difference matrix
∇2Rm0(w)−∇2RN (w). The results are summarized in Table 3. As we observe, the parameter s
for all datasets stays close to 1 and is not within the same order as the problem dimension d. In fact,
for all considered datasets, s is less than 10, while dimensions are much larger.

Leveraging the results from numerical experiments in Figure 7 and Table 3, we argue that in most
cases we are in the regime that s = O(1) and is independent of dimension d. Now recall that our
lower bound on m0 is Ω

(
max

{
d, κ2s log d

})
. These observations imply that, the worst theoretical

lower bound of Ω
(
κ2d log d

)
(where s = O(d)) rarely holds in practice, and in most common cases,

we can assume that the lower bound on the initial sample size m0 is Ω
(
max

{
d, κ2 log d

})
.
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